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Foreword 
 
Proliferation of database-driven web sites has brought upon a plethora of information access and 
dissemination applications. Monitoring and trading stock portfolios, news notification, weather 
tracking, and even simple search are just a few examples. In addition, recently, new applications 
have emerged that go beyond information access and dissemination and enhance creativity, 
information sharing, and collaboration among users providing richer interaction possibilities. Now, 
users cannot only access content but they can also generate, share and modify content (both theirs 
and others') freely, compose their applications, enhance their interface, etc. Web-based 
communities, wikis, social networks, mashups, folksonomies are some of the emerging new 
applications. In all these (classical and novel) applications, different notions of user information, 
such as preferences, community memberships and social interactions, and context information, such 
as a user's social network, location, time, and other features of a user's environment, are of 
paramount importance in order to improve and personalize user experience. In this context, new 
challenges emerge for user-centric, context-aware database systems for storing and managing 
different aspects of user and context information, for data management and computing taking into 
account personal, social and contextual information about users and for customizability of their 
behavior.  
 
User-centric, personalized, socially-affected, and context-aware database systems represent a 
remarkable step towards user-centric applications that allow users to find, generate, share and 
modify content and services. It is imperative that people studying and working on the different 
components of a database system clarify their view of contextualization and personalization and 
describe the ways and degree to which these can be applied to their components of interest. We need 
a common understanding of the new challenges and we need to design new models, new algorithms, 
new databases to count for the user-centric requirements of emerging applications. The PersDB 
2010 workshop aims at providing a forum for presentation of the latest research results, new 
technology developments, and new applications in the areas of personalized/socialized access, 
profile management, and context awareness in database systems. 
 
The program committee consisted of 18 members and was chaired by Tiziana Catarci (Universita di 
Roma "La Sapienza", Italy) and Yannis Stavrakas (Institute for the Management of Information 
Systems, Greece). We would like to thank all the people who have supported and helped in the 
organization of this workshop: the authors and presenters of the papers for their interest and 
participation in PersDB 2010, the reviewers for their time and effort, and the organizers. 
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A Benchmark for Context Data Management
in Mobile Context-Aware Applications∗

Nadine Fröhlich Thorsten Möller Steven Rose Heiko Schuldt
Databases and Information Systems Research Group

University of Basel, Switzerland

firstname.lastname@unibas.ch

ABSTRACT
Over the last few years, computational power, storage ca-
pacity, and sensing capabilities of mobile devices have signif-
icantly improved. As a consequence, they have undergone
a rapid development from pure telecommunication devices
to small and ubiquitous computing platforms. Most impor-
tantly, these devices are able to host context-aware appli-
cations, i.e., applications that are automatically adjusted to
the current context of their user. This, in turn, requires sens-
ing support on the device, the possibility to store context in-
formation, and to efficiently access this context information
for the automated adaptation of applications. In this pa-
per, we introduce a benchmark for context management in
mobile context-aware applications. We present in detail the
design and setup of the benchmark, based on an eHealth use
case. The benchmark evaluation considers context queries
on Android Nexus One cell phones and compares the perfor-
mance of different settings including relational and object-
oriented databases on the mobile device, and an RDF triple
store on a stationary computer. The results show significant
differences in the settings that have been evaluated and are
thus valuable indicators for database selection and system
design for mobile context-aware applications.

1. INTRODUCTION
Over the last few years, mobile devices have undergone a

rapid metamorphosis from pure telecommunication devices
to small and ubiquitous computing platforms. This is the re-
sult of a multitude of technical developments: i.) new types
of powerful and energy-efficient processors; ii.) the signifi-
cant increase in local storage capacity due to inexpensive,
low latency flash memory cards; iii.) sophisticated sensing
capabilities already embedded into off-the shelf devices (e.g.,
GPS sensors or acceleration meters). As a result of these de-
velopments, mobile devices are more and more in the focus of
novel kinds of applications that aim at improving the way

∗This work has been partly funded by the Hasler Foundation

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
PersDB ‘10, September 13, 2010, Singapore
Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

users access data and information. A particular emphasis
has been put in recent years on context-aware applications.
These applications aim at automatically adapting the way
information is accessed, processed, and/or presented to the
current needs of their user, based on their context (e.g.,
preferences, location, devices at hand). As users are mo-
bile, their context may rapidly change over time. Hence, in
contrast to traditional earmarked applications running on
stationary devices with users whose context is rather static,
mobile applications are characterized by the intrinsic high
frequency in which the users’ context changes. For the man-
agement of sensed context and the exploitation of context
for automated adaptation, e.g., by a rule engine, efficient
and effective context data management is needed.

Motivation: eHealth Use Case. Consider, for instance,
information access in a hospital. On a ward round, the doc-
tor’s time should mainly be spent for the interaction with
their patients, rather than for searching in the clinical in-
formation system. For example, retrieving electronic pa-
tient records should be unobtrusive and efficient. When a
physician enters a sick room, her mobile phone should au-
tomatically display the medical history of the patient(s) in
this room. Annotations to the health record added via the
device will be synchronized with the underlying clinical in-
formation system. In case she wants to share medical images
with her patient for which the mobile device’s display is too
small, the images should be automatically transferred to the
patient’s bed-mounted multimedia device.

Challenges and Contribution. For the type of dynamic
adaptations described before, the current context of a user
needs to be sensed and stored for immediate and/or later
exploitation. The amount of context data to store can vary
significantly, depending on the frequency in which the user’s
context changes and the frequency in which it is sensed. Al-
though today’s mobile devices are much more powerful com-
pared to devices as of some years ago, resources are still lim-
ited. Therefore, databases for storing and retrieving context
data need to be as efficient as possible. We have designed
a benchmark tailored to context data management for mo-
bile applications (aligned to the eHealth use case presented
above) in order to identify which data store is best suited
for this task. This benchmark has been implemented using
three different kinds of open source databases: i.) relational
databases locally on the device and on a remote stationary
server ii.) an RDF triple store on a remote server, and iii.)
an object-oriented database locally on the device and on a
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remote stationary server. We could only run the triple store
remotely, with updates and queries submitted from a mobile
device, as there is, to the best of our knowledge, currently
no stable open source RDF-based implementation directly
running on mobile devices. However, this configuration is
very relevant, since context information will be subject to
reasoning. To factor out communication costs when inter-
acting with a remote server, we also ran the benchmark on
the object-database and two relational databases remotely.

For the evaluation we used the context data model de-
signed for the LoCa project [7], implemented for each of the
data stores. Furthermore, we implemented a data generator
to populate all databases with the same context data. The
benchmark queries have been tailored to the different data
models and schemas while keeping the original semantics as
defined in the benchmark set-up.

The paper is organized as follows: Section 2 reviews re-
lated work. The benchmark setup is discussed in Section 3.
The implementation of the benchmark is described in Sec-
tion 4 and Section 5 presents and discusses the evaluation
results. Section 6 concludes.

2. RELATED WORK
Existing OLTP and OLAP-style database benchmarks usu-

ally address data center-scales rather than mobile environ-
ments. The TPC-C and TPC-E Benchmarks [21] give pref-
erence to a relational data model, SQL as the query lan-
guage, and aim at enterprise-scale database systems. Like-
wise, the Berlin SPARQL Benchmark [3] focusses on RDF
triple stores, and the LUBM Benchmark [9] evaluates OWL
knowledge base systems, both bound to SPARQL as the
query language. The Pole Position [15] benchmark com-
pares relational and object-oriented database engines and
object-relational (O/R) mapping implementations, but not
in a mobile setting.

In general, benchmarks for mobile environments are rare.
There exists an open source benchmark [11] designed for
the Android platform which compares the object-oriented
database Perst [14] with SQLite. However, the evaluations
are too limited to assess the overall performance character-
istics of these systems. All queries access only one relation
without joins, aggregations, subselects, etc. Therefore, they
cannot be directly applied to the kind of schema and queries
that have to be considered for context-awareness.

Our benchmark compares the performance of different ap-
proaches for storing context data. In [20], context models
are compared w.r.t. simplicity and flexibility, while we focus
in our work explicitly on performance aspects. [2] identifies
requirements on context stores, especially in terms of histor-
ical context data, which are considered in our benchmark.

3. BENCHMARK DESIGN
In what follows, we introduce the data model designed for

the benchmark and the query mix to be considered (more
details on the benchmark specification and evaluation can
be found in [8]).

Benchmark Data Model. For the benchmark, we exploit
the LoCa data model for context data which is defined in
accordance with the most commonly used definition for con-
text (Dey et al. [6]). The LoCa context model is introduced
in detail in [7] and summarized in Figure 1 and Table 1.

Figure 1: LoCa Context Model

Subject: specifies for whom the context is determined,
e.g., the owner of a mobile phone
ContextObject: The context of the subject, e.g., the
location of a physician. Context objects have a value,
e.g., current GPS coordinates, which have a unit, e.g.,
degree (for longitude and latitude).
DataGenerator: the sensor that senses context data.
Besides hardware (e.g., GPS) and software sensors (e.g.,
diary) we include manual human input.
Mode: includes metadata on DataGenerators (e.g., in
which frequency a generator produces elements of a data
stream.
ContextMetaData: metadata on ContextObjects (e.g.,
timestamp of sensed data, or accuracy of context data).
LogicalCombination: ContextObjects can recursively
consist of ContextObjects.

