Distributed Caching Platforms

Typical Web Applications

Web Tier }

' (ASP.Net)

Cu(—o(—p?cge\ssion State
ﬁ Server
% Data Tier }

What is "Distributed Caching"?

* An explicit, distributed, in-memory application cache for all kinds
of data (Java/.Net objects, rows, XML, Binary data etc.)

— Fuse "memory" across machines into a unified cache

Clients can be

spread across

machines or
processes

Clients Access
the Cache as if it
WESEREIFE
single cache

I Cache Layer
distributes data
across the
various cache
nodes

Where does it fit?

N

e Internet -~ -
TS~ | LAsPog
Application Application

Caching Access Caching Access
Layer Layer

Web Tier
Application (ASP.Net)

Caching Access
Layer

Distributed Cache Usage

Scenario

User-specific HTTP session and shared state across web farm
In-flight shopping carts for web retail

Enabling online self-service applications

Explicit storage of pre-computed or highly-accessed data

Horizontal

Enterprise-wide product catalog for POS, analytics
Caching frequently used reference data for a ERP application

Cellular/VOIP: compute utilization, prepay charges, call routing and session info

Tel
160 SMS: message content / notification / receipt, billing

Travel Aggregated flight pricing / availability retrieved from airlines

Verticals

Defense Sensor network data processing and threat detection

: : Per-user portfolio data and delayed quote storage for trading
Financial
Aggregate and process ticker stream for algorithmic trading

Types of Application Data

Primary Read Only Read-Write Not shared Read-Write, Shared
Catalog Data Shopping Cart Auction Data/Seat
Assignment
Grocery Shop

Web/App Tier

_ T - ’ ? Grocery Inventory
J ,

M KDiStrib-UtedﬁE;e’j

e A version of the authoritative data Scenario: Social Networking

— Aggregated or transformed
e Each version is unique

Clients
» Refreshed periodically 1'
* Examples |
— Web and Enterprise (Product) % Web Tier
Catalogs

— User, Employee data
* Access pattern
— Mostly read

Local Cache
(in Proc)

~ Usernames,
T2 O -
. »—‘\'" Name > ID
=L Mapping

Q- Friend Lists
@ Usernames

— Shared & Concurrent Access
* Scale

— Large number of accesses
* Functionality

— Key based Access

— Simple Query & Filtering
— Loading

« Data typically generated as part of the Scenario: Enterprise LOB Application

application activity
 Active during business transactions
— Typically logged to a backend data

Thin Clients Rich Clients

source
— Historical data

Mid Tier

* Examples
— Shopping Cart

— Session State

— Enterprise LOB app (Purchase Order)
* Access pattern

— Read and write

Vendor
Catalogs

— Primarily exclusive access
* Scale

— High data (and access) scale
* Functionality

— Key based access

Vendor
Sources

Vendor
services,

External Systems...

— Transactions (Grouping)

Scenario: Flight Inventory and Pricing

e Authoritative data
* Modified by transactions; spans

Booking Service

transactions
* Examples

— Flight Inventory
* Access pattern:

— Read and write

— Shared access] ~
* Functionality 4 glnventory
ey besee. sEmes ~/Distributed Cache
: Flight Segment l/
— Transactions

- Flight Price
* Scale @

— Large number of concurrent accesses

Tlnidnd

— Relaxed consistency for scale [lll

UNITED

Airlines

http://images.google.com/imgres?imgurl=http://www.planebuzz.com/united_logo1.JPG&imgrefurl=http://www.planebuzz.com/2006/09/united_pilots_fallout_from_the.html&h=446&w=496&sz=19&hl=en&start=1&sig2=xoROdkuK4X_uPOW8vkHzDA&um=1&tbnid=eDQBBS4EyuSe0M:&tbnh=117&tbnw=130&ei=Ht6XRtvHJIOqiwHMs7XbBw&prev=/images?q=united+airlines&svnum=10&um=1&hl=en&rls=com.microsoft:*:IE-SearchBox
http://images.google.com/imgres?imgurl=http://blog.travelpost.com/wp-content/AmericanAirlinesLogo.JPG&imgrefurl=http://blog.travelpost.com/category/deals-and-promos/page/2/&h=230&w=248&sz=38&hl=en&start=2&sig2=rcwxwr_SKquBiFzeS7H7gg&um=1&tbnid=AHlLTSHJp9_OIM:&tbnh=103&tbnw=111&ei=L96XRpalJa_wiwGVu5H3Bw&prev=/images?q=american+airlines&svnum=10&um=1&hl=en&rls=com.microsoft:*:IE-SearchBox

