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ABSTRACT

In Mobile Sensor Network (MSN) applications, sessmove to
increase the area of coverage and/or to comperisatéhe

failure of other sensors. In such applicationss los corruption
of sensor data, known as the missing sensor daaopfenon,
occurs due to various reasons, such as power qutageork

interference, and sensor mobility. A desirable wayaddress
this issue is to develop a technique that can ®ffdg and

efficiently estimate the values of the missing semta in order
to provide timely response to queries that neecdoess the
missing data. There exists work that aims at aahgesuch a
goal for applications in static sensor networksNS)$ but little

research has been done for those in MSNs, whichmame

complex than SSNs due to the mobility of mobilesses. In

this paper, we propose a novel data mining baseldhigue,

called Data Estimation for Mobile Sensors (DEM®),handle
missing data in MSN applications. DEMS mines thatish and

temporal relationships among mobile sensors with ithlp of

virtual static sensors. DEMS converts mobile sensadings
into virtual static sensor readings and applies diszovered
relationships on virtual static sensor readingsestimate the
values of the missing sensor data. We also preseat
experimental results using both real life and sgtithdatasets to
demonstrate the efficacy of DEMS in terms of dattingation

accuracy.
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1. INTRODUCTION

A wireless sensor network (WSN) can be defined aztaof
independent sensors which can solve cooperativelynes
monitoring based applications [1]. Typical applicas of WSN
include environmental monitoring [2], scientific viestigation
[3], civil structure flaw detection, battle survaitlce and
medical applications [4]. However, successful mmirig of any
physical phenomenon is directly dependent on thErcgpiate
deployment of the sensors [5], [6]. In a staticseemetwork
(SSN), the sensors’ positions remain stationargr fie initial
deployment. In addition, the areas covered by #resars are
dependent on the initial network configuration argmain
unchanged over time [7]. An inappropriate deploymenh
sensors in a SSN may partition the monitoring anearegions
either covered by at least one sensor and/or dewbidny
sensors [7]. Therefore, while a covered region bwynonitored
by unnecessary multiple sensors, the regions umedvéy
sensors may not be monitored at all leading toduite results.
Also, certain restrictions, such as hostile envinents and

disaster areas [8], make initial, manual deployn@nsensors
impossible. Finally, certain applications like mmning

atmosphere or ocean environment require constahilitpdhat

can be achieved only if the sensors themselvesnatgle [7].

Consequently, in recent years, much interest has lshown
towards un-stationary sensors (e.g., Robomote {84}, can re-
deploy themselves according to the needs of thdicafipn.

These sensors are termed as mobile sensors andhéwbrks
as mobile sensor networks (MSNSs).

WSN data, in form of online data streams, arrivahat base
station as real-time updated data [10]. These emata streams
are infinite, unbounded and have high continuouarrates
which do not permit complete scanning of the entiaga [11].
Various factors, such as limited power and transiois
capabilities of sensors, hardware failures, powgages, and
network issues like disruption, package collisiord a&xternal
noise, cause the transmitted data to fail to réhehbase station
and/or be corrupted. The sensors that ‘generagsethmissing
data are called missing sensors. A major concettm aviy WSN
is the issue of missing sensor data. Several appesasuch as
ignoring missing data, using backup sensors, reying the
network, and utilizing data estimating techniquegstimate the
values of the missing data, have been proposeddeess the
issue of missing sensor data [15]. Ignoring missiatp is not
viable for sensitive applications; using backupsses may lead
to data duplication and is expensive; and re-querythe
network is unrealistic in terms of time and reseueficiency.
The approach that uses data estimation has shobe ttee most
promising solution; however, currently it is limitéo SSNs only
[15], [16], [17], [18]. To the best of our knowleglgno work has
been proposed to estimate the values of the missngor data
in MSN applications.