Table 1: Description of the LoCA Context Model

Benchmark Test Load. The objective for the specification
of the benchmark test load was to be as realistic as pos-
sible (in terms of the different types of queries, their mix,
and the volumes of data), without giving preference to a
very specific application. For this, we have analyzed typi-
cal eHealth environments (information access of physicians
in the course of a day, based on statistical information of
a medium-sized hospital) and have generalized these find-
ings for the specification of our benchmark. Based on these
numbers we estimated the amount of context data to be col-
lected in the course of one year (see Table 2 column 3). On a
mobile device, only context data of one user are stored so we
scaled the data of column 3 down to one person (see Table 2
column 2). In order to make the benchmark as flexible as
possible, we consider three settings with context data of i.) a
year, ii.) a quarter, and iii.) a week (in the latter two cases,
the numbers from Table 2 are scaled down accordingly).

3.1 Benchmark Queries
The benchmark queries we have defined reflect the way

mobile users and context-aware applications interact with
a context database. The query mix considers mainly read
accesses to context data, as well as insert operations which
create new context objects as the user’s context evolves.

Q1: Return a subject by a given ID. Such queries are often
used, for instance for the identification of a physician.

Q2: Return the last recorded context object of a given type
for a subject, e.g., the last blood pressure value.

∗Cardinality changes over time.
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Entity data sets per
person & year

data sets medium-
size hospital/year

DataGenerator 851 15.500
Human 1 5.000
HardwareSensor 833 25.000
SoftwareSensor 17 500

Mode 851 5.000
ContextObject 185.000∗ 925.000.000∗

ContextMetaData 185.000∗ 925.000.000∗

LogicalCombination 185∗ 925.000∗

Subject 1.800 27.000 (patients)

Table 2: Cardinalities of Entities in Benchmark

Query Percentage

Query 1 10 %
Query 2 7 %
Query 3 7 %
Query 4 6 %
Query 5 3 %
Query 6 13 %

Query Percentage

Query 7 7 %
Query 8 6 %
Query 9 4 %
Query 10 36 %
Query 11 0.5 %
Query 12 0.5 %

Table 3: Benchmark Query Mix

Q3: Return the context object of a given type for a subject
in a given time interval (day, week, month).

Q4: Return the last recorded context object of a given type
for a subject, generated by a given generator. It con-
siders details on the sensor, e.g., to find out whether a
blood pressure meter has the desired precision.

Q5: Return the available data generators including type
and precision that generate context objects of a given
type for a subject (e.g., for the selection of a generator
for a particular application).

Q6: Return a subject of a given type with the same context
object as a given subject, for instance when searching
for patients belonging to a sick room or for devices
available in the sick room in which the physician is
currently situated.

Q7: Return all available types of context objects to a given
subject in alphabetical order.

Q8: Return all logical combinations of context data for a
given subject. The query result shows which context
data are part of other context data.

Q9: Return the number of data generators that generate
context data per subject. By this query one is able to
control the generators belonging to one subject.

Q10: Insert a context object. This operation reflects all con-
text change of a user, as sensed by the device.

Q11: Update all context objects belonging to one logical
combination.

Q12: Delete a context object, e.g., for correcting mistakes
of human data generators.

The order of the queries in the mix will be randomly cho-
sen, but their occurrence over a longer interval is determined
by the percentages given in Table 3. It should be noted that
all queries, except for no. 10 (creation of context object) run
sequentially, while the insertion is done automatically in the
background, in parallel to the dynamic adaptation.

3.2 Performance Metrics
For the benchmark evaluation, we consider the following

metrics, which are aligned with the Berlin benchmark [3].

Metrics for Single Queries
• Average Query Execution Time (aQETx): Average

time for executing an individual query of type x ten
times with different parameters against the system un-
der test (SUT).

• Minimum/maximum Query Execution Time (minQETx,
maxQETx): A lower and upper bound execution time
for queries of type x.

• Queries per Second (QpSx): Average amount of queries
of type x that were executed per second. This value is
computed from the aQETx values.

Metrics for Query Mixes
Overall Runtime (oaRT): Overall time it took the test driver
to execute a certain amount of queries following the distri-
bution in the mix against the SUT. Thereby, inserts are
running in a parallel thread on the device. We decided to
process thee runs each with 300 queries each.

4. BENCHMARK SETUP
In this section,we describe in detail the setup of our bench-

mark evaluation.

4.1 Data Stores
We have selected three different kinds of data stores for

the benchmark. All are well tested and stable open source
systems that are widely adopted in practice.

• Relational databases

i) H2 (v. 1.2.136) in embedded mode and remotely
ii) MySQL (v. 5.0.51a) running remotely
iii) SQLite (version 3.5.9) [19] in embedded mode

• RDF/OWL triple store Sesame (v. 2.3.1) [16] with
Storage and Inference Layer SwiftOWLIM (3.0 beta
12) [13] remotely (servlet, deployed into apache-tomcat-
6.0.24).

• Object-oriented database db4o (v. 7.12) [4] in embed-
ded mode and running remotely

Initially, we have chosen only SQLite, Sesame, and db4o
for the benchmark. However, Sesame/SwiftOWLIM cur-
rently does not run on smart phones and SQLite cannot be
used in a client/server (c/s) mode. Therefore, we added H2
to our benchmark as it supports both embedded and c/s
mode. This makes results for remote operation comparable
among the triple store and the relational databases. Finally,
we also evaluated MySQL in c/s mode.

The relational database SQLite demands zero configura-
tion, has a small system footprint and no external depen-
dencies to other libraries which makes it highly appropriate
for mobile devices. Furthermore, it is currently used in sev-
eral applications (e.g., Firefox, Google tools). H2 [10] is
an open source Java database also having a small system
footprint (about 1 MB) and low memory requirements. It
supports disk-based and in-memory databases in embedded
and server mode. MySQL [12] is a highly popular and very
widely adopted open source database, featuring a rich set of
functionality.
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As the LoCa approach considers the semantics of services
when deciding on dynamic adaptations, we have also cho-
sen a triple store for the benchmark. Out of the available
open source RDF triple stores we have evaluated, Sesame
has been the most promising tool as it is already widely
used [16] and has proven to perform well enough for our pur-
pose [3]. Sesame allows for easy extension via the so-called
SAIL-API. As the back-end store implementations shipped
with Sesame do not provide the OWL based reasoning we
would like to use in our model, we used an alternative third
party implementation called SwiftOWLIM, an in-memory
triple store which implements rule-based forward-chaining
strategy for inferencing and supports a subset of OWL DL.

The object-oriented database db4o has been chosen to
avoid the impedance mismatch as the LoCa system is com-
pletely implemented in Java.

All tests were performed on Nexus One (N1) mobile phones
using Google Android version 2.1 [1] platform. The devices
come with 512MB RAM, 512MB ROM, and a Qualcomm
QSD8250 CPU with 1GHz. When working in remote mode,
instances of Db4o, MySQL, and Sesame/SwiftOWLIM ran
on a standard server (Intel Core 2 - 6600 2.4GHz, 4GB RAM,
250GB SATA Seagate ST3250820AS, Ubuntu 9.04 x86 64).
Mobile phones were connected to a 802.11b/g 54MBit wire-
less access point (DLINK DIR615), to which the server was
connected via 100MBit Ethernet.

4.2 Data Generator
To supply the different types of databases with equivalent

datasets, we implemented a parameterizable data generator
that incorporates output modules for every target paradigm.
In the first step, the raw data is generated in-memory us-
ing an integrated object-oriented data model according to
the context data model presented in Figure 1. The actual
data values are generated by exchangeable value generators,
all relations are picked at random (evenly distributed). In
the second step, this data is then transformed into the tar-
get data formats by special output modules. An interme-
diate raw format is stored to be able to create additional
outputs later, that are equivalent to the formerly gener-
ated ones. Additionally, every output module creates equal
sets of query parameter values that are used throughout the
benchmark run. This ensures a maximum of comparability
between the different platforms.

4.3 Implementation of the Data Model
The schemas for the different data stores are created ac-

cording to the LoCa context data model. For the relational
databases, a standard transformation has been applied. The
inheritance is implemented using a horizontal partitioning to
avoid joins and decrease execution time.

For the transformation to RDF, an OWL DL ontology
has been defined1. Entities are directly mapped to concepts
(classes), relations among entities are mapped to either one
or two object roles (properties) depending on whether both
directions can be navigated, and attributes to data roles.
Furthermore, we exploited additional modeling expressiv-
ity available in OWL: cardinality restriction constructors,
disjointness of concepts, and functional, transitive, and ir-
reflexive properties whenever appropriate.

For db4o, we transformed the context model to a Java
class structure by mapping entities to classes and by us-

1Available via http://on.cs.unibas.ch/owl/1.0/Context.owl

ing collections for the relationships. To work in an object
oriented manner, we applied the composite pattern to im-
plement the inheritance hierarchy.

4.4 Implementation of Benchmark Queries
All benchmark queries have been formulated in the query

languages supported by the respective data stores. For re-
lational databases we used SQL, for db4o SODA, and for
Sesame SPARQL.

In case of H2 and MySQL, we used suitable JDBC drivers
to access the databases. SQLite comes as built-in embed-
ded database with its own API that offers different ways
to access the database, raw query (nearly plain SQL), and
a structured interface for users with little SQL knowledge.
For the benchmark, we used the raw query interface.

SPARQL has evolved as the de facto standard for querying
RDF graph data. At the moment, there exist two major ver-
sions of SPARQL that are specified by the W3C. SPARQL
1.0 [17] has matured to a W3C recommendation and con-
tains basic graph query constructs. At the time of writ-
ing SPARQL 1.1 [18] is still a working draft. It adds more
advanced features like aggregations and data manipulation
to the language. As our chosen triple-store only supports
SPARQL 1.0, queries that change the dataset were difficult
to handle. While query 12 can be easily implemented using
a Sesame specific type of request (’transaction’), query 11
would have required to programmatically perform needed
updates on the datasets. Thus, we chose to drop this query
in the triple-store implementation of our benchmark. Also
aggregating queries had to be implemented partly on the
client side. To access the RESTful SPARQL interface that
SESAME provides, we used the HttpClient implementation
integrated into the Android SDK. All result data was en-
coded as JSON and parsed using androids own parser im-
plementation.

