
SQL QueRIE Recommendations: a query fragment-based
approach

Javad Akbarnejad
Computer Engineering Dept.

San Jose State Univ.
San Jose, CA

Magdalini Eirinaki
Computer Engineering Dept.

San Jose State Univ.
San Jose, CA

Suju Koshy
Computer Engineering Dept.

San Jose State Univ.
San Jose, CA

Duc On
Computer Engineering Dept.

San Jose State Univ.
San Jose, CA

Neoklis Polyzotis
Computer Science Dept.

Univ. of California, Santa Cruz
Santa Cruz, CA

ABSTRACT
Relational database systems are becoming increasingly popular in
the scientific community to support the interactive exploration of
large volumes of data. In this scenario, users employ a query inter-
face (typically, a web-based client) to issue a series of SQL queries
that aim to analyze the data and mine it for interesting information.
First-time users, however, may not have the necessary knowledge
to know where to start their exploration. Other times, users may
simply overlook queries that retrieve important information. In this
work we describe a framework to assist non-expert users by provid-
ing personalized query recommendations. The querying behavior
of the active user is represented by a set of query fragments, which
are then used to identify similar query fragments in the recorded
sessions of other users. The identified fragments are then trans-
formed to interesting queries that are recommended to the active
user. An experimental evaluation using real user traces shows that
the generated recommendations can achieve high accuracy.

Keywords: recommender systems, collaborative filtering, relational
databases, interactive exploration

1. INTRODUCTION
Relational database systems are becoming increasingly popular

in the scientific community in order to provide access to large vol-
umes of scientific data. Examples include the Genome browser1

that hosts a genomic database, and SkyServer2 that stores large
volumes of astronomical measurements. Scientific databases are
usually accessed through a web-based interface that allows users
to submit SQL queries and retrieve the results. Even though users
have the ability to issue complex queries over large data sets, the
task of knowledge discovery remains a big challenge. Users may
not know which parts of the database hold useful information, may
overlook queries that retrieve relevant data, or might not have the
1http://genome.ucsc.edu/
2http://cas.sdss.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

required expertise to formulate such queries. Moreover, because
of the continuously increasing size of the database, an extensive
exploration of the whole database is usually very time-consuming.
These factors clearly hinder data exploration and limit the benefits
of using a relational database system.

To address the important problem of assisting users when ex-
ploring a database, we designed the QueRIE framework (Query
Recommendations for Interactive data Exploration). QueRIE as-
sists users by generating dynamic, personalized query recommen-
dations in ad-hoc or form-based query environments. The idea is to
provide the user with a set of SQL queries that are expected to be
relevant to their information needs. The user will be able to directly
submit or further refine these queries, instead of having to compose
new ones.

QueRIE is built on a simple premise that is inspired by Web rec-
ommender systems: If a user A has similar querying behavior to
user B, then they are likely interested in retrieving the same data.
Hence, the queries of user B can serve as a guide for user A. Col-
laborative filtering is a well known, mature technique for realiz-
ing this idea that we can borrow from Web recommender systems,
but its application to database queries presents several challenges.
First, SQL is a declarative language, and hence syntactically dif-
ferent queries may retrieve the same data. This complicates the
evaluation of similarity among users, since, contrary to the web
paradigm where the similarity between two users can be expressed
as the similarity between the items they visit/rate/purchase, we can-
not rely directly on the SQL queries. A second important challenge
is how to assign importance to the data retrieved by a user’s queries,
since we cannot assume an explicit rating system as in the case of
the Web. Finally, the recommendations to the users have to be in
the form of SQL queries, since recommending specific data items
may not be very intuitive. Thus, we need to “close the loop” by first
decomposing the user queries into lower-level elements in order to
compute similarities and make predictions, and then map the rec-
ommended elements back to meaningful and intuitive SQL queries
that users can understand or refine. All those issues make the prob-
lem of interactive database exploration very different from its web
counterpart.

In our previous work [2, 9], we presented the QueRIE archi-
tecture, framework, and the application of user-based collabora-
tive filtering using witness tuples to represent user queries. In this
papers, we propose an item-based approach that uses query frag-
ments to represent the user queries. The recorded fragments are
used to identify similar query fragments in the previously recorded
sessions, which are in turn “assembled” in potentially interesting

queries for the active user. We show through experimentation that
the proposed method generates meaningful recommendations on
real-life traces from the SkyServer database.