MSNs consist of sensors placed on mobile platfolike
Robomote [9]. In addition to the issues common ity data
stream application, MSN applications have certaiditonal
constraints. MSN applications are broadly dividedtoi
relocation and continuous coverage based applica{id], [8].
The spatial relation between two sensors is distofty the
mobility of mobile sensors; hence the spatial retethip
between two mobile sensors is difficult to obtam MSNs.
Moreover, the history data of a mobile sensor #natgenerated
at different locations may not necessarily possessspatial or
temporal relationships with the data in the curremind of
sensor readings. Finally, mobile sensors have dpallity of
moving themselves which costs lots of energy; seggmutage
occurs more often on mobile sensors than on staitsors;
hence, instances of missing data are more prondunddSNs.



In this paper we propose a data mining based salufior
estimating the values of the missing sensor dataMBN
applications, called DEMS (Data Estimation for Mebi
Sensors). DEMS is a novel concept that addressesstues
associated with mobile sensors by utilizing virtstatic sensors.
DEMS establishes these virtual static sensors bididg the
entire monitoring area into hexagons and assogiagach
hexagon’s center with a virtual static sensor.dhwerts each
mobile sensor reading into an equivalent virtuaisse reading.
When a mobile sensor reading is missing, DEMS ubkes
spatial and temporal association rules among ttealisensor
readings that it discovers based on the historjuairsensor
readings to compute the estimated value of theimgissiobile
sensor reading.

The rest of the paper is organized as follows:iBe& discusses
the related work; Section 3 describes DEMS; Sedti@nesents
the performance evaluation comparing DEMS with theee
existing techniques: Average, Spirit [17], and DiB/[13]; and
Section 5 provides the conclusions and future work.

2. RELATED WORK AND ISSUES
Approaches for estimating the values of the missiengsor data
(or approaches for estimating missing data for thas of now,
have been limited to SSNs only. TinyDB [13] is aminent
information extracting system for sensor netwoillkayDB does
data estimation for a missing sensor by averagdiege¢adings of
other sensors for a particular round. Howeverpisinot work
well if a non-linear relationship exists among seasand the
sensors do not report similar readings. SPIRIT [Us&s auto-
regression for finding correlations using hiddeniatales inside
the history data of a sensor. It estimates missiatp by
predicting changes in data patterns using hiddeiahlas as a
summary of data correlation among all the historgtad
However, it does not consider the sensor readings fother
sensors for the current round; therefore it is lmab find the
current relationships among the data which may cafies
accuracy. The Kalman filter [15] uses the dynarimiedr model
to predict missing data based on the history datavever, the
dynamic nature of data distribution may introduostances
when the same sensor reports a completely differaoe in the
current round compared to the previous rounds. fitag cause
erroneous results.

FARM [14] uses association rules among sensor mgadio
estimate missing data. It uses a novel data frashiftamework
to address the temporal nature of data. Furthémptements a
data compaction scheme to store history datastimated data
are fairly accurate compared to those of statistinathods.
However, its limitation is that it establishes asation rules
among similar sensor readings only; thus, only \ejant
relationships are mined.

Mining Autonomously Spatio-Temporal Environmentalil&s
(MASTER) [16] is a comprehensive spatio-temporaloagtion
rules mining framework which provides both a contpet data
estimation method and an exploratory tool to ingesé the
evolution of patterns of the sensor data in stgitsor networks.
MASTER is well equipped to discover spatial and geral
association rules among the sensors. This frameinchiddes a
novel data structure called MASTER-tree which stothe
history data synopsis (the moments) for each sermsat
represents the association rules among the sersorxample

of an association rule in MASTER £][10, 20],S,[40,90] —
S3[30,40] whereS;, S, andS; are three sensorS, ands, are
called the antecedent sensors aqdis called the consequent
sensor of the rule. This rule implies when the sensading of
S; is between 10 and 20 and the sensor readifyg isf between
40 and 90, the sensor readingsgfwould be between 30 and 40.
Each node in the MASTER-tree represents a sensmpexhe
root node which represents an empty node; and gatttisub-
path starting from the root node represents ancag&m rule.
Hence a MASTER-tree is capable of representing kang of
relationships among the sensors which participate the
MASTER-tree.