Db4o supports at its APIs query by example (QbE), Na-
tive Queries (NQ) and SODA. We decided to use SODA
because it is, according to the db4o documentation [5], up
to two times faster than optimized NQ and five times faster
than unoptimized NQ — the reason for this is that SODA is
the underlying internal query API all the other query APIs
are mapped to.

5. BENCHMARK RESULTS
This section summarizes the evaluation results for our

benchmark.
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Figure 2: Overview of Query Mixes
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System Week Quarter Year

H2 emb 26 (0.9) 1300 (23.8) 23251 (267.3)
H2 c/s 17 (0.9) 38 (23.8) 251 (267.3)
MySQL c/s 4 (0.8) 29 (18.8) 418 (186.0)
SQLite emb 386 (0.8) – (17.5) – (172.9)
SQLite emb (r) 384 (0.8) – (17.5) – (172.9)
OWLIM c/s 18 (1.6) 1025 (38.1) – (384.1)
db4o emb 511 (1.5) 21100 (22.3) – (126.5)
db4o c/s – (1.5) – (22.3) – (126.5)

Table 4: Execution Times of Query Mixes in Sec-
onds (in parentheses: Database Sizes in MB)

Query Mixes. Figure 2 and Table 4 show the results of
the query mix evaluation in the different settings. The ex-
ecution times of the relational databases vary considerably
but except for SQLite, all query mixes could be processed.
Only for H2 emb, we had to increase the JVM heap size to
80 MB which is however a rather unrealistic setting for the
device. SQLite was comparably slow. H2 c/s and MySQL
c/s manage to execute the query mix for one year in nearly
the same time as SQLite needs for the query mix for one
week (SQLite week: 386s, H2 year: 251s, MySQL year:
417s). This is most probably due to the lack of a sophis-
ticated query optimizer for SQLite. Furthermore, H2 c/s
proves to better perform on the largest data set (year), but
MySQL c/s performs much better on the smaller data sets
(week/quarter). As expected, the c/s architectures perform
better than the embedded databases on our resource lim-
ited mobile devices. For SQLite, we have compared a set-
ting with referential integrity with a setting without. The
benchmarks results show only marginal differences. OWLIM
c/s shows only an average performance, only slightly better
than H2 emb – however, it is not able to process a query
mix on the large data set (year). For db4o we could not
manage to process a complete query mix. With db4o c/s,
query 4 could not be executed although the query ran fine in
the db4o embedded version – this seems to be the result of
a mashaling/unmarshaling problem in db4o. The db4o emb
version is slow, and needs a lot of space and JVM heap.

Single Queries. To find out why the query mixes showed
significant performance variations on different systems, we
have also analyzed the average execution time of frequently
occurring queries. Query 6 has a fraction of 13% in the query
mix. For this query, the triple store performs much better
than most relational databases and even db4o c/s is for the
large dataset (year) in the range of MySQL (see Figure3).

Query 1 has also a major influence on the query mix
(10%). SQLite performed best for this query while db4o
emb performed comparably bad. db4o c/s performed better
but could not reach the times of the relational databases; its
performance is comparable to OWLIM (see Figure 4).

Query 9 is one of the most controversial queries in the
benchmark since some systems have not been able to prop-
erly execute it in reasonable time (see Figure 5). This query
runs fine on H2 c/s and MySQL but lasted extremely long
on SQLite. One reason for this is might be the less elabo-
rated optimizer of SQLite. H2 could perform this query but
we needed to increase the JVM heap to 64 MB. OWLIM
performs fair on small data sets but gets very slow with
increased data sets.
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Figure 3: Single Query Evaluation for Query 6
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Figure 4: Single Query Evaluation for Query 1

Summary Results. The analysis of the performance for in-
dividual queries shows that the chosen systems have differ-
ent strengths. A system that is very slow for one query
can be fast for another query. For deciding what system
is the best we have to care about the overall performance
shown in the query mixes where the fraction of queries is
considered. In the mixes, read-only queries (without Query
10) are running in parallel to inserts (Query 10). The ex-
ecution of inserts usually lasts a few milliseconds (2 to 35
ms), except for OWLIM where the execution of inserts lasts
more than 10000 milliseconds. The performance in c/s mode
was mostly considerably better than in embedded mode. H2
needed for the query mix with the context data accumulated
in one year 23251s while H2 c/s needed 251s. For db4o we
could not run a complete query mix. But when comparing
the single queries it is obvious that db4o c/s is mostly faster

H2 H2 c/s MySQL SQLite(r) OWLIM db4o db4o c/s
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

qu
er

y 
ex

ec
ut

io
n 

tim
e 

(lo
g−

sc
al

e,
 in

 s
ec

)

 

 

Week
Quarter
Year

Figure 5: Single Query Evaluation for Query 9
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than db4o embedded. Query 9 seems to be an outlier as it
performs better when executed in embedded mode than in
c/s mode (see Figure 5). Although additional communica-
tion cost incur in c/s mode, powerful server-side hardware
can partly or completely compensate this. Only for db4o,
communication costs are in some cases higher than the ben-
efit of more powerful servers. Finally, the benchmark shows
that it is not feasible to store context data for a longer period
in an embedded database on a mobile device.

Lessons Learned. SQLite is small and easy to use, but
its optimizer is not as developed as that of more mature
database systems. We had to manually optimize some of
the queries to improve the query performance.

H2 supports referential integrity by default and works well
in embedded and client/server setting. Most notable, H2
caused least configuration problems.

MySQL, as the data store with the richest set of features,
is also the most demanding system regarding configuration
for remote access.

OWLIM, Sesame’s built-in data store, can be easily cre-
ated and maintained using the web based workbench. How-
ever, manual configuration was needed to create repositories
working with an OWLIM store after the binaries were inte-
grated into the Servlet distribution. As we chose the REST-
ful HTTP interface to access the stores, some conveniences
of common database access layers had to be implemented on
top of the standard http client, e.g., to circumvent memory
restrictions when large result sets were received. This was
the case for Query 8, where a lacking aggregation feature of
SPARQL 1.0 had to be implemented on the client side.

db4o was comparatively slow, especially for Query 9 and
it demanded much memory and JVM heap space (up to
64M/80M). For speeding up the tests, we used the SODA
query language that is much faster than the recommended
query interface (NQ). Actually, the performance of db4o
also strongly depends on the design of the data model as
inheritance and collections with a lot of associated objects
slow down the query execution dramatically. We optimized
our model, but in order to reach an appropriate speed we
would have to completely redesign our model, especially by
abandoning the object-oriented design (inheritance). In c/s
mode, one query (no. 3), did not run at all, although we
did not experience any problems in embedded mode. Al-
though db4o performs well on a standard PC in c/s mode,
we were faced with major problems regarding performance
and stability in embedded mode on the mobile device. These
problems are well taken by the db4o developers as they are
currently aiming at decreasing the needed stack size to bet-
ter support Android-based platforms.

6. CONCLUSIONS AND FUTURE WORK
Managing context data on mobile devices is an essential

prerequisite for supporting dynamic, context-aware adapta-
tions of applications. In the paper, we have presented a
benchmark designed for the management of context data
and we have reported in detail on the benchmark evaluation
which considers relational and object-oriented databases and
a triple store in embedded and/or client/server mode. The
set-up considers different context data sets accumulated by
mobile users on their devices in a realistic setting in the
course of a week, a month, and a year. Relational data
stores in c/s mode performed best in the benchmark. For

smaller data sets, the performance of embedded relational
databases and the triple store (c/s) is sufficient.

In our future work, we will focus on the LoCa rule engine
to provide support for the automatic adaptation of appli-
cations (workflows) and user interfaces, based on the local
context store evaluated in our benchmark.
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ABSTRACT
We introduce two criteria for judging “goodness” of the re-
sult when combining preference relations in information sys-
tems: completeness and consistency. Completeness requires
that the result must be the union of all preference relations,
while consistency requires that the result must be an acyclic
relation. In other words, completeness requires that the re-
sult contain all pairs appearing in the preference relations,
and only those pairs; while consistency requires that for ev-
ery pair (x, y) in the result, it must be able to decide which
of x and y is preferred to the other. Obviously, when com-
bining preference relations, there is little hope for the re-
sult to satisfy both requirements. In this paper, we clas-
sify the various methods for combining preference relations,
based on the degree to which the result satisfies complete-
ness and consistency. Our results hold independently of the
nature of preference relations (quantitative or qualitative);
and also independently of the preference elicitation method
(i.e. whether the preference relations are obtained by the
system using query-log analysis or whether the user states
preferences explicitly). Moreover, we assume no constraints
whatsoever on the preference relations themselves (such as
transitivity, strict ordering and the like).

1. INTRODUCTION
The problem considered in this paper is how to com-

bine preferences to arrive at a consensus in the context of
databases and information systems. Combining preferences
to arrive at a consensus is a problem known in the litera-
ture as Social Choice Theory [20]. Variants of this problem,
such as voting schemes, have been studied since the 18th
century (by Condorcet and Borda). More recently, prefer-
ences have been used since the 50s in decision making for
ranking alternative choices (see [18] for an extensive survey).
In databases and information systems, however, the use of
preferences started only in the late 90s and it is mainly con-
cerned with the ranking of query answers [13, 7, 19, 1, 6, 4,
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that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
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or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

5, 12, 15, 14]. Indeed, with the explosion of the amount of
information available today (e.g., on the web) query results
may be very large, and ranking these results according to
users’ preferences is of great help to users.

