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ABSTRACT 

High-performance solid state disks (SSDs) deliver a 2–3 orders of 

magnitude increase in I/O operations per second (IOPS) over hard 

disk drives (HDDs). Extreme-performance SSDs can produce up 

to 120,000 IOPS for random-access reads, taking as few as eight 

direct-attached SSDs to reach one million IOPS. However, 

today’s multi-core platforms have long been optimized for HDDs, 

leading to the question: Are platforms ready to deliver such 

extreme IOPS to the application? To this end, we provide 

measurements aimed to expose the correct optimizations 

necessary to deliver such performance. We found that the majority 

of platform I/O latency still lies in the SSD and not in system 

software. We identified data copies, uncacheable MMIO reads, 

interrupt processing, and context switches to be the primary 

contributors of I/O processing cost. We found typical reference 

platforms to be surprisingly robust, delivering up to 177,000 IOPS 

from a single host-bus adapter (HBA). We validated almost 

500,000 IOPS with as many HBAs we can put into the platform 

while maintaining 50% CPU utilization, showcasing the extreme 

IOPS capable on single volume platform. 

1. INTRODUCTION 
Solid State Drives (SSDs) achieve latencies 1/100 that of hard 

disk drives (HDDs) and deliver unprecedented random-access 

performance. Currently, a single Intel® X25-E SATA* II SSD 

can deliver 40,000 read IOPS [1], a Crucial* C300 SATA III SSD 

ca deliver 60,000 IOPS, and the PCIe-based Fusion-io* ioDrive* 

can deliver 120,000 IOPS [2]. It now takes as few as 8 direct-

attached SSDs to deliver one million IOPS to a single platform—

something that requires a SAN array of HDDs to deliver. 

This new storage technology motivated many ideas about using 

SSDs to deliver platform performance. Researchers suggest that 

self-managing SSDs must be approached differently from HDDs, 

and proposed that a more expressive interface (e.g. object-based 

storage) be adopted [3]. Others have focused on designing new 

caching schemes and file systems specifically for SSDs [4][5]. 

However, most studies failed to provide quantitative evidence of 

performance improvement. To characterize file systems suitability 

for SSD, Shin, et.al., empirically compared common Linux file 

systems (NILFS, btrfs, ext2, ext3, ext4, ReiserFS, and XFS) by 

running Postmark (an email server) on SSDs [6]. He noted 

performance differences when key parameters (e.g. block size, 

allocation policies, barrier enforcement) are changed. 

Benchmarking led him to conclude that correct alignment is 

important for SSDs and specific file systems (e.g. xfs) perform 

significantly better when mounted without barriers. 

Since SSDs fill the gap between memory and disk cost and speed, 

many have proposed to adopt SSDs as a cache, either as OS-

managed extension of the buffer cache [5][7] or managing HDDs 

and SSDs in storage hybrid pools [8]. Roberts, et.al., argued for 

the extended buffer cache model as the best way to integrate 

NVM into servers [5]. They showed through trace-driven 

simulation that splitting NVM-based buffer cache into read and 

write regions improved power performance and reliability. Still 

others have proposed reconfigurable flash controllers to adapt to 

differing workloads [9]. These efforts have been based on the 

assumption that the platform is already designed to handle the 

extreme I/O improvement that SSDs deliver. 

Does this assumption hold, and if not, how should platforms be 

redesigned to deliver extreme IOPS cost-effectively? While 

performance reports of SSDs abound in trade literature [1][10], 

market-targeted performance measurements and empirical studies 

alone are inadequate to enable systems architecture advancement. 

New technologies require exposing basic relationships. Accardi 

and Wilcox took a first step by implementing an ATA-based and 

SCSI-based RAM disk in Linux [11]. They found the ATA-based 

emulation to perform significantly better than the SCSI-based 

version. From this observation, they deduced that SCSI adds 

significant overheads. However, due to the adoption of a RAM 

disk, their analysis did not consider overheads due to HW/SW 

interaction, nor other OS-support processing (besides SCSI) 

occuring in the SCSI layer. Further root-causing is required. 