MASTER limits the number of sensors in one MASTE&etby
clustering the sensors into small groups and pradu@n
individual MASTER-tree for each cluster. The adeays of the
clustering step is twofold: 1) the clustering stepranges
spatially co-related sensors into a cluster, andt Zjnits the
number of sensors in a MASTER-tree which restrittte
exponentially large number of association rule iat more
manageable number. As each data round arrives, NERST
finds the appropriate MASTER-tree for each sensor#pdates
the MASTER-tree based on the arrived sensor readilgany
particular time, if a sensor reading is missing, &R finds
the appropriate MASTER-tree for the missing sensod
evaluates the support and confidence of the adsotiaules
where the missing sensor appears as consequent.TERS
finds the best association rule comparing the obthisupport
and confidence with the user-defined minimum suppord
minimum confidence. Finally, it uses the best aisgmn rule
and the current sensor readings of the anteceéesbss in the
best association rule to estimate the consequesbgs reading.
Interested readers are referred to [16] for furthetails.

MASTER was designed for SSNs. It has the following
deficiencies. The cluster formation step is solehsed on the
spatial attributes of a sensor. In a MSN, the apatata of a
sensor are changing; therefore the prior knowledmrit sensor
locations is not enough for MSNs even though shaltistering
works very well in SSNs. One possible solutiontfos problem

is re-clustering whenever a sensor changes itgidmgebut re-
clustering is very computation-intensive and maysealoss of
the history data, and thus loss of history dataopgis (the
moments) stored in the MASTER-tree. Hence locatiased
clustering for mobile sensors does not produce raagningful
result. Moreover, in a MSN, a reading of a senser i
accompanied by the location of the sensor. So, skmsor is
missing, it is very likely that the reading and tbeation from
that sensor will be missing together. Hence thémesion
technigue must estimate both dimensions for thesings
sensors, which means that location prediction lade an
inherent part of the technique.

In a SSN, association rule mining can be used $oodier the
relations among sensors. According to Tobler'st flv of
geography [22], geographically close sensors areremo
correlated than the distant one. In a MSN, theadist between
the mobile sensors changes over time; thereforednelation
changes over time too. The association rules arttengensors
represent the correlation among them. If the mob#esors
change their locations, the correlations among ttodrange;
hence the association rules previously obtainecddas the
sensor data will no longer be valid for the newattans. This



has two-fold implications on MASTER: 1) any previbu
explored rules may not be valid anymore; and 2)iptesly
formed clusters may not be valid at all. In therexte case, the
history data from the same sensor may no longevatid to
estimate the missing data of the same sensor icutient round
of data. This is because the old data are basdatieoprevious
locations of the sensor, whereas the new data asedbon the
new locations. So the methods (e.g., Kalman Flt&f) which
use history data to estimate new data will als@bezinvalid in
such a situation.

Motivated by the drawbacks of MASTER, in this papes

propose a new technique, called DEMS, for MSN aafilbns.
DEMS makes use of virtual static sensors that &sckhe
problems of location-aware clustering of real metsensors. It
also tackles the problem of having no related hysittformation

for the current round of data from real mobile sess
Moreover, DEMS addresses the issue of missing ilotaif a

real mobile sensor and is capable of predictingnind location
for a missing real mobile sensor. The details ofM¥Eare
presented in the next section.

3. THE PROPOSED DEMS

This section describes our technique, DEMS. lttstaith a
brief overview of DEMS followed by a detailed deption of
our novel concept of virtual static sensor andsitmificance.
Finally it presents the MASTER-tree used for daiaing and
the estimation module for DEMS.