In the area of information systems, user preferences are
classified from different points of view, as follows.

In terms of their nature, preferences can be:

– Quantitative (or absolute), expressed by a number on a
scale (thus capturing intensity of desire). For example,
“I like BMW cars 80%” and “I like VW cars 70%”.
Quantitative preferences are difficult to express by the
casual user, but easy to compute by a machine from
query logs.

– Qualitative (or relative), expressed by comparison. For
example, “I like BMW more than VW”. Qualitative
preferences express no intensity of desire; they are easy
to express by the casual user and also easy to infer by
a machine (from quantitative preferences).

In terms of their duration in time, preferences can be:

– Long-term preferences; these may be either discovered
by the system (unobtrusively, from query logs) or de-
clared explicitly by the user. In both cases long-term
preferences are stored in the so-called user profile.

– Short-term preferences; these are expressed explicitly
by the user, on-line, together with a query (in which
case one usually talks about preference queries).

We note that the nature and the duration in time are or-
thogonal characteristics of preferences.

In this paper, we assume a set of objects O and we model a
preference over O as a pair (o, o′) meaning that o is preferred
to o′; moreover, we refer to a set of preferences over O as a
preference relation.

We stress the fact that we model preference relations as
binary relations over O without any particular constraint
such as transitivity, strict ordering and the like. The rea-
son for doing so is that there is no general consensus in the
literature as to what properties a preference relation should
satisfy. For instance, although transitivity is generally con-
sidered as a desirable property, in several situations prefer-
ence relations are assumed to be non-transitive [9, 10, 11,
22].

Our approach considers only positive preference state-
ments of the kind “x is preferred to y”; in other words,
we do not take into consideration indifference relations [18].
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When O represents a set of alternative choices, one or
more experts may be asked to express their opinion directly
on the alternatives, thus leading to a set of preference re-
lations over O. In other cases, the experts may be asked
to express their opinion on one or more features of the al-
ternatives, each one inducing a preference relation over O.
In both cases, we end up with a set of preference relations
over O, and the problem is how to combine them into a sin-
gle preference relation incorporating as best as possible the
opinions of all experts.

In the area of databases and information systems, there
are two general methods for combining a set of preference
relations: the Prioritized method and the Pareto method,
in their restricted and unrestricted versions. Several studies
in the literature use these methods, for example for defin-
ing preference queries and sky-line queries [3]. However, to
our knowledge, no previous work has addressed the problem
of how well the information content of the individual pref-
erences is incorporated in the combined relation by these
methods.

In this paper, we propose to evaluate Prioritized and Pareto,
and their variants, by introducing two criteria: completeness
and consistency; and we classify these methods based on the
degree to which the combined relations satisfy the two cri-
teria.

Our results hold independently of the nature of preference
relations (i.e. whether they are qualitative or whether they
have been inferred from quantitative rankings); and also in-
dependently of the preference elicitation method (i.e. whether
the preference relations have been obtained by the system,
using query-log analysis, or whether they have been stated
by the user states, explicitly).

Section 2 gives the formal statement of the problem, as it
appears in the area of information systems, also providing
some rationale; section 3 introduces the classical methods for
combining preference relations; section 4 analyzes how these
methods behave with respect to the measures introduced
earlier, namely consistency and completeness. Finally, Sec-
tion 5 summarizes the results and draws some conclusions.
Proofs are omitted for reasons of space.

2. STATEMENT OF THE PROBLEM AND
RATIONALE

We say that a binary relation P is complete with respect
to n > 1 given binary relations P1, . . . , Pn iff P is the union
of P1, . . . , Pn. Moreover, we say that P is consistent iff it is
acyclic. We note that both completeness and consistency [8]
can be tested efficiently.

Given a set of preference relations P1, . . . , Pn, the prob-
lem that we consider is how to find a combined preference
relation P that satisfies the following requirements:

1. Completeness. This property requires that the result
should contain all pairs appearing in the preference
relations, and only those pairs (i.e., no preference ex-
pressed by the user is lost, and no extraneous prefer-
ence is introduced in the result).

2. Consistency. This property requires that the result
must be an acyclic relation; that is, for every pair (x, y)
appearing in the result, it must be able to decide which
of x and y is preferred to the other.

Clearly, when the result is complete, all expressed prefer-
ences are taken into account, but there may be contradic-
tions among the individual preference relations, generating
cycles in their union. On the other hand, consistency ex-
presses absence of contradictions. So the presence of both
completeness and consistency characterizes the optimal situ-
ation, where all preferences are taken into account and there
is no contradiction.

We note that the presence of contradictions is natural, as
they are the result of putting together preferences which ei-
ther come from different users, independently, or come from
the same user but address different aspects of the objects.
As we mentioned earlier, such non-contradiction is expressed
by the absence of cycles. Indeed, acyclicity allows the rank-
ing of objects, as follows [21, 17]. Let P be an acyclic binary
relation (viewed as a digraph), and define the rank of an ob-
ject o as follows:

– if o is a root of P then rank(o) = 0 (a root is a node
with no incoming edge);

– else rank(o) is the length of a maximal path among all
paths from a root of P to o.

The intuition behind this definition of rank is that the far-
ther an object o is from the best objects (represented by the
roots) the less preferred it is. We note that the computa-
tional complexity of computing ranks following this defini-
tion is linear in the size of the preference graph (understood
as usual as the number of nodes plus the number of arcs).
In reality, the size of the preference relations is quite small
as users often express just a few preferences. Clearly, the
definition of rank is sound only if P has at least one root,
and this is guaranteed only when P is acyclic.

Now, let us denote by Bi the set of objects with rank
i, and let m be the maximal path length among all paths
starting from a root. Then it is easy to prove the following
proposition:

Proposition 1. The sequence B0, B1, . . . , Bm defined above
has the following properties:

– B0, B1, . . . , Bm is a partition of the set of objects ap-
pearing in P ;

– for each i = 0, 1, 2, . . . , m, there is no arc of P con-
necting two objects of Bi;

– for each i = 1, 2, . . . , m and each object t ∈ Bi there is
an object s ∈ Bi−1 such that there exists an arc from
s to t in P.

In general, when combining preference relations, there is
little hope for the result to satisfy both completeness and
consistency. Since ranking is important in information sys-
tems and acyclicity is a sufficient condition in order to do
ranking, a reasonable approach to follow when combining
preference relations is to satisfy acyclicity while minimizing
the loss of completeness. In order to achieve this goal, we
must select as the result P of combining the given prefer-
ence relations a largest acyclic subset of the union. In other
words, we must select P in such a way that there is no proper
superset of P which is an acyclic subset of the union.

If we view preference relations as digraphs, finding such a
P is equivalent to solving the maximum acyclic sub-graph
problem, which is stated as follows: Given a digraph G =
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(V, E), find a maximum cardinality subset E′ ⊆ E such that
(V, E′) is acyclic. This problem is known to be NP-hard [16].

Now, since there have been several proposals in the liter-
ature for combining preference relations, one wonders how
these proposals relate to the maximum acyclic sub-graph
problem. This is the question that we undertake in the rest
of this paper.

More specifically, we show that the classical methods for
combining preference relations provide a clever trade-off be-
tween maximality of the result and efficiency of computa-
tion. As these methods were introduced long before the
theory of complexity was formulated, this is a rather sur-
prising result that provides an a posteriori justification for
the introduction of these methods.

3. CLASSICAL METHODS FOR COMBIN-
ING PREFERENCE RELATIONS

There are several well-known methods for combining a set
of preference relations P1, . . . , Pn, into a single preference
relation, most notably, the so-called Prioritized and Pareto
(and their variants). In order to formally define these meth-
ods, we use the following terminology from [2]. Let P be a
preference relation:

– we use interchangeably the notations (x, y) ∈ P and
xPy; if (x, y) /∈ P, we write xPy;

– x and y are said to be equivalent with respect to P,
written xP≡y, iff both xPy and yPx hold;

– if xPy and yPx, we say that x and y are incomparable
with respect to P, written xP#y;

– finally, if xPy and yPx, x is said to be strictly preferred
to y with respect to P, written xP <y.

We first recall the definition of P∪, the union of the given
preference relations P1, . . . , Pn :

xP∪y ⇐⇒ ∃i.(xPiy)

A basic difference between Prioritized and Pareto is that
the former, apart from the given preference relations P1, . . . , Pn,
requires some additional information in order to be applied,
whereas the latter requires no additional information. In-
deed, in the case of Prioritized, one assumes that the prefer-
ence relations P1, . . . , Pn, are ordered by a priority relation
≺, which is a strict partial order. We recall that a strict par-
tial order is a binary relation which is irreflexive and transi-
tive, and consequently asymmetric (asymmetric means that
if a < b holds then b < a does not hold).

Prioritized and Pareto each come into two variants:

1. Restricted Prioritized (RPR, for short).

This is the “classical” Prioritized rule, also used in [2].
Given a set of preference relations P1, . . . , Pn strictly
ordered by ≺, the RPR rule defines a binary relation
Prr (P1, . . . , Pn,≺), or simply Prr when there is no am-
biguity, as follows:

xPrry ⇐⇒ ∀i.(xPiy ∨ ∃j.(j ≺ i ∧ xP <
j y))

Notice that x and y are incomparable in the combined
relation (i.e., xPr#

r y) if and only if x and y are in-
comparable on the preference relation with the highest
priority for which they are not equivalent.