The rest of the paper is organized as follows: in Section 2 we
review related research performed in the area of query recommen-
dations for relational databases; in Section 3 we provide a brief
overview of the QueRIE conceptual framework; in Sections 4 and
5 we present the proposed fragment-based instantiation of the con-
ceptual framework, along with some specific implementation de-
tails concerning the queries’ preprocessing; Section 6 includes some
experimental results that evaluate several parameters of our frame-
work and Section 7 concludes the paper with our plans for future
work.

2. RELATED WORK
Even though the problem of generating personalized recommen-

dations has been broadly addressed in the Web context [10], only
a handful of related works exist in the database context. Some
work has been done in the area of personalized recommendations
for keyword or free-form query interfaces [11]. In this scenario,
a user queries a database using keywords or free-form text and
the personalization system recommends items of interest. Our ap-
proach is different from this scenario because it aims to assist users
who query relational databases using either ad-hoc or form-based
queries. Also, our framework recommends queries instead of “items”
from the database. Finally, QueRIE does not require from the users
to explicitly declare their preferences beforehand in order to gener-
ate recommendations.

A multidimensional query recommendation system is proposed
in [3, 5, 4]. In this work the authors address the related problem of
generating recommendations for data warehouses and OLAP sys-
tems. In this work, the authors propose a framework for generat-
ing Online Analytical Processing (OLAP) query recommendations
for the users of a data warehouse. Although this work has some
similarities to ours (for example, the challenges that need to be ad-
dressed because of the database context), the techniques and the al-
gorithms employed in the multidimensional scenario (for example,
the similarity metrics and the ranking algorithms) are very different
to the ones we propose.

The necessity of a query recommendation framework is empha-
sized in [6], where the authors outline the architecture of a collab-
orative query management system targeted at large-scale, shared-
data environments. As part of this architecture, they suggest that
data-mining techniques can be applied to the query logs in order
to generate query suggestions. The authors present a general out-
line of a framework for query recommendations pointing out that
this is a challenging process. However, they do not provide any
technical details on how such a recommendation system could be
implemented.

Two very recent works propose frameworks for query recom-
mendations using the information recorded in the query logs [13,
14]. In [13], the authors propose a query recommender system that
represents the past queries using the most frequently appearing tu-
ple values. Then, after predicting which new tuples might be of
interest to the end user, they reconstruct the query that retrieves
them. Contrary to our work, this approach is tuple-based. More-
over, the proposed scheme works better with relations that have dis-
crete attribute values, contrary to scientific databases, where most
attributes are numeric. The authors also propose a global ranking
of the queries, based on the statistics of the database and not the
query logs. Both approaches are evaluated in a preliminary em-
pirical study, yet no discussion on scalability issues is provided.
In [14], the authors propose a framework that recommends join

queries. They use the data recorded in the query logs and recon-
struct queries, however they assume that the end user should pro-
vide the system with some tables to be used as input and other
tables to be used as output, along with the respective selection con-
ditions. This approach clearly differs from ours in that they do not
take the current user’s session into consideration, neither they per-
form recommendations in the traditional “personalized” form (i.e.
finding similarities among users or items).

In our previous work [2, 9] we defined the QueRIE conceptual
framework and proposed a user-based approach that focused on the
tuples touched by each query in a user’s session. The system finds
similarities among the current and past users based on this tuples’
representation of the user sessions. A session summary predict-
ing tuples of interest is constructed and used to identify queries
recorded in the query logs that touch the same tuples. Since the
proposed instantiation is based on user-based collaborative filter-
ing, an approximation technique for accelerating the real-time cal-
culations was also proposed. Contrary to our previous work, in
this work we follow the item-based collaborative filtering approach
that allows most of the calculations to be performed offline, thus
enhancing the real-time performance of the system. Moreover, the
queries are represented by their fragments and not the tuples they
retrieve. In this way, the proposed instantiation focuses on identi-
fying similar queries in terms of structural similarity thus capturing
the semantics of the database exploration. The prototype of the
QueRIE framework, incorporating both instantiations, will be pre-
sented in [1].