3.1 TheOverview of DEMS

In DEMS, we exploit the spatial and temporal relas between
sensor readings to estimate the missing sensor Bati we
divide the entire monitoring area into hexagonstamn a user-
defined radius. Each hexagon corresponds to aavidtatic
sensor(VSS) placed at the center of the hexagon and tayer
the entire hexagon. A VSS is an artificial senser,it does not
exist physically in real life applications, but éists in our
technique as a synthetic sensor which mirrors & séstic
sensor. Each VSS has a unique identifier. DEMS eds\the
real mobile sensor readings into VSS readings basedhe
mobile sensors’ current locations. Figure 1 showss the
monitoring area covered by a MSN that is dividetbii4
hexagons with 14 VSSs,;\. V4 and 7 real mobile sensors,
M. M7,

@ Real Mobile Sensor
@ Virtual Static Sensor

Figure 1. Monitoring area and hexagons

Using agglomerative clustering [23], DEMS clustdéie VSSs
based on their locations into clusters and creat®ASTER-
tree for each cluster. The dotted lines that contieccenters of
the hexagons in Figure 1 show three clusters W, Vi, Vs,

Vio), (Ve, V7, V1) and (M, Vg, Vi1, Vis, Vi4). MASTER-tree
records the data for the VSSs. For each missinglensbnsor

reading, its estimated value is computed usingthinee major

steps: 1) mapping the missing real mobile sensoritgo
corresponding VSS; 2) estimating the missing VS&dirgy

using the discovered spatial and temporal assoniatules

among the history VSS readings, and 3) convertihg t
estimated VSS reading into the corresponding rexddile sensor
reading.

In a MSN, a sensor reading reported is accompabiedhe
sensor location where the reading was obtained.nétler a
mobile sensor reading is missing (we call this asing mobile
sensor for short), it is likely that both the ldoat and the
reading will be missing together. To find the apprate
location of a missing mobile sensor we always kgapk of
mobile sensors’ locations. A mobile sensor’s lamais mapped
to a hexagon and the consecutive locations of ailensbnsor
are mapped to a sequence of hexagons. We refese¢quence
of hexagons as a mobile sensor’s trajectory. Weerttie mobile
sensor trajectories and predict the missing lonabased on the
history trajectories. Morzy [20] proposed a pattére based
approach for mining trajectories and predictingifatlocations,
which we adopt for DEMS. DEMS maintains a singletqra
tree of trajectories for all the mobile sensors.sisall devices
like sensors often use the same protocol for rélacd7], [9], it
is reasonable to assume that they have similarerpattof
movement; therefore DEMS maintains a single patteza of
trajectories for all the mobile sensors and ussmgle pattern
tree instead of an individual pattern tree for eamibile sensor.
This trajectory pattern tree is used to predictiasing mobile
sensor’s location. The predicted location is ugeshap a mobile
sensor to a VSS. Since sensors repeat the mopditern for
relocation, history based trajectory mining is m@remising
than random walk models.

3.2 TheVirtual Static Sensor

In SSNs, every sensor monitors a fixed region arskrasor’s
reading reflects an event occurring within thisioeg but in

MSNSs, owing to their mobile nature, the region Igemnonitored
varies with time. However, as in SSNs, the sensadings for
MSNs still reflect events occurring within a padiiar region.

Our concept of virtual static sensors is directigtivated by the
above fact. Every VSS, like sensors in SSNs, ‘nuosita fixed

region called its coverage area. An event occuriniin a

VSS'’s coverage area is reflected in its readingewéVer,

unlike sensors in SSNs, VSSs do not have realemdstand do
not ‘report’ data to a base station. On the copiréney are
‘created’ in our technique virtually to ease thatgptemporal
data mining.

A VSS reports a reading if there exists at least @al mobile
sensor in the coverage area. A VS&dsve if it reports in the
current round and isnactive otherwise. VSS readings are
readings of the real mobile sensor(s) which arsegnein the
VSS'’s coverage area. In situations when multipe reobile
sensors are in a VSS’'s coverage area, the VSS tsepue
average of all the real mobile sensors’ readingperd are two
reasons for considering the average reading: 1ljipteisensors
monitoring the same small coverage area most likélyreport
similar readings; and 2) any event occurring in toenmon
coverage area will be reflected in the readingallothe sensors
monitoring that area. As a hexagon is the atomiceage
region in DEMS, the radius of each hexagon is Uguahall
enough to assure the variance of real sensorsingsafrom the



same hexagon to be minimal, and averaging all ngadfrom
sensors from the same hexagon will be close toghlevalue of
the corresponding region. A VSS is callechiasing VSS if one
real mobile sensor exists or expected to exist iwitthe
coverage area of that particular VSS and the regaftom the
real mobile sensor is missing.