We note that the well-known lexicographic ordering
is a special case of Restricted Prioritized. Indeed,
the lexicographic ordering is a Prioritized ordering, in
which:

– O stands for a set of words of finite length over
some finite alphabet A, where A is totally ordered
by some strict total order <A (i.e., given any two
distinct letters a and a′, either a <A a′ or a′ <A a
but not both); the minimum element of <A is the
special character blank;

– we have as many preference relations Pi as the
number of characters in the longest word in O;

– the i-th preference relation captures preference
based on the i-th letter of words (starting from
the left), according to <A; so, carloP1nicolas while
nicolasP3carlo;

– the priority relation over the Pi’s is the natural
total order <N over the indices.

Under these assumptions, given two words w = a1a2 . . . am

and w′ = a′1a
′
2 . . . a′n, the RPR rule becomes:

wPrrw
′ ⇐⇒ ∀i.(ai <A a′i ∨ ∃j.(j <N i ∧ aj <<

A a′j))

Now, since <A is a strict total order, <A=<<
A, there-

fore the rule becomes:

wPrrw
′ ⇐⇒ ∀i.(ai <A a′i ∨ ∃j.(j < i ∧ aj <A a′j))

The last rule is clearly the rule used to order words in
a dictionary.

2. Unrestricted Prioritized (UPR, for short).

This method extends RPR by allowing the combined
preference to hold even in presence of incomparabil-
ity in some preference relation, as long as there exists
comparability in some other relation. The UPR rule
defines a binary relation Pru as follows:

xPruy ⇐⇒ ∀i.(xPiy ∨ (xP#
i y ∧ ∃k.(xPky)) ∨

∃j.(j ≺ i ∧ xP <
j y))

Notice that x and y are incomparable if and only if
x and y are incomparable in all given preference rela-
tions.

3. Restricted Pareto (RPA, for short).

In this method, x is preferred to y in the combined
relation if and only if for every i, x is preferred to
y, and for at least one Pi x is strictly preferred to y.
Formally, the RPA rule defines a binary relation Par

as follows:

xPary ⇐⇒ ∀i.(xPiy) ∧ ∃j.(xP <
j y)

4. Unrestricted Pareto (UPA, for short).

In this method, x is preferred to y if and only if for at
least one Pi x is strictly preferred to y, and for no j y is
strictly preferred to x (in all other preferences x and y
can be comparable in the same direction, incomparable
or equivalent). The UPA rule defines a binary relation
Pau as follows:

xPauy ⇐⇒ ∀i.(yP <
i x) ∧ ∃j.(xP <

j y)
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Based on the definitions given so far we can state the
following proposition.

Proposition 2. Let P1, . . . , Pn, be n preference relations
and let ≺ be any strict ordering on them. Then, the following
hold:

1. Par ⊆ Prr ⊆ Pru ⊆ P∪

2. Par ⊆ Pau ⊆ Pru ⊆ P∪

3. Pau and Prr are incomparable with respect to set-containment.

4. COMPLETENESS AND CONSISTENCY
OF CLASSICAL METHODS

In order to characterize the classical methods with respect
to completeness and consistency, we consider three cases as
follows:

Case 1 the union P∪ is acyclic.

In this case, consistency is guaranteed and we show
that completeness holds only for the unrestricted meth-
ods.

Case 2 the union P∪ is cyclic but each individual prefer-
ence relation is acyclic.

In this case, we show that the restricted methods lead
to an acyclic result, but they are incomplete in the
sense that they may not produce a maximum acyclic
sub-graph; on the other hand, the unrestricted meth-
ods may produce a cyclic result.

Case 3 one or more individual preference relations are cyclic.

In this case, all methods may produce a cyclic result.

4.1 Acyclic union
It follows from proposition 2 that whenever the union of

the preference relations is acyclic, so are all the variants of
Prioritized and Pareto defined above. In this case, then,
consistency is satisfied. It remains to be seen whether com-
pleteness is satisfied as well.

The next lemma states a consequence of the acyclicity of
the union that will be used in what follows.

Lemma 1. Let P1, . . . , Pn, be preference relations whose
union P∪ is acyclic. If xP∪y then for some i we have that
xP <

i y, and for all k 6= i we have that either xPky or xP#
k y.

We can now prove the following.

Proposition 3. Let P1, . . . , Pn be preference relations whose
union P∪ is acyclic. Then,

1. P∪ = Pau

2. P∪ = Pru for any strict order ≺ of the preference re-
lations.

Notice that in proving that Pru ⊆ P∪, the acyclicity of
the union is not required.

Concerning Prr and Par , we have that in some cases P∪
is acyclic and that Prr ⊂ P∪ and Par ⊂ P∪. In proof, let
us consider the example shown in Figure 1; using RPR to
combine P1 and P2 leads to the incomparability of 3 and 4
(if P1 ≺ P2) or the incomparability of 1 and 2 (if P2 ≺ P1),

3

1

4

2-

���

P1

3

1

4

2

-
6

P2

Figure 1: Preference relations

while both these pairs are in P∪ = P1 ∪ P2. Analogously, it
can be seen that (3, 4) ∈ Pa#

r and (1, 2) ∈ Pa#
r .

We can then conclude that when the union of the given
preference relations is acyclic, both RPR and RPA are in-
complete, while UPR and UPA are “optimal”, i.e. both com-
plete and consistent.

4.2 Cyclic union with acyclic preference rela-
tions

We now consider the case in which the union of the pref-
erence relations is cyclic while each individual preference
relation is acyclic. In this case, we are interested to know
(a) whether Prioritized and Pareto produce an acyclic com-
bined preference relation, and, if yes, (b) how close to the
union P∪ they are.

In order to answer these questions, we first derive neces-
sary and sufficient conditions for the acyclicity of the result
in each of the classical methods. We then apply these con-
ditions to answer the above questions.

We recall that a cycle in a binary relation P is a sequence
of objects C = (o0, o1, . . . , ok) with k ≥ 2, such that

– o0 = ok,

– oi−1Poi for each i = 1, . . . , k, and

– there is no repetition in o0, o1, . . . , ok−1.

Proposition 4. Let P1, . . . , Pn, be n preference relations
and let ≺ be any strict ordering on them. Then, the Re-
stricted Prioritized Prr is acyclic iff for each cycle C =
(o0, . . . , ok) in P∪ there exists an arc (ou−1, ou) such that
for some preference relation Pi, ou−1Piou and for each j
such that ou−1Pjou, either ouPjou−1 or i ≺ j.

The last Proposition states the condition under which an
undesired preference (o, o′) (i.e., any one of the preferences
found in a cycle in P∪) does not end up in Prr . The condition
is derived by combining two facts: oPio

′ and oPrro
′ (the lat-

ter in turn obtained by negating the RPR rule). By a similar
technique, we obtain the analogous conditions for the other
considered variants of Prioritized and Pareto. The proofs
of the corresponding Propositions are omitted, as they are
very similar to that of the previous Proposition.

Proposition 5. Let P1, . . . , Pn, be n preference relations
and let ≺ be any strict ordering on them. Then, the Un-
restricted Prioritized Pru is acyclic iff for each cycle C =
(o0, . . . , ok) in P∪ there exists one arc (ou−1, ou) such that
for some preference relation Pi, ouP <

i ou−1 and for each j
such that ou−1Pjou, either ouPjou−1 or i ≺ j.

Proposition 6. Let P1, . . . , Pn, be n preference relations.
Then, the Restricted Pareto preference relation Par is acyclic
iff for each cycle C = (o0, . . . , ok) in P∪ there exists one arc
(ou−1, ou) such that either ou−1Piou for some preference re-
lation Pi, or ouPjou−1 for all preference relations Pj .
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Figure 2: Prioritized combinations

Proposition 7. Let P1, . . . , Pn, be n preference relations.
Then, the Unrestricted Pareto Pau is acyclic iff for each cy-
cle C = (o0, . . . , ok) in P∪ there exists one arc (ou−1, ou)
such that ouP <

i ou−1 for some preference relation Pi or ou−1Pjou

implies ouPjou−1) for all j.

Having established under which condition each of the con-
sidered methods produces a cyclic relation, we now examine
whether this condition can ever occur.

Proposition 8. The Restricted Prioritized Prr of n acyclic
preference relations P1, . . . , Pn is acyclic for any strict order
≺ on P1, . . . , Pn.

The last Proposition says that when each one of the given
preference relations is acyclic, the necessary and sufficient
conditions for the acyclicity of Prr established by Proposi-
tion 4 are always met. This can be verified by considering
that under the circumstances, every cycle in P∪ involves at
least two preference relations, one of which has necessarily
a lower priority than the other; thus, any arc (x, y) in the
cycle coming from a preference relation with a lower priority
can play the role of (ou−1, ou) in Proposition 4.

The last Proposition shows that in presence of a cyclic
union, the RPR rule produces an acyclic relation. How-
ever, the rule turns out to be too restrictive in that it may
exclude from the result preferences that are unproblematic
(i.e., preferences which do not produce any cycle if included
in the result). In other words, RPR may not produce a
maximum acyclic sub-graph of P∪.

Consider for instance the following preference relations:
P1 = {(2, 3)}, P2 = {(1, 2)} and P3 = {(3, 2)}, together
with the following strict order: P1 ≺ P2 ≺ P3. In this case,
we have Prr = {(2, 3)}, which is a non-maximum acyclic
sub-graph of P∪, since it misses the preference (1, 2).