3. PRELIMINARIES
Users typically explore a relational database through a sequence

of SQL queries. The goal of the exploration is to discover inter-
esting information or verify a particular hypothesis. The queries
are formulated based on this goal and reflect the user’s overall in-
formation need. As a consequence, the queries posted by a user
during one “visit” (commonly called session) to the database are
typically correlated, in that the user formulates the next query in
the sequence after having inspected the results of previous queries.

Given a user i, let Qi denote the set of SQL queries that the
user has posed. We model this subset of the database covered by
the queries of each user as a session summary. This summary cap-
tures the parts of the database accessed by the user and incorpo-
rates a metric of importance for each part. Contrary to Web rec-
ommender systems, where the users are represented by the items
they visit/rate/purchase, in the context of relational databases, sev-
eral ways to model the session summaries exist. For instance, a
crude summary may contain the names of the relations that appear
in the queries of the user, and the importance of each relation can
be measured as the number of queries that reference it. On the
other extreme, a detailed summary may contain the actual results
inspected by the user, along with an explicit rating of each result tu-
ple. Assuming that the choice of the summary is fixed for all users,
we use Si to denote the summary for user i.

To generate recommendations, the framework computes a “pre-
dicted” summary Spred

0 . This summary captures the predicted de-
gree of interest of the active user S0 with respect to all the parts of
the database, including those that the user has not explored yet, and
thus serves as the “seed” for the generation of recommendations.
The predicted summary is defined as follows:

Spred
0 = f(α ∗ S0, (1− α) ∗ {S1, . . . , Sh}). (1)

In other words, the predicted summary depends on both the active
user S0 and the summaries S1, . . . , Sh of past users.

Contrary to Web recommender systems that rely exclusively upon
the summaries of past users, we introduce a “mixing factor” α ∈
[0, 1] that determines the importance of the active user’s queries as
opposed to these of the past users in the computation of the pre-
dicted summary. In this way, we are able to predict queries that
“expand” queries previously submitted by the user, in terms of
adding slightly different clauses, parameters, or restructuring the
query. Intuitively, we expect the active user to behave in a simi-
lar way, by posing queries that cover adjacent or overlapping parts
of the database, in order to locate the information they are seek-
ing. We should note, however, that the framework will also predict
completely different queries as well, depending on the information
recorded in the query logs.

Using Spred
0 , the framework constructs queries that cover the

subset of the database with the highest predicted importance. In
turn, these queries are presented to the user as recommendations.
This step differs from the respective one in Web recommender sys-
tems since, in this case, the predicted summary is not a straight-
forward representation of queries. On the contrary, we need to de-
vise algorithms that, given the predicted summary, can synthesize
meaningful queries that will form the recommendation set.

Overall, our framework consists of three components: (a) Ses-
sion summaries: the construction of a session summary for each
user based on her past queries, (b) Recommendation seed compu-
tation: the computation of a predicted summary Spred

0 that serves as
the seed, and (c) Generation of query recommendations: the gener-
ation of queries based on Spred

0 . An interesting point is that compo-
nents (a) and (c) form a closed loop, going from queries to session
summaries and back. Again, this design choice follows the fact
that all user interaction with a relational database occurs through
declarative queries.

In what follows, we investigate a query fragments-based approach
to modeling the queries, and consequently the users.

4. FRAGMENT-BASED RECOMMENDATIONS
In order to generate recommendations, we follow a methodology

similar to the item-based collaborative filtering. This approach is
based on the pair-wise similarity among the items involved in the
recorded user sessions. Items that co-appear in many sessions are
considered similar to each other and these similarities are used in
order to generate recommendations for an active session. Contrary
to user-based collaborative filtering, this technique allows the cal-
culation of all similarities offline, thus accelerating the real-time
calculations and enabling fast recommendations’ generation.

In this paper, we represent each user session by the query frag-
ments (attributes, tables, joins and predicates) identified in the re-
spective queries. The objective is to identify fragments that co-
appear in several queries posed by different users, and use them
in the recommendation process. Thus, QueRIE first calculates of-
fline the pair-wise similarities of all query fragments recorded in
the query logs. These similarities are subsequently used to pre-
dict, in real time, the “ranking” (i.e. importance) of each fragment
with regards to the current user session. In turn, the highest ranked
query fragments are selected and used to retrieve queries that in-
clude them, which are used as recommendations. The proposed
algorithm is presented in more detail in what follows.