The total monitoring region for any MSN or SSNiieetl either
due to application specifications or hardware a@iTsts.
However, we further sub-divide the MSN’s monitoringgion
into fixed size hexagons with a VSS ‘covering’ egurticular
hexagon. We choose hexagonal coverage area asdthewt
suffer from overlapping or uncovered regions ashim case of
circular coverage area. Thus, in our monitoringaaree do not
encounter regions where a real mobile sensor cap ta
multiple VSS (for overlapping regions) or cannotpma any
VSS (for uncovered regions). Two virtual static s@s are
neighbors if their covered hexagons share at mastedge. Due
to the static nature of VSSs, they have a statitiaprelation

among themselves and can be co-related too. Finally

consecutive readings from a VSS are originated floensame
location and can show temporal relationships antbam.

Procedure mapReal 2Virtual (Real Sensor Data listRSData, Virtual Sensor Data
listVSData)
1 for eachreal sensor rs
2 if(rsis not missing)
3 location < listRSData(rs).Location
4 vs « findVirtual Sensor (location)
5 listVSData(vs).addReading(listRSData(rs).Reading)
6 else
7 location «— predictLocation(rs)
8 vs « findVirtual Sensor (location)
9 listVSData(vs).status—missing
10 endloop
11  for each virtual static sensor vs
12 if(listvSData(vs) has data)
13 listVSData(vs).status—active
14  listvSData(vs).reading«—average(listVSData(vs).Readings)
15 else

16 if(listvSData(vs).status is not missing)
17 listVSData(vs).status «inactive
18 endloop

end procedure

Figure 2. Mapping mobile sensor readingsto virtual static
sensor readings

Hence VSS readings are directly stored in our MABXEee.
So, in DEMS, the MASTER-tree represents the refatiips
among the VSSs. We assume that at any instandégathobile
sensors report their readings to the base statibich is then
mapped to the corresponding VSSs. Figure 2 shosvetipping
algorithm in details. For each real mobile sen&¥MS finds
the appropriate VSS (lines 3 & 4) using a geometmapping
between location and hexagon. If the location efrigml mobile
sensor is missing, DEMS predicts the expected ilmedor the
real mobile sensor and maps it to the appropri&@8 ¥or that
predicted location. If the mobile sensor readingmgssing,
DEMS marks the corresponding VSS as missing. Binallthe
loop from lines 11 to 18, each VSS is marked appabgly as
active, inactive or missing. At any particular timenly the
active virtual static sensors are stored in theiprapriate
MASTER-trees.

3.3 The MASTER-tree Projection Module

A MASTER-tree is like a pattern tree, which is usedepresent
arbitrary relationships among all Boolean itemsgt8]. A
pattern tree is equivalent to a spanning tree obirary
hypercube which represents all possible Boolearmste

relationships; but the computational complexityagbattern tree
is exponential. However, grouping items into a aftlusters
and pruning the pattern tree or its equivalent hyylee lowers
the computational complexity. A pattern tree undalyors only
the right most leaf node and extracts the relaligss of this
node with all other nodes. A MASTER-tree does nifes from

those issues of a pattern tree. It combines thmuwarpattern
trees regarding each node and prunes the commbs jpathe
resulting tree and forms a new tree called a MASTiER [16].

In a MASTER-tree, each tree node represents a YB& data
distribution of a particular VSS node over a paific vector
space is stored in each node. The complete vep@aces in
which the VSS readings occur, is discretized intdirdte
number of cells. Technically, for each cell, an itabily
accurate data distribution function or probabildistribution
function can be represented by an infinite numibenaments in
statistical theory. However, computationally, ondy finite
number of moments plus element counters are stioreithe
MASTER-tree nodes (typically the first four momént&n
element counter is the number of VSS readings lgaigrto the
cell associated with the corresponding MASTER-trede. For
each cell, a few moments are stored, and the aetlsss nodes
are linked following the MASTER-tree paths. Thesfiscand
links form a grid structure (GS). As GS dependsaofinite
number of cells and a fixed number of nodes in eiqdar
cluster, it does not grow exponentially with therease in the
number of rounds of sensor readings. Thus, the M&STree
projection module is to establish a MASTER-tree fmach
cluster and then to incrementally update the G& asw round
of sensor readings arrives. This maintains the ougate
association rules among the VSSs in a cluster teesdata
analysis purposes. Interested readers are ref@6jdor details
about this module.