Furthermore, there may be maximum acyclic sub-graphs
of P∪ that RPR cannot define under any ≺ . The example
presented in Figure 2 is a case in point: we have Prr = P1 (if
P1 ≺ P2) or Prr = P2 (if P2 ≺ P1). But for no ordering of
the preference relations we can have Prr = R1 or Prr = R2

(also shown in Figure 2).
Let us now consider Pru . It is easy to construct an example

that falsifies the condition of Proposition 5 (i.e., a cyclic P∪
leading to a cyclic Pru): Assume P1 ≺ P2 and P1 = {(1, 2)}
whereas P2 = {(2, 3), (3, 1)}. In this case, none of the arcs
making up the cycle (1, 2, 3, 1) in P∪ has a reverse arc as
required by Proposition 5. In fact, Pru = P∪ and so we
have a cyclic Pru .

For Pareto, the situation is identical.

Corollary 1. The Restricted Pareto Par of n acyclic
preference relations P1, . . . , Pn is acyclic.

As for Proposition 8, the acyclicity of each preference re-
lation Pi implies that the condition established by Proposi-
tion 6 are always met. In particular, each cycle in P∪ comes

from preferences belonging to different relations; then, any
arc (x, y) in the cycle is missed at least by one Pi, i.e. xPiy,
and as such it plays the role of (ou−1, ou) in Proposition 6.

Since Par is a subset of Prr (Proposition 2), we have that
the above remarks related to the completeness of Prr carry
over to Par .

Finally, the previous example can be used also to show
that a cyclic P∪ may lead to a cyclic Pau .

We may then conclude that when each preference rela-
tion is acyclic but their union is cyclic, both Prr and Par

are acyclic but incomplete. On the other hand, their unre-
stricted versions Pru and Pau may be cyclic.

4.3 Cyclic preference relations
In considering cyclic preference relations, we distinguish

between two cases:

– the cycle involves only two objects.

We call these objects equivalent in the sense defined
earlier.

– the cycle involves at least three objects.

In the classical methods, object equivalence arises only in
very special circumstances or not at all, as shown by the
following corollary (that follows from Propositions 4 to 7):

Corollary 2. Let P1, . . . , Pn, be n preference relations
and let ≺ be any strict ordering on them. Then, for any two
objects x, y

– xPr≡r y iff xP≡i y for all i = 1, . . . , n, and

– xPr≡u y iff the following hold:

1. for some i we have xP≡i y, and

2. for all j = 1, . . . , n we have either xP≡j y or xP#
j y.

Moreover, both Par and Pau are asymmetric.

Thus, two objects are equivalent with respect to Restricted
Prioritized if they are equivalent with respect to each pref-
erence relation. In this case they are incomparable for both
versions of Pareto. For Unrestricted Prioritized, two objects
are equivalent if they are comparable on some dimension but
in no dimension one of the two is strictly preferred to the
other. Pareto rules out object equivalence by being asym-
metric in both its variants.

For cycles involving three or more objects, the situation is
much worse. If some of the P1, . . . , Pn contain such a cycle,
then all variants of Prioritized and Pareto may produce a
cyclic result.

The following example shows that this is indeed the case
for RPA. Suppose P1 = P2 = {(1, 2), (2, 3), (3, 1)}. Then,
it is easy to see that Par = P1. Notice that if we assume
transitivity of the Pi’s, then for all objects x and y involved
in a cycle, we have xP≡i y and therefore (x, y) /∈ Par . In the
example, transitivity of the Pi’s implies that P <

i = ∅ for all
i and consequently Par = ∅.

Since Par is the smallest relation among those produced
by the classical methods, we have that all methods can pro-
duce a cyclic result.
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5. CONCLUDING REMARKS
From an information system perspective, there are two

basic requirements that must be satisfied when combining
preference relations into a single preference relation: com-
pleteness and consistency. Completeness means that the
result must be the union of all preference relations, while
consistency means that the result must be an acyclic rela-
tion.

However, it is rarely possible to satisfy these two require-
ments simultaneously, due to the fact that the union of the
given preference relations may be cyclic. Given the im-
portance of acyclicity in ranking the objects, we have ar-
gued that a reasonable compromise is to aim at a maximum
acyclic sub-graph of the union of the given relations.

We have analyzed two classical methods for combining
preference relations, Prioritized and Pareto, each in two
variants: restricted and unrestricted. We have shown that
all four methods are inadequate with respect to the above
requirements, as they may produce a result that is either
incomplete or cyclic. In particular,

– In the (fully unproblematic) case when the union of
the given preference relations is acyclic, both restricted
approaches are incomplete, while the unrestricted ones
are optimal (i.e., complete and acyclic).

– When each preference relation is acyclic but their union
is cyclic, both restricted approaches produce an acyclic
result, which however looses more preferences than
needed to obtain acyclicity; under the same circum-
stances, the unrestricted methods may produce a cyclic
result.

– Finally, when one or more preference relations have
cycles involving at least three objects, all four methods
may produce a cyclic result.

Thus, all four classical methods are for various reasons un-
satisfactory. However, if we look at the problem from a
purely computational perspective, we are faced with the fact
that computing a maximum acyclic sub-graph of a given
graph is known to be NP-hard. This fact sheds a different
light on the classical approaches.

In fact we may conclude that both Prioritized and Pareto
trade off efficiency to optimality (unless P=NP). In their
unrestricted variants, both methods achieve optimality only
when it is computationally easy to do so, (i.e., when the
union is acyclic). In all other cases, they retain efficiency
while loosing optimality.
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ABSTRACT
In this paper a new formal approach is proposed to retrieval
personalization, based on both a query personalization pro-
cess at the client’s side and a light document adaptation at
the information server’s side. The proposed solution relies
on the use of a domain ontology: queries and documents are
in fact indexed by sets of concepts. The query personaliza-
tion process is finalised to clarify what we call the central
query concepts based on the importance of linked concepts
in the considered ontology. The initial query as well as its
clarifications are sent to the server, which revises the docu-
ment representations based on both the query and the con-
cepts clarifications. The proposed solution does not require
that the information server maintains any user profile.

Keywords
Query Explanation, Document Adaptation, Similarity and
Propagation, Semantic Vector Space

1. INTRODUCTION
Personalization is nowadays an important issue for many

data and information retrieval applications, aimed at en-
hancing the user experience and business profits. Coping
with a huge and increasing amount of data accessible from
the Web, retrieval systems need to display not only informa-
tion relevant to a specific query, but also information that
match specific users needs, interests, preferences. And this
is seen as an important marketing tool and a requirement
for many electronic businesses.

Most personalization models are based on two important
and complementary aspects: (i) implicit or explicit collec-
tion and consequent representation of user’s behavior, pref-
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erences, interests; (ii) leveraging that knowledge during the
retrieval process. This is mainly done by expanding queries
[10], by re-ranking search results or by re-indexing docu-
ments [2]. Some of these tasks, like expanding queries,
can be achieved either at the user’s side or at the informa-
tion providers side (i.e. server’s side). This paper presents
a personalized information retrieval approach which does
not assume any user profiling by the information server.
Our model favors (semi-)automatic query clarification at the
user’s side. Based on the query clarification process, the
server reconsiders the document representations in the light
of both the query and its clarification, thus enhancing the
query evaluation process by specifically adapting it to the
user. This approach can be useful when the server privacy
policy commits it to not profiling the user.

Besides an ever increasing amount of information, these
last ten years have witnessed great research interest in se-
mantics, in particular with the definition of many domain
ontologies (like in medecine, biology, almost any domain)
and linked technologies. Our approach relies on the usage of
a domain ontology, with queries and documents (both semi-
structured or unstructured) indexed by its set of concepts
as semantic vectors [1]. Each concept is weighted according
to its representativeness of the document (respectively the
query). Relevance is modeled as the closeness of the two
vectors, as in the classical vector space model.

This paper does not focus on indexing, as we assume that
it is performed on the serve’s side. Given a user query (user’s
side) and document vectors (server’s side), the objectives
of our approach are to define (i) a query clarification pro-
cess and (ii) a light weight adaptation process to tune the
document representations to the query without requiring re-
indexing.The aim of the whole approach is to conceptually
enhance the query evaluation process. The proposed solu-
tion relies on several assumptions and choices.

First, each weighted concept of the query is explained sep-
arately. This seems more precise to us than a classical query
expansion, which may lead to an unbalanced role of the orig-
inal components of the query [10].

Second, the explanation of a given concept considers two
notions: given the user’s domain ontology, we assume that a
similarity function on the set of concepts specifies to which
extent a given concept is similar to another one. This is
part of the user’s modeling of the domain. However, to our
view, the use of a static similarity measure is not enough
to express the importance of a concept linked to a query.
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Indeed, two different search contexts may require to give
more or less importance (interest) to a same similar concept.
We formalize this intuition by introducing the concept of
propagation function.

Both the similarity and the concept importance values are
automatically computed, but the user can keep control on
the process. As the propagation of importance may vary
depending on the search context, the user should have a
toolbox with several propagation functions which s/he can
choose or which are automatically proposed depending on
the context (there may be a profiling module at the users
side which helps). Finally, both the initial query and the
concept explanations (which are vectors) are sent to the in-
formation provider, which has to evaluate the relevance of
the stored documents with respect to the query. As previ-
ously explained, our choice is to avoid re-indexing. Then,
given the document representations (i.e. vectors), there
are two options: (i) comparing each concept explanation
with each document, and then aggregate the results to get
a global relevance measure or (ii) producing an adapted
document representation (without changing the stored one)
which better characterizes each document with respect to
the search needs expressed by the concept explanations. We
have chosen the second option, in which, at the end, the
relevance computation considers the initial query and the
document adaptations.

Our contributions are: (i) a new formal approach to per-
sonalization which encompasses a query personalization pro-
cess together with a light document adaptation; (ii) not to
require that the document provider maintains user profiles;
(iii) a non-intrusive solution for existing systems, as it can
be plugged in systems without need of document reindexing,
query reformulation nor new matching function.