Agrawal, et.al., provide an excellent assessment of algorithms and 

basic design considerations of SSDs [12]. Chen, et.al., designed a 

set of measurement methods targeted specifically to expose 

differing SSD behavior from different vendors [13]. These 

researchers provided the basics necessary for assessing SSDs as 

individual devices. In this paper, we expose the basics for 

assessing them as part of the larger system. We include in our 

analysis chipsets, HBAs, cores, software and the interactions 

among them (Figure 1). Our goals are two-fold: 

 

Figure 1. Architecture of a reference multi-core platform. 
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1. provide fundamental measurements and relationships 

that form the primitives necessary to frame platform 

storage architecture research, and 

2. pinpoint platform bottlenecks and optimization 

opportunities as a first step toward solutions. 

We kept the existing HW platform and operating system (OS) 

infrastructure in place, and determined how far we can push 

current architecture. We assumed applications to be well-

parallelized, and we isolated system software and hardware 

bottlenecks exposed by SSDs. To this end, we focus on three sub-

goals: 

1. minimize platform latency, 

2. ensure processing efficiency to maximize throughput 

per core, and 

3. scale performance with the numbers of cores and SSDs. 

Trade literature claimed that direct PCI Express connectivity can 

deliver 10x lower latency than SATA-based SSDs by eliminating 

the need for intermediate protocols [14]. However, we confirmed 

that platform latency is not an issue—the SSD remains the 

primary contributor. We determined that HBAs with optimized 

host interfaces enable a processing efficiency of 20K clocks (CPU 

cycles) per I/O. Ironically, except for the block layer, we found 

the majority of processing overheads lay in the cost of generic 

device/OS functions (e.g. the driver, copies, interrupts and 

context-switching) and not in storage specific functions such as 

SCSI or ATA processing. However, we did find a scaling 

limitation imposed by a single HBA as we push IOPS with more 

SSDs and cores. 

In the next section, we present background necessary to 

understand the reference platform and system software. We then 

proceed to present the experimental designs and measurements 

needed to achieve the goals we have outlined. 

2. PLATFORM AND ARCHITECTURE 
We used Linux* as a reference OS for experiments. The 

components (Figure 2) can be generalized to any general-purpose 

OS. 

The file system organizes data into files and directories and 

provides methods to create, update or delete data. The virtual file 

system (VFS) in Linux provides a common application interface 

for multiple types of file systems. It also provides raw disk access 

by treating whole disks and partitions as files (e.g. /dev/sda). 

The generic block layer is responsible for locating the actual 

storage device and logical block address (LBA) on the drive for 

each I/O request. This typically involves translating a partition 

and offset into an absolute LBA. The generic block layer may also 

invoke the device-mapper if the partition belongs to a logical 

device. For example, it may invoke the Logical Volume Manager 

(LVM) to translate a request for a logical device into a physical 

device. Once a real device and LBA are found, the generic block 

layer invokes the I/O scheduler which attempts to reduce media 

seek time by reordering requests and coalescing adjacent requests. 

Devices, that use common storage protocols (e.g. SAS* and 

SATA), are abstracted and exposed to the generic block layer as 

SCSI disks via the SCSI mid-layer. Requests to SATA and SAS 

adapters are translated from SCSI to their respective protocols, 

either through an OS-supplied library (e.g. libata and 

libsas), or through solutions supplied by HBA vendors. 

Four major I/O paths may be composed between the application 

and device (Table 1) by choosing one of each of the following: 

1. I/O through a file system or directly to a block device, 

and 

2. I/O through the buffer cache (buffered) or directly to the 

device (direct I/O). 

Using the VFS, Linux presents the same interface to applications 

independent of the chosen path. If data is accessed through a file 

system, extra processing and disk reads are needed to access 

meta-data to locate the actual file on first access. Such meta-data 

are stored in the buffer cache to accelerate future accesses to the 

same data. The meta-data is always brought into the buffer cache 

even if data accesses were done in the direct I/O mode. As such, 

the method of acquiring meta-data is dependent on the workload 

and the state of cache. There are usage models that benefit from 

using or bypassing the buffer cache or controlling its use 

explicitly. 

Whether an application incurs buffered or direct I/O and whether 

it hits or misses buffer cache when doing meta-data accesses are 

workload and policy dependent. Workload and file system 

characterization of real applications is required to solicit the most 

frequently occurring (and hence important) complex paths. In this 

paper, we offer an initial characterization of the complex paths, 

but focus our in-depth analysis on direct I/O. Direct I/O 
without a file system is the most primitive path upon which 
the other paths are built, and its performance is relevant to 
any application. 

 

Figure 2. Architecture of the Linux I/O subsystem. 
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3. METHODOLOGY AND SETUP 
Having identified independently separable components of an I/O 

path (Table 1), we build upon microbenchmarks (FIO [15]) that 

exercise these components exactly. We have also identified a 

minimum set of platform parameters that is important for 

duplicating our measurements in (Table 2). 