4.1 Session summaries.
The session summary vector Si for a user i consists of all the

query fragments φ of the user’s past queries. Let Qi represent the
set of queries posed by user i during a session and F represent the
set of all distinct query fragments recorded in the query logs. We
assume that the vector SQ represents a single query Q ∈ Qi. For

a given fragment φ ∈ F , we define SQ[φ] as a binary variable that
represents the presence or absence of φ in a query Q. Then Si[φ]
represents the importance of φ in session Si.

We propose two different weighting schemes for computing the
fragment weights in Si:

Binary scheme.

Si =
∨
Q∈Qi

SQ. (2)

In this scheme all participating fragments receive the same impor-
tance weight, regardless of whether they appear in many queries in
the session or only one.

Weighted scheme.

Si =
∑
Q∈Qi

SQ. (3)

In this approach fragments that appear more than once in a user
session will receive higher weight than others.

4.2 Recommendation seed computation.
Using the session summaries of the past users and a vector simi-

larity metric, we construct the (|F | × |F |) fragment-fragment ma-
trix that contains all similarities sim(ρ, φ), ρ, φ ∈ F . Intuitively,
and according to the item-based collaborative filtering approach,
the more the sessions that include both fragments, the more sim-
ilar these fragments are. The similarity metric employed depends
on the weighting scheme that was chosen in the previous step, thus
we employ Jaccard’s coefficient and cosine similarity for the binary
and weighted schemes respectively. We should note that all pair-
wise similarities are calculated and stored off-line. This results in a
very efficient execution of the algorithm in terms of computational
time.

The recommendation seed, modeled by Spred
0 , represents the es-

timated importance of each query fragment with regard to the ac-
tive user’s behavior S0. Similarly to the item-to-item collaborative
filtering approach of web recommender systems, we employ the
fragment-to-fragment similarities that are computed in the previ-
ous step:

Spred
0 [φ] =

∑
ρ∈R S0[ρ] ∗ sim(ρ, φ)∑

ρ∈R sim(ρ, φ)
, (4)

where R represents the set of top-k similar query fragments (k ≤
|F |). Please note that, even if we follow the binary approach, Spred

0

is not a binary vector.
As shown in Equation 1, we introduce a “mixing factor” α ∈

[0, 1] that allows us to include or exclude the fragments of the active
user session in the recommendation process. α is a parameter of the
QueRIE framework. When α = 0 we follow the classic item-based
collaborative filtering approach, whereas when α = 1 we follow a
content-based approach, in that only the fragments included in the
active user’s queries are taken into consideration. More discussion
on the effect of α is included in Section 3.

4.3 Generation of query recommendations.
The recommendation set will include queries that have been pre-

viously recorded in the query logs. In this way, we ensure that
the queries are understandable and executable, since they were au-
thored by humans. This decision allows for faster and more intu-
itive recommendations, as compared to the option of synthesizing
queries on the fly.

Once the predicted summary Spred
0 has been computed, the top-

n fragments Fn (i.e. the fragments that have received the higher

weight) are selected. Then all past queries Q, Q ∈
⋃
iQi receive

a rank QR with respect to the top-n fragments:

QR(Q) =
|FQ ∩ Fn|
|FQ|

∗ |FQ ∩ Fn|
n

, (5)

where FQ represents the fragments of query Q. In other words,
the queries are ranked based on a normalized metric measuring the
number of common query fragments of each query Q to the top-n
list. Finally, the top-m ranked queries are used as the recommen-
dation set.

5. QUERY PREPROCESSING
In order to create the fragment-based query and session vectors,

we needed to preprocess the queries included in the query logs and
decompose them. This process consists of two steps, namely query
generalization and query parsing. In the first step, the queries are
generalized based on a set of rules, in order to be analyzed and
matched more efficiently. Then, they are parsed and converted into
a template, in preparation for comparison analysis.

5.1 Query Relaxation
Because of the plethora of slightly dissimilar queries existing in

the query logs, we decided to relax them in order to increase their
cardinality, and thus the probability of finding similarities between
different user sessions. Our intuition is that if two users query the
same table and attributes, using slightly different filtering condi-
tions, the algorithm should consider them as similar.