In the remaining of this paper, we first present a moti-
vating example which shows that questions ”how concepts
are similar?” and ”how much of them are interesting and to
what extent?” are crucial for personalized retrieval; this is
the core of our solution, and hence we present its architec-
ture (Section 2). Then we formally define query personal-
ization (Section 3) and document adaptation (Section 4). In
Section 5 we give a cost analysis and validate the personal-
ization of our solution. And after a discussion on the main
assumptions of our work (namely ontological heterogeneity,
and similarity and propagation functions) in Section 6, some
conclusions are sketched (Section 7).

2. MOTIVATING EXAMPLE AND SYSTEM
ARCHITECTURE

While selecting query terms that are fully compatible to
documents’ providers terms (index terms) is in itself a diffi-
cult problem, a same term could also have slightly different
meanings to different users (term ambiguity). For instance
let us assume three users Alice, Bob and Chikako, willing
to adopt a dog. Their request, e.g. ”I would like a dog”, is
very straightforward, and they can send it to an animal wel-
fare organization nearby their living place. Unfortunately,
there are a lot of sheltered dogs in these organizations, and
scanning their data base could be tedious. Hence, it should
be useful to specify which kind of dog each people intend to
adopt. On the other hand, if they want a pedigree dog, they
could be disappointed when using the keyword ”dog”. In-
deed, dog breeders are canine specialists, and their animals

shall not be deemed to be ”dog”, but ”labrador”, ”akita”,
or whatever. In both cases, a more accurate description of
the user’s preferences, i.e. the intended objects, should be
useful to specify or to expand queries.

Let’s Alice and Bob more likely consider as a dog pro-
totype the labrador, while Chikako’s dog prototype is rep-
resented by akitas (see Figure 1). Even if the concept dog
has the same meaning in their mind, the descendant (more
specific) concepts of dogs are not all similar, being some are
more relevant than others. As a consequence when querying
the animal welfare organization data base, they do not look
for the exactly same items. Then, a solution to improve the
results expected from the evaluation of their queries should
take into account the users’ prototypal concepts and their
similar concepts. This means to consider a central concept
(the prototype) and to formalise a concept similarity func-
tion; the user will finally decide which items in the ranked
list will be relevant to her/him. Thus, while labradors are
the prototype ”dogs” to Alice and Bob, it may happen that
dalmatians and akita are still acceptable to Alice while not
to Bob. Likewise, Chikako considers that dalmatians and
labradors, even if they are less relevant than akita, are still
ok. We call this combination of proximity to the central con-
cept and interest values a propagation function. In Figure
1 we show the interest values that Alice, Bob and Chikako
give to the concepts of their ontology according to their sim-
ilarity to dog.

Figure 1: Alice, Bob and Chikako’s similarity rank-
ing of concepts and the propagation of their interest,
both w.r.t. concept dog.

The propagation function aims at describing a dimension
of a query, i.e. one of its main concept. As each user man-
ages its own propagation (own similarity and own interest
values), we call such a description a personalized dimension
of the query. Once the query is personalized, our solution is
to keep the query unchanged, but to transform the document
representations according to the personalized dimensions. It
brings us to adapted documents. Finally, the adapted docu-
ments are compared to the initial query. Architecture of our
system is composed of five modules (Figure 2), over both
user and document provider. Actually, the basic modules
(white) are already provided by current systems. You can
see two semantic indexing modules on both user’s and doc-
ument provider’s side; these modules represent the queries
and documents based on the representation model of the
IR system (in our case: semantic vectors). Every system
has also a relevance computation module (matching mod-
ule), which ranks documents according to their relevance
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to the query (cosine). We add to this classical architecture
three new modules (grey). On the user’s side, the query
personalization module explains the central concepts of the
query, according to user’s similarity and propagation func-
tions. We see below in this paper how a user could obtain
these functions (see Section 6.2). The descriptions are then
given to the data adaptation module, which transform the
document representation w.r.t. them.

Figure 2: System architecture. All new grey mod-
ules are included in a classical semantic retrieval sys-
tem.

3. QUERY PERSONALIZATION
In this section, after a description of the semantic vec-

tors, we present a formalization of the propagation of users’
interests, which constitutes the main process of query pres-
onalization. We provide some inputs on similarity and prop-
agation functions later in this paper (see Section 6.2).

3.1 Semantic Vectors
In the vector space model [1], both queries and documents

are represented as vectors of keywords (terms). If there are n
keywords, each query or document is represented by a vector
in the n−dimensional space. Relevance of a document to a
query can then be calculated by measuring the proximity of
the two vectors. An approach based on semantic vectors [16]
uses the same kind of multi-dimensional linear space except
that it no longer considers as dimensions the keywords, but
concepts belonging to a considered ontology: the content
of each query (respectively document) is represented by a
semantic vector according to each concept.

We consider a very general definition of ontology [6]: it
is a set of concepts together with a set of relations between
those concepts. The only assumption we make is to be able
to compute a similarity between concepts of an ontology,
whatever the relations used are. In the rest of the paper,
we assume the existence of an ontology Ω, CΩ being its set
of concepts. Then, a simple formal definition of a semantic
vector can be the following:

Definition 1 (Semantic Vector). A semantic vec-
tor −→vΩ is an application defined on the set of concepts CΩ
of the ontology:

∀c ∈ CΩ,−→vΩ : c→ [0, 1]

Reference to the ontology will be omitted whenever there
is no ambiguity.

3.2 Propagation of Interest
Conceptual similarity is a function centered on a concept:

it gives a value to every concept according to its similarity
to the central concept.

Definition 2 (Similarity Function).
Let c be a concept of CΩ. simc: CΩ → [0, 1], is a similarity
function iff simc(c) = 1 and 0 ≤ simc(cj) ≤ 1 for all cj 6= c
in CΩ.

Given a similarity function and a central concept c, we
define a propagation function as a function which describes
the importance of every concept according to c. We assume
this function is monotonically decreasing.

Definition 3 (Propagation function).
Let c be a concept of CΩ; and let simc be a similarity func-
tion. A function Pfc : [0, 1] 7→ [0, 1]

simc(c
′) → Pfc(simc(c

′))
is a propagation function from c iff Pfc(simc(c)) = 1,
and ∀ck, cl ∈ CΩ simc(ck) ≤ simc(cl)⇒

Pfc(simc(ck)) ≤ Pfc(simc(cl))

We have suggested some propagation functions in [14].
They are inspired by membership functions used in fuzzy
logic [18], i.e. the most similar concepts are given the value
1, the most dissimilar are weighted with 0, and in between,
concepts receive a value according to their similarity. It is
defined by two parameters l1 (length of the interval where
concepts have weight 1) and l2 (length of the interval where
concepts have non zero weight) such that:

Pfc(x) = fl1,l2(x) =

1 if x ≥ l1
1

l1−l2
x + l2

l1−l2
if l1 > x > l2

0 if l2 ≥ x

3.3 Semantic Personalized Query
As we said in the introduction we do not expand (by

propagation) in a single new vector the weights of the cen-
tral concepts of the query. Moreover, each central con-
cept c of a query −→q is personalized in a separate vector.

Thus a personalized dimension
−−−−→
persDc is a semantic vector

which records the propagation of one concept only. Let C−→q
be the set of central concepts, i.e. important concepts for
the query: e.g. any weighted concept, a concept weighted
with a greater value than a threshold, etc. C−→q = {c :
c is a central concept}.

Definition 4 (personalized dimension).
Let −→q be a query vector and let c be a concept in C−→q .

A semantic vector
−−−−→
persDc is a personalized dimension, iff

∃Pfc∀c′ ∈ CΩ,
−−−−→
persDc[c

′] = Pfc(simc(c
′)).

The mathematical expression ending the definition means

that no matter how the
−−−−→
persDc is obtained the only restric-

tion is that no concept can have a greater weight than c,
which is always 1, and not the original value, because a per-
sonalized dimension is an explanation of a dimension of the
query. The original query, and then the original values of
the central concepts, are kept for the matching process.

A personalized query is the set of personalized dimen-
sions, one for each central concept of a query: persQ−→q =

{
−−−−→
persDc : c ∈ C−→q }. Figure 3 shows the personalization of a

query −→q with two weighted concepts c4 and c7.
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Figure 3: A personalized query composed of 2 per-
sonalized dimensions.

4. DOCUMENT ADAPTATION
Once user has explained central concepts of his/her query
−→q , s/he sends the personalized query to the document provider,
who adapts his/her documents to the persQ−→q . Adaptation
is not a reindexing of the documents, like with Bordogna
and Pasi [2] for instance. It is a lightweight filter of doc-
uments through what the query explains as important in
its personalized dimensions; and it results in a new vec-

tor,
−−−−−→
persR

−→
d−→q (simplified into

−−−−→
persR). If a concept ci is rel-

evant for
−−−−→
persDcj , then every document with this concept

ci should give that information in its adaptation. In fact,

for any
−−−−→
persDcj , documents retain a unique value in the

adaptation vector for concept cj , which is the best corre-

lation between personalization value of ci ∈
−−−−→
persDcj and

value
−→
d [ci]. While all concepts involved in some personal-

ized dimension are already captured by this process, their
values are then null in the adaptation. Other concepts, not
relevant for any personalized dimension, keep their original
value, as they show some dimensions of the document not
relevant for the personalized query. Indeed, the norm of the
vector gets higher (and consequently, its relevance lower).
For example, this is the case for concepts c1 and c9 in Fig-
ure 4.