We measured path timing by reading the processor’s timestamp 

counter (rdtsc() [16]), and we gathered statistics reported by 

the OS (e.g. mpstat, iostat [17]). We adopted OProfile [18], 

a statistical event sampling tool, as an alternate means of 

validating clocks and instruction count. To maintain a small 

number of representative experiments, we focused on fixed-size 

4KB random reads. Random I/O ensures that improvements are 

observed independent of I/O merging policies. We used only 

reads since writes take a nearly identical path through the platform 

(with data transfer in the opposite direction). Furthermore, SSDs 

deliver much higher performance for read versus writes. A read-

intensive workload pushes the platform further—if the platform 

can deliver full performance for reads, it certainly will deliver full 

performance for writes. 

4. PLATFORM BOTTLENECK ANALYSIS 
We classified platform I/O bottlenecks into three types and we 

examined them separately.1 

1. Platform latency bottlenecks—We isolated the 

component which dominates I/O latency, thus 

determining which component to fix to reduce overall 

latency. 

2. I/O processing bottlenecks—We determined which 

software contributed the most CPU overhead for I/O 

processing. I/O processing overhead reduces the 

maximum bandwidth per CPU and limits the CPU 

clocks available to the application. 

                                                                 
1 Performance results are based on certain tests measured on 

specific computer systems. Any difference in system hardware, 

software or configuration will affect actual performance. For 

more information, go to http://www.intel.com/performance. 

3. Performance scaling bottlenecks—We measured 

performance as the number of CPU cores available for 

processing increased, and we determined which 

platform components limited scaling of performance. 

4.1 Platform Latency 
We define Total I/O latency seen by an application thread as the 

time from when the application issues an I/O to the time it 

receives its completion (last byte): 

                                                          

Time due to platform includes latency through software (I/O issue 

and completion processing), time through queues, platform 

hardware (e.g. chipsets), adapters, and the time it takes to 
transfer a given size of the payload data through a given link 
speed. 

Because there is no ―seek time‖ to an SSD, the I/O scheduling 

policy has minimal impact on performance for SSDs. We set the 

I/O scheduling policy to no-op and ensured (and validated) nearly 

zero wait time in queues. From our processing cost measurements 

(Section 4.2), we derived total latency through software. 

Measurements taken at the SATA bus (using a SATA bus 

analyzer) exposed media latency and time taken to transfer 

payload bytes across the 3Gbps SATA II link. Combining both 

sets of measurements, we derived latency contributions of the 

entire I/O path through the platform. 

Despite huge improvements in media access times, the SSD is still 

the major contributor of latency (Figure 3). The platform only 

contributes 26% of the total latency. Optimizing the media is 

necessary to make meaningful latency improvements. 

4.2 I/O Processing Cost 
I/O processing on the platform must be highly efficient in terms of 

CPU clocks to reach the high IOPS made possible by SSDs. We 

consider clocks (CPU cycles) per I/O as the metric of processing 

efficiency. We used instead of nanoseconds to reflect the 

efficiency of a platform with a given memory architecture. In this 

section, we restrict analysis to a single core, differentiating it from 

scaling analysis that is addressed later (Section 4.3). 

We connected the SSDs to the platform-integrated AHCI-based 

SATA controller. Figure 4 shows the processing time of an I/O 

from issue to completion. An I/O issue request begins with a 

system call by the user application and transitions into kernel 

space. User-kernel-user transitions (system call and return) took 

924 clocks. The original file-based I/O is framed into blocks, then 

Table 2. Test system setup. 

Platform Dual 2.93GHz Intel Xeon® X5570 

Processors 

Adapters Integrated AHCI SATA adapter 

8-port LSI* Fusion MPT* SAS adapter 

Application FIO synchronous I/O with up to 128 

concurrent threads 

Operating 

system 

Linux 2.6.28 

File systems direct block access, ext3 

I/O scheduler No-op 

Drives Intel X25E SSDs 

Hitachi* Deskstar* HDDs 

Other 

configuration 

SMT, CPU low-power states, frequency 

scaling disabled; Linux tickless timer 

disabled; 10ms scheduler time slice; 

polling when idle 

  

Figure 3. Latency of a 4KB I/O to a SATA II SSD through the 

platform as experienced by an application.  
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into SCSI commands and prepared by the driver for issue to the 

HBA. Once the I/O request is handed off to the adapter (through 

the issue of a doorbell), CPU clocks are no longer expended. 