* A version of the authoritative data Scenario: Social Networking

— Aggregated or transformed

* Several TBs on 100s of Memcached Clients
Servers 1,
* Examples

— User data, friend data, pictures
* Most accesses hit the cache
* Access pattern

— Mostly read

% Web Tier

Local Cache
(in Proc)

~ Usernames,
T s -
. ’&'-' Name > ID
= Mapping

9t Friend Lists
@ Usernames

— Shared & Concurrent Access
* Scale

— Large number of accesses
* Functionality

— Key based Access

— Simple query/Filtering

Extreme Transaction Processing

 Distributed TP applications with exceptionally
demanding performance, scalability, availability

 Real-time, business critical, secure, and

manageable

Traditional TP monitors

Enterprise Application Servers

Traditional Integration Brokers

Message Servers

Event Driven Messaging

Enterprise/Internet Service Bus

Grid/Fabric based Application Servers

Low latency platform

Grid/Fabric based Application Servers

Application Server Application Server Application Server

Application
Components

Application Application
State State

Application
Components

Application
State

Application
Components

Application Application
State State

Distributed Caching Platform

Integrated distributed caching .

platform

Application State
Management

Partitioned and Replicated
application state

Co-located logic and state
Data aware routing

Extreme low latency
routing and access

Durability and Persistence

Pr——_—__ SRR

Next generation applications — distributed, loosely-coupled, even-driven

requiring high scale, performance and availability.

Evolving
Application
Architectures

Evolving
Application
Requirements

Underlying
Hardware
Trends

Application Requirements

Efficient (Application) State management
Performance

— Millisecond/microsecond access

— 100s of 1000s of accesses
Scale

— 10s — 100s of nodes in enterprise

— 100s —1000s in cloud applications
Availability

— Always available
Consistency

— Different degrees: Strong, Weak, Eventual, . . .
Access

— Key based and simple query based access

— Transactions, Optimistic concurrency control

— Invalidations

Caching API

// Create instance of cachefactory (reads appconfig)
DataCacheFactory fac = new DataCacheFactory();

// Get a named cache from the factory
DataCache catalog = fac.GetCache("catalogcache");

// Simple Get/Put
catalog.Put("toy-101", new Toy("Puzzle", .,.));

// From the same or a different client
Toy toyObj = (Toy)catalog.Get("toy-101");

// Region based Get/Put
catalog.CreateRegion("toyRegion");

// Both toy and toyparts are put in the same region
catalog.Put("toy-101", new Toy(.,.), “toyRegion”);
Catalog.Put("toypart-100", new ToyParts(..), “toyRegion”);

Toy toyObj = (Toy)catalog.Get("toy-101“,"toyRegion");

Access APls — Tagging Items

* Add Tags to ltems

— Tag Search on Default Regions

Tag hotItem = new Tag("hotItem");

catalog.Put("toy-101", new Toy("Puzzle"),
new Tag[]{hotItem}, “toyRegion”);

catalog.Put("toy-102", new Toy("Bridge"), “toyRegion”);
// From the same or a different client

List<KeyValuePair<string, object>> toys =
catalog.GetAnyMatchingTag("toyRegion", hotItem);

Usage Pattern — Cache Aside (Explicit Caching)

// Read from Cache

Toy tOyObj = (Toy) :.HZHAppIication
catalog .Get ("toy— 101") 3 Caching Access Layer

// If Not present in the cache
if (toyObj == null)
{

// Read from backend..
toyObj = ReadFromDatabase();

Caching Service

// Populate Cache
catalog.Put("toy-101", toyObj);

. Daté t;ase
return toyObj; L J

Features
AT

CRUD Operations (Create, Read, Update Partitioned

and Delete)

Any Object type Replicated

Multiple Client Languages Failover Support (High Availability)
Concurrency APIs Multiple Backups