3.4 TheData Estimation Module

The data estimation module computes the estimasake for

the missing mobile sensor. Initially, the locatiohthe missing
mobile sensor is predicted based on the user-dkfineimum

support and minimum confidence using Morzy’s apphog20].

If the algorithm fails to predict the next locatidbEMS uses the
last reported location of the missing mobile seraits current
location. Location prediction is preceded by mappithe

missing mobile sensor to the corresponding VSSchvis called
missing VSS. The estimated missing mobile sensading is

the estimated missing VSS reading computed from the

MASTER-tree.

The data estimation module accomplishes the tagk iiterative
way. First it obtains the prior distribution of tmissing VSS
(mVSS) from the MASTER-tree, i.e., the rule-gmVSS (here
g means empty). If the rule satisfies the usemedfierror
margin and the minimum support and minimum configen
thresholds, the rule holds and the estimated vialpeoduced by
taking the average of the prior distribution of n8/SHowever,
if the error margin requirement is not satisfiele trelated
information from the other tree nodes (VS8sgonsidered for
re-estimation. Here, the data estimation moduleosbs one
more new antecedent node to infer the mVSS’s rgadis
every node represents a VSS, a node can be aredatgmode
if the corresponding VSS is active. The initialereint subspace
for the antecedent node is simply the cell pickpdased on its
current reading. When the actual support does atisfg the



minimum support threshold, the relevant subspaeeiggnented
iteratively until the actual support is no lessrttihe minimum
support. However, if the support requirement caeosatisfied
even if the relevant space reaches its upper liét, the
complete subspace, the module removes this nodearsiders
a new prior node. This process of adding a newcadent node
is repeated until the estimation procedure meets @i the
following conditions: 1) a rule that satisfies theinimum
support, minimum confidence and maximum error nmargi
found, or 2) no more nodes within the cluster ibéadded to
the antecedent nodes set. The procedure then setimm
estimated value using the last expected valuedtieeage) over
the obtained consequent subspace. The estimatedS®VS
reading is directly used as the estimated readinghle missing
mobile sensor.

4. EXPERIMENTAL DESIGN AND
RESULTSANALYSIS

In this section, we compare DEMS with two existaigorithms:
SPIRIT [17] and TinyDB [13]. Although both TinyDBnd
SPIRIT are designed for static sensors, it carrdpeeal that they
can still be used for data estimation for mobilensses
disregarding sensor’s mobility. We also comparavith the
Average which is a statistical baseline method whére
missing reading is estimated by averaging all otkeown
sensor readings of the current round.

4.1 Experimental Datasets

4.1.1 The DAPPLE project dataset

The real life dataset is obtained from the DAPPL&qxt [21].
The data are about carbon monoxide (CO) readiniected
over a period of two weeks around Marylebone Roddondon.
The mobile sensors monitoring the atmospheric C@llare
attached to PDAs which store these readings. Tteesdanpling
rate of the sensors is once every second. The aaftan the
PDAs generates log files containing the CO levelth wthe
locations and the timestamps associated with thaimgs. Each
reading was carried out with a single sensor kérgsecond for

a duration of about 45 minutes over a two weeksogder
Simultaneous use of multiple sensors (usually Jhnees limited

to some days only. For our experimental purposes, w
considered the instances when three sensors were
simultaneously recording CO pollution levels focansiderable
period of time. We chose Thursday ™@lay 2004, when three
sensors were simultaneously recording for aboum2utes,
resulting in 600 rounds (after disregarding thesmig rounds)

of CO readings.