As part of this relaxing process, we follow a simplified version
of the framework proposed in [7]. In essence, all the WHERE
clauses are relaxed by converting the numerical data and string lit-
erals to generic string representations. For example, all strings are
replaced by STR, all hexadecimal numbers by HEXNUM and all
decimals by NUM. A similar generalization is also followed for
lists or ranges of numbers and strings. The mathematical and set
comparators are also replaced by string equivalents, for example
“=” is replaced by EQU and “≤” by COMPARE . In the current
implementation of QueRIE we do not treat different numeric inter-
vals as separate, however this is orthogonal to the framework and
part of our future work plans.

5.2 Query Parsing
Once the queries are generalized, they are converted into frag-

ments. The current implementation of QueRIE only supports SPJ
(SELECT, PROJECT, JOIN) queries, whereas if a query includes
sub-queries, these are dropped. However, this is an implementa-
tion detail orthogonal to the overall framework, which can be eas-
ily extended to support subqueries. Each of the SPJ fragments are
separated using regular expressions. The Start and End designated
keywords used to identify fragments are shown in Table 1.

Each distinct fragment is assigned a numerical identifier, used
in the query and session vector representation. For each new frag-
ment not previously recorded in the query log, QueRIE generates a
new identifier. Such updates occur in real-time, as the current user
posts a query including new fragments. In the case of the WHERE
clause, only the joins and the filter conditions are stored. Because
of the generalization, the fragments in the WHERE clause are not
differentiated based on their actual values, rather based on the at-
tributes used for filtering. For example, s.x ≥ 0.2 and s.x ≥ 0.8
will be represented by the same fragments. In addition we do not
differentiate (i.e. handle differently) between joins and filters, as
we anticipate the similarity calculation would generate proper re-
sults regardless of the type of WHERE condition.

Table 1: Parsing keywords
Fragment name Start keyword End keyword
Attribute string SELECT FROM

Relation string FROM
WHERE, GROUP BY,
ORDER BY, end of
query

Where string WHERE GROUP BY, ORDER
BY, end of query

Group By string GROUP BY ORDER BY, HAV-
ING, end of query

Having string HAVING ORDER BY, end of
query

Table 2: Data Set Statistics
Sessions 180
Distinct queries 1400
Distinct query fragments 755
Non-zero pair-wise fragment similarities 30436

6. EXPERIMENTAL EVALUATION
The framework proposed in this paper has been implemented

in a prototype that will be demonstrated in [1]. In this section
we present preliminary experimental results using real user traces.
More specifically, we evaluate several parameters of the frame-
work, namely the value of items used for the generation of recom-
mendations n, the effect of the mixing factor α, and the employed
weighted schemes.

6.1 Data Set.
We evaluated our framework using traces of the Sky Server database3.

The traces contain queries posed to the database between the years
2006 and 2008. The query logs are anonymous, thus we used the
methods described in [12] to clean and separate the query logs in
sessions. For this reason, each session is considered as a different
user. The characteristics of the data set and the queries are summa-
rized in Table 2. Two real user sessions including a total of eight
queries is included in [1].

6.2 Methodology.
In order to measure the prediction accuracy of QueRIE, we use

the holdout set methodology [8]. The data is divided into two dis-
joint sets, the training set and the test set. The pair-wise fragment
similarity is computed against the training set. Each user session in
the test set is divided in two parts. One part is treated as the active
user’s queries, while the second part is treated as unseen (i.e. fu-
ture) queries. Subsequently, using the active user’s queries from the
test set and the pre-calculated fragment-based similarities, QueRIE
generates a set of query recommendations. We compare the rec-
ommended queries with the unseen queries from the test set and
calculate the precision, recall and F-score for each session. This is
performed by calculating these measures for each pair of queries,
as shown in Equations 6, 7 and 8 and keeping the maximum value,
assuming that the end user will also select only one out of the m
recommended queries each time.

Precision =
|Fr ∩ Fu|
|Fr|

(6)

Recall =
|Fr ∩ Fu|
|Fu|

(7)

3We used the BestDR6 version.

Table 3: Default parameter values
Top-k 5
Top-n 5
Top-m 5
α 0.5
weighting scheme weighted (cosine)
Training set 160 sessions
Test set 20 sessions

F − Score = 2 ∗ Precision ∗Recall
Precision+Recall

(8)

In the formulas above, Fr and Fu represent the fragments of the
recommended and unseen queries respectively. In the experiments
that follow, we report the average precision and recall over the 160
sessions of the data set.