Async and Batch APIs Local Caching

Transactions Explicit Data Affinity

Query & Continuous Query Embedded Cache

Cache Notifications Geo-replicated

Eviction
Persistence
Session State (.NET, Java)
IDE support Custom Eviction Read Through

Custom Persistence Refresh Ahead
DT custom Query Write Through
Administration & Monitoring Triggers Write Behind

Security
Co-location of logic & data in cache

http://forge.terracotta.org/releases/

IMDB vs. Distributed Caching Platforms (DCPs)

IMDB

DCP

Primarily relational store

Object store — any form of object

DB-specific representation

Application-specific representation

Only SQL query

Object/relational query (e.g. Ling, SQL)

Set-oriented access

Key based, Navigational, set-oriented access
(e.g. GET, PUT, simple query)

Centralized

Distributed

Performance acceleration

Performance, Scale, and Failover

Server deployments

Embedded or server deployments

Niche, vertical markets (e.g. Telco)

General purpose (e.g. Web, LOB)

e.g. TimesTen, Solid DB, ANTS

e.g. memcacheD, Gemstone, Oracle Coherence,
Gigaspaces, IBM extremeScale, AppFabric Caching
etc..

DCP Players

Memcached (open source)

VMWare (Gemstone) Gemfire
Gigaspaces Extreme Application Platform
IBM WebSphere Extreme Scale Cache
Microsoft AppFabric Caching

Oracle Coherence

Terracotta's Terracotta Server (open source)

Distributed Caching Platform
Concepts

AppFabric Caching Logical Hierarchy

AppFabric AppFabric AppFabric o |
aching Caching Caching
ervice / Service =/ Service ‘

Key Payload Tags
Region A 121 xxxx “Toy” “Child”
123 yyyy “Toy” “Chair”..

Machine -> Cache Host -> Named Caches -> Regions -> Cache Items -> Objects

* Host e Cache ltem
— Physical processes hosting AppFabric — Key, Payload (Object), Tags, TTL,
Caching instance. Timestamps, Version
 Named Caches * Regions
— Can span across machines — Physically co-located Container of
— Defined in the configuration file Cache Items

— May be implicit or explicitly created

Scale: Partitioned Cache

Application

PUT
Cache Clientl

Routing Table

v

Get(K2)

v

Cache Client2

Routing Table

>
Cachel Routing Table Cache2 E outing frable Cache3 Routing Table
Primary for K1,V1 Primary for Primary for K3,V3
K2,V2

[4

Key Mapping

i ID Ranges
E(;?:‘Ic:en mapped
Hashed into | Glidlill to Nodes
Region Id (Range of Ids)
Keys
Bucketized 0 1000
into Regions

efault Region 1

Key Default Region 2

1001 - 2000

"Custl"

"Cust2"
fault Region 2
"Cust33">)e ault Region 256 /

"ToyRegion" "Toyl101"

"ToyRegion" "Toy102"
"BoxRegion" "Box101" ToyRegion

\EoXRegion Xxx - Maxint

Scale: Replicated Cache (Synchronous)

Application

PUT
Cache Clientl

Routing Table Get(K2)
A
Cachel Routing layer Cache2 Cache3
Primary for (K1,V1) Primary for (KZT Primary for (K3,V3

Scale: Replicated Cache (Async)

Application

PUT
Cache Clientl

Routing Table Get(K2)
A
Cachel Routing layer Cache2 Cache3
Primary for (K1,V1) Primary for (KZT Primary for (K3,V3
=B

Local Cache

Local Cache can help speed up access on clients
Uses notification mechanism to refresh the cache on cache

item changes

Put(K2, v2) Get(K2) Get(K2)
Cache Client Cache Client }
Local Cache > Local Cache ¢ioNas
Routing Table
Cachel Cache? Cache3
Primary for K1,V1 Primaty for K2, Primary for K3,V3

g

Availability

Application

Cache Clientl

Routing Table

Get(K2)

v

Cache Client

Routing Table

Cachel

Cache?2

Cache3

Primary for (K1,V1)

Primary for (KZ,V2)

Replication
Agent

Primary for (K3,V3)