When the disk completes the request, an interrupt to the CPU 

enables entry into driver’s interrupt service routine (ISR) and 

completes the rest of the I/O; the I/O is finally handed back to the 

application. 

Processing an I/O required about 35,000 clocks with disks 

connected via AHCI. The largest hotspot was in the return path of 

the driver. The most expensive functions were in 

ahci_interrupt() and ahci_scr_read(). These 

functions executed uncacheable (UC) reads from memory-mapped 

device registers on the adapter. The UC reads incurred significant 

processing cost, averaging 2,100 clocks per UC read. Device 

interfaces that adopt message signaled interrupts (MSI), and the 

added intelligence to push status to drivers, can eliminate such UC 

reads. We predict that this optimization alone will reduce 

overhead by about 8,400 clocks/IO. 

We were able to validate this insight using an enterprise-targeted 

adapter (the LSI Fusion MPT SAS adapter). Figure 5 is based on 

the same instrumentation done in Figure 4 but is presented in a 

different way for ease of comparison. The profile combines both 

issue and completion processing on a per-layer basis. We found 

no UC reads in LSI’s driver (mpt2sas). Additionally, no SATA-

related routines were used. The LSA adapter offloaded the 

SAS/SATA conversion saving 1,600 clocks on the host. While the 

cost-targeted AHCI SATA controller had served the industry well 

for HDDs, SSDs expose the need for higher performance 

adapters. Given LSI adapter’s more optimal interface, further 

measurements are done with LSI adapters. I/O processing, when 

done through an MSI-based interface like LSI’s, incurred 25,000 

clocks/IO, yielding a 30% improvement in processing efficiency. 

The LSI’s driver return path (5250 clocks/IO) is still substantial. 

We expected this to reduce due to batch processing of I/O 

interrupts by employing interrupt coalescing. Our validation of 

this optimization potential is shown in Figure 6. At large numbers 

of coalesced interrupts, all but 650 clocks remain in the driver 

return path, resulting in about 20,000 clocks/IO for throughput-

intensive workloads that can leverage interrupt coalescing. 

Beyond these optimizations, the largest system overheads for the 

direct I/O path occurred in OS context switching and the block 

layer. We found that the clocks/instruction (CPI) of the block 

layer to be small (1.3), and it would be difficult to improve CPI 

further. Improving and/or finding alternatives to reduce context 

switches may yield better results. 

To put further potential optimization into perspective, we offer a 

quick assessment of the overheads for other paths that exist in the 

 

Figure 4. Processing requirements from I/O issue to completion in clocks (not to scale). 

 
Figure 5. I/O processing distribution with LSI (4KB reads, 
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I/O stack (Table 1)—including a file system (ext3) and buffered 

I/O. As noted earlier, analysis of these complex paths are a topic 

of future work and will require more careful treatment than given 

here. Nevertheless, it is still worthwhile to get an indicator of the 

magnitude of these overheads. 

When the application uses a file system, meta-data is required to 

determine the location of the intended block. The number of meta-

data accesses is dependent on the file system in question. 

Moreover, the meta-data may or may not be in cache depending 

on the application workload. We made a simplifying assumption 

that platforms have a well-resourced buffer cache, and as such, a 

majority of file accesses do not require meta-data access from the 

device (except for the very first access to a location in the file). 

Our measurements are taken by first ensuring that the file 

system’s meta-data is already in cache. The clocks/IO attributed to 

the file system is the processing required to read data (not 

including meta-data) from the disk. We noted that the file system 

(ext3) adds only 3,400 clocks (<15%) to the path (Figure 7). 

In the case of buffered I/O, the buffer cache is now the DMA 

destination, requiring an extra copy of the payload to its final 

destination in the application (Figure 2). We designed our 

experiments to fully expose the entire buffered I/O path (and not 

just a copy from cache). The difference in clocks is expected to 

increase with payload sizes. The extra cost of copies and 

associated cache management was validated to be a near-linear 

function of request size (2.1 clocks/byte) (Figure 7). We note that 

 
Figure 6. I/O processing cost with interrupt coalescing. 

 

Figure 7. Processing overheads of file system and buffered 

I/O. 

 

Figure 8. IOPS and CPU utilization for 3 SSDs taken on a 

single core. 

 
Figure 9. IOPS scaling and CPU utilization for 8 SSDs on 8 

cores. 