We performed several experiments evaluating the performance
of the framework, and the effect of the various parameters of the
algorithm. Due to space constraints, in this paper we present the
most important findings in terms of the number of fragments n se-
lected from Spred

0 to calculate the query rankQR, the mixing factor
α, and the weighting scheme. Table 3 shows the default values kept
constant for the remaining parameters in each case.

6.3 Experimental Results
Evaluation of the Top-n parameter. The recommended queries
in QueRIE are identified, by first selecting the top-n fragments of
the predicted summary Spred

0 and using them to rank all previous
queries using the QR formula. Figures 1 and 2 show the average
precision and F-score for various top-n values (n ∈ {3, 5, 10, 50}).
We notice that the accuracy of the recommendations increases, as
expected, with the value of n. However, for very large values of n,
the accuracy decreases again. This is completely justifiable, since
when n is a very large number, the notion of “most similar” frag-
ments does no longer hold and barely similar items are included in
the recommendation process. QueRIE achieves the higher preci-
sions for n = 10 and n = 5 (0.8 and 0.75 respectively), whereas
F-score is the same for both values (0.76 and 0.75 respectively).
Given the small difference in terms of accuracy and the fact that
the lower the number of fragments n, the faster the real-time calcu-
lations, we adopt n = 5 as the default value for the framework.

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

Top-‐n	 	 =	 3	 Top-‐n	 =	 5	 Top-‐n	 =	 10	 Top-‐n	 =	 50	

Average	 Precision	

Figure 1: Average precision for various top-n values

Evaluation of the mixing factor α. In this instantiation of the
QueRIE framework, the mixing factor α is introduced before the
selection of the top-n fragments. Since including only the current
user’s session (α = 1) is a content-based approach not employ-
ing the collective intelligence recorded in the query logs, we only

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

Top-‐n	 	 =	 3	 Top-‐n	 =	 5	 Top-‐n	 =	 10	 Top-‐n	 =	 50	

Average	 F-‐Score	

Figure 2: Average f-score for various top-n values

evaluate the impact of including (α = 0.5), or excluding (α = 0)
the fragments recorded in the active user’s session. As expected
intuitively, the accuracy of the recommendations is enhanced sig-
nificantly when the active user’s fragments are incorporated in the
recommendation process. More specifically, precision and F-score
are 0.76 and 0.74 respectively for α = 0.5, whereas they drop to
0.48 and 0.43 when α = 0, as shown in Figures 3 and 4. This ver-
ifies our initial claim that database recommender systems are very
different in nature from their web counterparts. As pointed out in
Section 3, one significant difference is that, in the case of SQL
queries we want to expand or enhance the queries that were previ-
ously submitted by the user. The user benefits from this addition,
since probably most users are interested in posting queries similar
to the ones they have already posted during the same session.

0	

0.2	

0.4	

0.6	

0.8	

1	

α	 =	 0	 α	 =	 0.5	

Average	 Precision	

Figure 3: Average precision for different α values

0	

0.2	

0.4	

0.6	

0.8	

1	

α	 =	 0	 α	 =	 0.5	

Average	 F-‐score	

Figure 4: Average f-score for different α values

Evaluation of the weighting scheme. Depending on the weight-
ing scheme selected, the representation of the query and session
vectors, and consequently the metrics used to calculate the simi-
larities between fragments, differs. In this instantiation we have

introduced the binary and the weighted schemes and employ the
Jaccard coefficient and the cosine similarity metric respectively. In
this set of experiments, we evaluate the effect of the representation.
Intuitively, the binary representation is much more simplistic and
is expected to provide less accurate results, since valuable informa-
tion with regards to the importance of each fragment in a session
is missing. The results, shown in Figures 5, 6 verify this intuition,
however we notice that the difference is very small, with a preci-
sion of 0.74 and 0.79 for the binary and weighted schemes respec-
tively, and an F-score of 0.69 and 0.74 respectively. For the specific
dataset both schemes performed similarly in terms of real-time per-
formance. Thus we adopt the weighted scheme as the default value,
since it resulted in slightly better prediction accuracy.