Failover

Cache4
. Partition 1]
Primary for e
(K4,v4 ~ -
Global

Partition Map

Lo g

Routing Table

ache?2 Cache3

Reconfiguration

Agent Primary for V Primary for (K3,V3)
Replication —
Agent

Local Partition
Map
——— j

Embedded Cache

* Cache client and server components run as part of the
application process

* Avoids serialization and network costs

* Provides high performance, low latency access

* Guaranteeing locality and load balancing is tricky
e Better suited for replicated caches

Application Application Application

Cache Components Cache Components Cache Components

Time

TO

T1

T2

T3

Optimistic Version-based Locking

GetCacheltem returns a version object
Every update to an object internally increments it's version
Supply the version obtained along with the Put/Remove

Put/Remove will succeed only if the passed in version matches
the version in the cache

Version Based Update

Clientl

Cacheltem item =

catalog.GetCacheltem(“PlayerRegion”,

"Zune”);

((ZuneObject)item.Object).inventory --;

catalog.Put(“PlayerRegion”, “Zune”,
item.Object, item.Version);

// Version mismatch

// Client must retry again

Client2 (Different Thread or process)

Cacheltem item =

catalog.GetCacheltem(“PlayerRegion”,

"Zune”);

((ZuneObject)item.Object).inventory--;

catalog.Put(“PlayerRegion”, “Zune”,
item.Object, item.Version);

Two clients access the same
item

Both update the item

Second Client gets in first;
put succeeds because item
version matches; atomically

increments the version

First client tries put;
Fails because the versions
don’t match

Pessimistic Locking

Client1: Client2: Client3:
GetAndLock ("k1") GetAndLock ("k1") Get ("k1")
GetAndLock gets —la %
lock handle - '
- I
Other GetAndLock S Regular Get

: ; » succeeds
on same item fails e K1

— Take locks on non-existent keys
— Allows you to co-ordinate creating new object
amongst multiple clients

Scalable Notifications

Register
Notification for
Key IIK3II
Call Delegate Application Map Keys
Store Last LSN to Partition
Caching Client | (say pz)
.] Routing Table Poll
N ' . Required
artition:
Nodes
Last LSN: 19
Nodes Return
List of Changes
LSN Order
Cachel Cache?2 Cache3
Primary for Primary for Primarv for
N -~ Change Log 7
Change Log é Change Log @ (Partition P2) b
33 Add K1 f"’“i'\i;?,”.gl 18 Del K32
| 34Del K22 > o] %o

19 Del K43

Eviction

e Expiry only eviction which
— Evicts expired items alone
— Periodic
— Per partition
* Hard-eviction (Data > Allocated Cache Size)
— Evicts expired items + non-expired items (in LRU order)

— Per request
— Can be turned off

* Memory pressure based eviction
— A thread for detecting memory pressure (polling per second)
— Avoids paging
— Triggers hard-eviction (mentioned above) at 85% system memory
usage and asks for releasing 5% of system memory

Persistence — Cache Through

Callback for read-through, write-through, write-
behind

Specified at Named Cache Level
Read-Through

— Called when item not present in cache
— Callback returns the object/serialized bytes

Write-Through
— Called when item is put

Write-Behind
— Writes to cache are queued
— Callback called asynchronously in batches
— Re-tries upon failure

Bulk Access APlIs

Read-Through Cache

Application

Get(K2)

v

Cache Client2

Routing Table

Rodting Table Cache3

Cachel Routing Table Cache2
Primary for K1,V1 Primary for
K2,v2

Routing Table

Primary for K3,V3

Write-Through Cache

Application

Put (K2, V2))

v

Cache Client2

Routing Table

Cache3

Cachel Routing Table Cache2 Rogting Table
Primary for K1,V1 Primary for
K2,V2

Routing Table

Primary for K3,V3

Async Write-Back Cache

Application
Put (K2, V2))

v

Cache Client2
Routing Table

Cachel Routing Table Cache2 Rogting Table Cache3 Routing Table

Primary for K1,V1 Primary for
K2,V2

Primary for K3,V3

- Ié -

Async Write Back (Write Behind) Cache

* Specified at Named Cache Level

e Write-Back

— Asynchronously written to disk (e.g. database)
— Physical write done via callbacks