 
Figure 10: Scaling of IOPS as the number of adapters 

increases with the number of cores. 
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this overhead can overwhelm I/O stack requirements at large 

transfer sizes, and may be a worthy candidate of attention. 

4.3 Performance Scaling 
With the ubiquity of multi-core platforms, we turn our attention to 

ensuring that I/O processing scales with cores and SSDs. Having 

ensured processing efficiency, we now focus on achieving 

maximum throughput (IOPS and MB/s) platform-wide. 

We show in Figure 8 that the maximum throughput on a single 

core for 4KB random reads reached 129,000 IOPS. At this point, a 

single core was fully saturated—more cores were required. 

Figure 9 shows that with all eight cores available for I/O 

processing, throughput stalled at 177,000 IOPS with one adapter. 

Thus, we added more adapters. As shown in Figure 10, adapters 

were increased one at a time from one to four while also 

increasing the number of available cores from one to four. (Due to 

the limited number PCI Express* slots on our reference platform, 

we were only able to showcase up to four adapters.) We tested 

three SSDs on each adapter for a maximum of twelve. The figure 

shows that throughput scaled within 15% of linear—up to 445K 

IOPS. Since more adapters enabled higher total throughput, the 

single adapter was the bottleneck. At this performance, I/O 

processing saturated four cores—half the available cores on the 

platform. 

We also measured data throughput across the four adapters and 12 

SSDs with 64KB I/O sizes. The result was 3GB/s, within 2% of 

linear (Figure 11). 

5. CONCLUSIONS 
We have exposed all platform bottlenecks that may interfere with 

delivering full SSD performance to applications, and have 

pinpointed further areas of investigation. The following 

measurements make up key primitives that drive our future design 

decisions: 

1. I/O latency (for 4KB reads): 180µs. The platform 

hardware and software made up 20µs of the latency 

while the the SSD accounted for the rest. 

2. I/O processing cost (using performance-targeted 

adapters): 25K clocks/IO (20K with interrupt 

coalescing). 

3. Performance scaling: Limited to 177,000 IOPS with a 

single adapter. We reached 445K IOPS (15% from 

linear) and 3GB/s (2% from linear) with four adapters at 

50% average CPU utilization. 

We set out to determine if HDD-targeted platforms could deliver 

the full performance from SSDs. From our investigation, we 

concluded that the SSD, not the platform, is still the primary 

contributor to I/O latency. We also concluded and validated that 

removing UC reads and employing interrupt coalescing will 

reduce I/O processing cost significantly for SSDs behind an AHCI 

host interface, and we found an enterprise-targeted adapter to be 

CPU-efficient. We found a performance scaling bottleneck 

incurred by using a single adapter which delivered 177K IOPS 

(matching the IOPS of 4 SSDs). We had to increase the number of 

adapters to achieve more—a total of four adapters were required 

to deliver 445K IOPS (matching the IOPS possible from 12 SSDs) 

For enterprise workloads that would not require extreme IOPS 

from a single adapter, we found that existing platforms to be ready 

for SSDs. 

6. FUTURE WORK 
Beyond these issues, we recommend the following directions as 

worthy of pursuit: 

1. Determine the scalability of file systems and RAID 

implementations. We have exposed scaling issues when 

SSDs are used as JBOD (just-a-bunch-of-disks), but real 

enterprise applications run with file systems and RAID 

arrays. Additionally, file systems may gain from 

organizing meta-data in a way that take into account the 

special characteristics of SSDs. 

2. Determine whether the overheads of context-switching 

can be mitigated with asynchronous I/O (AIO). We did 

not observe processing cost improvements with AIO, 

and believe (but have not confirmed) that Linux’s use of 

a kernel thread to emulate AIO to be insufficient. Such 

an implementation moved (but did not eliminate) the 

context switch. We call for developers to optimize AIO 

in Linux. 

3. Expose I/O behavior of real applications. We have 

focused on data transfer as the performance-critical 

path, but cannot assume such behavior to be universally 

true of all applications. Characterization of more 

applications may expose bottlenecks in other important 

paths (e.g. retrieval of meta-data). 

Removing platform bottlenecks is a necessary first step—further 

optimization based around SSDs unique characteristics can now 

follow. We have established an accurate set of fundamental 

measurements and performance expectations, which we hope 

provide a reference that other researchers can build upon, 

ultimately leading to innovations that drive new platform 

architectures around this exciting technology. 
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