4.1.2 TheFactory Floor Temperature Dataset
Besides the above real life application dataset, ai®o
synthesized a factory floor temperature datasef MRich
exhibits dynamically changing phenomena. In thipegiment,
machines are placed on a grid floor. Initially, mdachines are
off and the starting temperatures for all grid peiare set to
zero. The boundary grid point temperature is heldzero
throughout the experiment. Then some machinesbwilturned
on for a number of rounds; the temperatures oretheschines
will reach a high constant temperature and hedtdisperse on
the floor. At each time step, a grid point is ugdiatising the
heat transfer formula used in [12]. In this simigiat 100 mobile
sensors were roaming around in random directionsdaitor
the factory floor and reported the temperature irggd from

different locations at different points in time. dar simulations,
we sampled the mobile sensor readings once per hototal
we gathered 5000 rounds of readings from 100 ssnsor

4.2 Performance Comparison Studies

In this section we compare the performances of DEMS
Average, SPIRIT [17], and TinyDB [13] in terms ofean
absolute error (MAE). MAE is calculated using the#ldwing

formula: MAE = M wheree; is the estimated value; is
the original value for the i-th data point, andis the total
number of data points. MAE is thus the magnitudet the

percentage, of the error. We specifically studyithgacts of the
number of rounds of sensor readings on the estmaticuracy.

4.2.1 Resultsfor the DAPPLE Project Dataset

Nurnber o rounds vs. MAE

&y

o o
100 200 300

400 500 600
MNumber of rounds
[ ——DEMs —&— Average —— TinyDBE —— SPIRIT |

Fig 3. Number of roundsvs. MAE for the DAPPLE project
dataset

Figure 3 shows the change of MAE with the changawhber

of rounds of sensor readings. The MAE value of 0D&MS

implies that DEMS estimates the missing data witherror. A

possible reason is that the DAPPLE project dataggtvery few
variations (the CO levels are within the range 0afjl the
sensors have very high spatial correlations. Intnsases the
readings in the same hexagon are the same. HeriERISD
produces a zero error in terms of MAE. The MAEs dther

approaches are comparatively high at the beginambbecome
stable at the end as the number of rounds increases

Table 1. Average MAEsfor the DAPPLE project dataset

Approach Average MAE
DEMS 0
Average 1.2717
TinyDB 0.6331
SPIRIT 0.9437

Table 1 shows the average MAE for all the approscBEMS
almost perfectly estimates the missing values whilerage

gives the highest error compared to SPIRIT and DBy

4.2.2 Resultsfor the Factory Floor Temperature

Dataset
Table 2. Average MAEsfor thefactory floor temperature
dataset
Approach Average MAE

DEMS 2.253¢

Average 14.778

TinyDB 6.9621

SPIRIT 4.747:

We performed a similar study for the factory flaemperature
dataset. This dataset have more variations (tefapesare in




the range 0~100C) compared to the DAPPLE projetasda
Figure 4 shows the change of MAE with respect éodhange of
number of rounds. The MAE for each approach remaimest
constant when the number of rounds changes. Aslgtaset has
more variations than the DAPPLE project datasetnethough
DEMS still performs better than the other techngués
performance is not as good as its performance twétDAPPLE
project dataset.

Number of rounds vs. MAE
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500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Fig 4. Number of roundsvs. MAE for factory floor
temper atur e dataset
Table 2 shows the average MAE for all the approsiciide
average errors produced by Average, SPIRIT andDBnhgre
about seven times, three times, and two times rtlae that
produced by DEMS, respectively. DEMS is thus véifgative
in estimating missing sensor data.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new technique (DEM®stimate
missing data in MSN applications. Experimental itssshow
that the estimated values computed by DEMS are mcrerate
than those produced by the existing techniques: radge
SPIRIT [17], and TinyDB [13]. For future work, weiliv
consider the case when multiple mobile sensorsrrataia at
different times. We envision scenarios where carsidle
delays may exist between each sensor's readingsillyias
DEMS currently is designed for single hop MSNs omlg plan
to expand the scope of DEMS to include multi-hop N4S
mobile base station, and clustered MSNSs.
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