— Writes to cache are queued

— Callback called asynchronously in batches

— Re-tries upon failure

Executing A Query

from toy in catalog<Toy>()
where toy.ToyPrice > 300
select toy;

7]

Federated Query Processor

Dispatch Manager Local Cache

Cache API

from toy in catalog<Toy>()
where toy.ToyPrice > 300
alect toy;

Cachel Cache?2 Cache3

Query Processor Query Processor Query Processor
S ———

Primary Regions Primary Regions Primary Regions
ToyRegion R

Executing A Query

from toy in catalog.GetRegion<Toy>(“ToyRegion”)
where toy.ToyPrice > 300

select toy; \l'

Cache API

Federated Query Processor

Dispatch Manager Local Cache

from toy in catalog.GetRegion<Toy>(“ToyBes
where toy.ToyPrice > 300
select toy;

Cachel Cache?2 Cache3

Query Processor Query Processor Query Processor

Primary Regions Primary Regions Primary Regions

ToyRegion R

DCP Architecture

Microsoft’s AppFabric Caching Architecture

Client Layer

Administration
and Monitoring

Cache API &
Service Layer

Distributed Object
Manager

Local Store Components

Object Manager

In-memory Data Manager DM API

A S— Hash, B-trees

Distributed Components

Common Availability Substrate

Cluster Substrate

Failure Raw

Detection Transport

Reliable
Routing

Customer & Usage Trends

1911 qaM

31807 uonesddy

Cache in Multi-tiered Application

i

1911 g

Tier Merging — Co-locating Caches

- S € O P

Data/partition aware Routing

r /\\

App Server App Server App Server

g> p— p— p—
85

1 || -z a» | ||

Ja1] ejeq

1911 g
\

Hotel Search

_ Find Hotels in City = “Paris”
City aware Routing
Find Hotels in City = “Paris”

21801
uonexuddv

App

App

App

Server

Serve

Server

—~————

: Hote ;
Data

: Hote ;
Data

0

: Hote ;
Data

J91] eleg

New York

London

Paris

Cloud Applications and Caching

e Application (and cache) on-premises and Data

on Cloud

* Application and Data on Cloud

— Cache as a service

— Cache co-located with App

* Application on Cloud and Data on-premises

App on-premises; Data on Cloud

TS oooo

ASP.ncf ASE.NET AST.NE J ASP.Net Web

Application Application Application Tier
Caching Access ..\
Layer |

Caching Access Layer Caching Access

Z S o
| N A
i3 ~ Application &
' —| K £ Caching
= i i deployed On-
= £ £ premise
| L E 8 8 J
N

g(ojL AzUre: Data on SQL Cloud

/ -

App on Cloud; Data on Cloud; Cache on a VM

|
Application
Caching Access
Layer

Web servers }

Application Application \

Caching Access Layer

Caching Access
Layer

Application &
Caching on Cloud

L

Caching VM }

AZUA__%[Data on Cloud }

Caching Server
Caching Server

App on Cloud; Data on Cloud; Cache as a Service

Web servers

G-l

Application Application Application
Caching Access Caching Access Layer Caching Access
Layer / 4 Layer

Application &
T Caching on
8 o g Windows Cloud
> S B
N - K 3
& a0 ho
= c 3
S = 5 e
- S § 8
™ Caching Service
L
a4
Microsoft®

. -8 SQL Azure Data on Cloud }

App on Cloud; Data on-premise

aa— ’ Application Application Application
Caching Access Caching Access Layer Caching Access
o Layer Layer
\ i
R
g F Application &
h .o
s = Caching on Cloud
1 Q (O} (]
S o S 8 e
O c & e 5
I g n g %)
T O & 0 z
= 5 = 5
(@] @© = ®
G o 3 (@]
Caching VM

— € Data on-premises }
% SQL Server2008

DCP Vendors

Memcached (open source)

VMWare (Gemstone) Gemfire
Gigaspaces Extreme Application Platform
IBM WebSphere Extreme Scale Cache
Microsoft AppFabric Caching

Oracle Coherence

Terracotta's Terracotta Server (open source)

Distributed Caching Hard Problems

Large caches

Extreme Low Latency

Impact of NVRAM technologies
— PCM?

Cache as the Truth?
Durability?, Persistence?
DBMS Capabilities?

Q/A?