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

Binary	 Scheme	 Weighted	 Scheme	

Average	 Precision	

Figure 5: Average precision for different weighting schemes

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

Binary	 Scheme	 Weighted	 Scheme	

Average	 F-‐score	

Figure 6: Average f-score for different weighting schemes

7. CONCLUSIONS
In this paper we presented a fragment-based instantiation of QueRIE,

a recommender system that assists users when interacting with large
database systems. QueRIE enables users to query a relational database,
while generating real-time personalized query recommendations
for them. We also performed an experimental evaluation of various
parameters of the framework using real traces from the SkyServer
database.

Overall, we showed that the precision of the recommendations
is close to 80% when the active user’s session is included in the
prediction process, we employ the weighted scheme, and top-n ∈
{5, 10} (with all other parameters set to default). This shows that
QueRIE is very effective in generating useful recommendations to
the end users of relational database systems. In terms of perfor-
mance, QueRIE’s fragment-based recommendation engine is able
to generate real-time recommendations in quite fast (an average of
25 sec for each session in the test set).

We are currently working on evaluating the remaining parame-
ters of the problem. We also plan to compare the fragment-based

instantiation with the tuple-based one, proposed in our previous
work.

8. ADDITIONAL AUTHORS

9. REFERENCES
[1] J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy,

S. Mittal, D. On, N. Polyzotis, and J. S. V. Varman. SQL
QueRIE Recommendations (demo paper). In Proc. of the
36th International Conference on Very Large Data Bases
(VLDB 2010), 2010.

[2] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis.
Collaborative filtering for interactive database exploration. In
Proc. of the 21st International Conference on Scientific and
Statistical Database Management (SSDBM ’09), 2009.

[3] A. Giacometti, P. Marcel, and E. Negre. Recommending
Multidimensional Queries. In Proc. of the 11th International
Conference on Data Warehousing and Knowledge Discovery
(DaWaK’09), 2009.

[4] A. Giacometti, P. Marcel, E. Negre, and A. Soulet. Query
recommendations for olap discovery driven analysis. Intl.
Journal on Data Warehousing and Mining (IJDWM) (to
appear).

[5] A. Giacometti, P. Marcel, E. Negre, and A. Soulet. Query
recommendations for olap discovery driven analysis. In
Proc. of the ACM 12th International Workshop on Data
Warehousing and OLAP (DOLAP’09), 2009.

[6] N. Khoussainova, M. Balazinska, W. Gatterbauer, Y. Kwon,
and D. Suciu. A case for a collaborative query management
system. In Proc. of the 4th Biennal Conference on Innovative
Data Systems Research (CIDR 2009), 2009.

[7] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica. Relaxing
join and selection queries. In Proc. of the 33nd international
conference on Very large data bases (VLDB ’06), pages
199–210, 2006.

[8] B. Liu. Web Data Mining: Exploring Hyperlinks, Contents
and Usage Data. Springer, 2nd edition, 2007.

[9] S. Mittal, J. S. V. Varman, G. Chatzopoulou, M. Eirinaki, and
N. Polyzotis. QueRIE: A Recommender System supporting
Interactive Database Exploration. In 2009 edition of the
IEEE International Conference on Data Mining series
(ICDM’09) - to appear in ICDM 2010 proceedings because
of editor’s error, 2009.

[10] B. Mobasher. The Adaptive Web: Methods and Strategies of
Web Personalization, volume 4321 of LNCS, chapter Data
Mining for Personalization, pages 90–135. Springer,
Berlin-Heidelberg, 2007.

[11] A. Simitsis, G. Koutrika, and Y. Ioannidis. Precis: From
unstructured keywords as queries to structured databases as
answers. VLDB Journal, 17(1):117–149, 2008.

[12] V. Singh, J. Gray, A. Thakar, A. S. Szalay, J. Raddick,
B. Boroski, S. Lebedeva, and B. Yanny. Skyserver traffic
report - the first five years. Microsoft Research, Technical
Report MSR TR-2006-190, 2006.

[13] K. Stefanidis, M. Drosou, and E. Pitoura. ”You May Also
Like” Results in Relational Databases. In 3rd International
Workshop on Personalized Access, Profile Management, and
Context Awareness in Databases (PersDB 2009), 2009.

[14] X. Yang, C. M. Procopiuc, and D. Srivastava.
Recommending join queries via query log analysis. In 25th
International Conference on Data Engineering (ICDE 2009),
pages 964–975, 2009.