Algorithm 1 details the computation of the personaliza-

tion of document representation
−→
d .This algorithm ensures

that all the central concepts of the initial query vector are
also weighted in the personalized document representation
as far as it is related to them. W.r.t. the query, the per-
sonalization of the document representation is more accu-
rate because it somewhat enforces the characterization of
the document over each dimension of the query.

The example of Figure 4 illustrates the computation of a−−−−→
persR. Each

−−−−→
persD of the personalized query is combined

with the semantic vector of the document. Let us consider−−−−→
persDc4 . In the document, the weight of c4 is null. How-
ever, the personalized dimension related to c4 weights other

concepts. In particular, we have
−−−−→
persDc4 [ c2 ] = 0.3. As

−→
d [ c2 ]= 1, the resulting product is 0.3. This value improves
−→
d [ c4 ] (which is null), so we keep it in the adaptation of

the document representation. Hence, in the
−−−−→
persR, we can

express that the document is related to concept c4 of the
query, even if it wasn’t the case initially. Likewise, three
concepts of the document (c6, c7 and c11) are important

to
−−−−→
persDc7 , and the adaptation retains only one value for

−−−−→
persDc7 [c7] = 0.6. Note that while a classical expanded
query would have given one single value from central con-
cept c4 (but possibly on c2 instead of c4), expansion should
have weighted 3 concepts from c7 (c6, c7 and c11). Our so-
lution does not add as much noise as it could with classical

Algorithm 1: Adaptation of document representation
wrt. a query.

input : a semantic vector
−→
d and a personalized query

persQ−→q on an ontology Ω

output: a semantic vector
−−−−−→
persR

−→
d−→q .

begin
forall c ∈ C−→q do

forall c′ :
−−−−→
persDc[c

′] 6= 0 do
−−−−−→
persR

−→
d−→q [c]←

max(
−→
d [c′]×

−−−−→
persDc[c

′],
−−−−−→
persR

−→
d−→q [c]);

forall c 6∈ C−→q do

if ∃c′ ∈ C−→q :
−−−−→
persDc′ [c] 6= 0 then

−−−−−→
persR

−→
d−→q [c]← 0

else
−−−−−→
persR

−→
d−→q [c]←

−→
d [c];

return
−→
i d;

end

expansion. Concepts c1 and c9 eventually keep their original

value in
−−−−→
persR of document ~d because they are not involved

in any
−−−−→
persD.

Figure 4: Obtaining the adapted document repre-
sentation.

5. EXPERIMENTS
Our goal is to validate our approach through several steps:

first step is cost analysis which enables to quantify the ad-
ditional costs induced by the method. Second one is just
to verify that given a query and different search contexts,
users get different results; this is can be viewed as a mini-
mum requirement to get personnalized results. Finally, the
method should be faced with a significant number of users
who would estimate whether (or to which extent) they get
personalized results. As we currently judge our number of
users not significant enough, the paper focuses on the first
two steps.

Complexity of our solution relies on the complexity of
similarity and propagation functions, which together define
query personalization, and document adaptation. There ex-
ist a lot of similarity measures (see Section 6.2) but they
always consist on two nested loops. Let n be the number
of concepts in the ontology, then similarity computation is
in O(n2). Propagation gives a weight to every concept; and
there are as many propagation functions as there are central
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concepts. Assume m the number of central concepts, then
we need O(m× n) to compute propagation. As m is gener-
ally very small compared to n, query personalization has a
complexity of O(n2 + n). However, these two steps can be
computed before and cached; so it is not always needed to
compute them whenever user queries the system. Adapta-
tion mainly consists of a loop on every concept of the ontol-

ogy for every document and
−−−−→
persD. Then, for every central

concept and every document, values are inserted at indices
of central concepts. Finally, a loop is processed on concepts

to put the values of concepts not involved in any
−−−−→
persD. If

d is the number of documents, we have an adaptation com-
putation in O(d(2(m× n) + m× log(n) + n)). But this can
be strongly reduced by using proper data model: big vec-
tors (as many indices as there are concepts in the ontology)
are useless while documents and queries are not expressed
on all the concepts but a very small subset, etc. The worst
case is not realistic and we assume a fast computation, by
replacing at least n by n′ which is drastically smaller. For
instance, we shown in [14] that a good propagation impacts
on 25 concepts for each central concept.

Our experiments use the Cranfield corpus and WordNet
(considered as a ”lightweight” ontology) to index the docu-
ments. We developped a prototype software called Mysins
[15] with a service oriented architecture. In Mysins, search
can be personalized by choosing the similarity and propaga-
tion functions. The server side of Mysins runs the document
adaptation module. We ran the 225 queries of the corpus.
The number of retrieved documents is 50 (among the 1400 of
the corpus). This later assumption seems reasonable as sev-
eral user behavior analysis show that users generally consult
the first result pages only. We use two different similarity
measures: Wu and Palmer [17] noted sim1, and a modified
version of sim1 (which permutes values of three highest sim-
ilarity values) as sim2. Likewise we use two different propa-
gation functions: prop1 = f0.95,0.9 and prop2 = f0.8,0.6 (see
Equation 3.2).

In order to compare two sets of retrieved documents with
their relevance values, we consider two measures. First one
(Jaccard coefficient) measures the similarity of the two sets
of documents (without considering their relevance value). It
is defined as the number of documents in the intersection
divided by the number of documents in the union of the
two sets. Second one takes into account the order in the
ranking of retrieved documents. We have chosen a modified
version of Rank Distance (RD) [4]: each document is given
a value according to its position in the top-50, 50 for the
1st, 49 for the 2nd, etc. and 0 for the 51st onwards. Value
of each document in first list is then compared to its value
in second list. This measure gives of course more impor-
tance to permutations on top of the list of retrieved docu-
ments. You can see in Figure 5 (a), (b) and (c) the results for
〈(sim1, prop1), (sim1, prop2)〉, 〈(sim1, prop1), (sim2, prop1)〉
and 〈(sim1, prop1), (sim2, prop2)〉 respectively. Each dot
corresponds to the comparison of answer lists of a query,
using the given parameters. X-axis shows Jaccard measure
and y-axis the home-made RD.

It is first worth noticing that dots are not close to (0,0),
which means that there are differences between the two re-
sults sets. Most dots have Jaccard values between 0.05 and
0.4, while their RD values are between 0.1 and 0.6. This
means that results sets are different (not the same collec-
tion of documents) and their ranking are even more different.

Propagation eventually seems more important than similar-
ity, because Figures 5 (a) and (c) have more scattered dots,
with higher dissimilarity and/or disorder values in average.

This section has proven that: (i) additional cost of our
solution is limited and (ii) in different contexts the results
sets are different and show a personalization of the retrieval.
Future work intends to validate the approach with ”real”
users, and their satisfaction.

6. DISCUSSION AND RELATED WORK
In this section, we first position our assumptions and

propositions w.r.t. related work. We then discuss how
collection of similarity and propagation functions can be
thought.

6.1 IR, Personalization and Ontologies
Context formalization for IR has focused a lot of atten-

tion in past few years [9]. Many work address this problem
through the construction of a contextual space, collecting
information on past queries, users clicks, etc. While most
of them use terms to characterize the context, Mylonas et
alii [9] propose to use an ontology. Their work is very in-
teresting and can be compared to ours. But it does not use
semantic vectors and our solution is more lightweight.

Query expansion has been seen promising to enhance small-
size queries in order to help IR engines [3]. But while query
expansion is a worthwhile contribution to IR, offering more
relevant results, it often adds noise in the retrieval. So IR
systems need to know when to use it [12]. Our solution
do not use a query expansion, but a description of central
concepts of the query through a propagation function on the
concepts of the ontology. We have proven in [14] that our so-
lution performs better than expansion in general case. And
it is specifically more resistant to the use of many concepts.

Assuming a total agreement on ontologies on both sides
is not realistic: an ontology is a conceptualization of knowl-
edge upon the world, and we can hardly imagine a unique
model of the world for every users. Alignment of ontologies,
i.e. mappings between parts of the ontologies [5], are mostly
used to address these problems. However these alignments
are often incomplete: either because the process is time or
resource consuming, or because users do not want to share
all their conceptualizations, or because it is not always pos-
sible. While query or document indexing could be done on
unshared parts of ontologies, it is useless. Indeed, every un-
shared element could not be understood, and hence no docu-
ment would be relevant (cosine works only on common parts
of queries and documents vectors). However, these unshared
parts are meaningful for users and document providers and
they are worthy of being used. We propose in [14] an inter-
pretation process which let users and providers free to use
their own ontologies during the information retrieval pro-
cess. We are still working on an extension of the system
described in this paper to a heterogeneous context.

6.2 Similarity and Propagation
Similarity functions have been studied for a very long time

[11, 13], etc. There exist a lot of different similarity func-
tions, depending on the application and some desired prop-
erties. While most of them are context-independant, some
takes it into account [7, 8]. Even if the problem of finding a
personalized similarity function is not exactly addressed in
these studies, we assume it could be done quite easily. For
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(a) (b) (c)

Figure 5: Comparisons of three pairs of parameters: same similarity and different propagation functions
(a), different similarity and same propagation functions (b) and different similarity and different propagation
functions (c), using Jaccard (x-axis) and home-made RD (y-axis).

instance, we could imagine to collect the relative use fre-
quency of sister concepts (e.g. labrador and akita) to give
them different similarity values.

We do not address either the issue of propagation function
personalization. It is a topic in itself and we focus here
on the general process of personalization. However, we can
imagine to first use a basic propagation, like we used in
the worked mentioned before; then the system could collect
feeedback from the user and change this basic propagation,
according or not to some context. We would like to focus
later on this issue.

7. CONCLUSION
Personalization of answering, content filtering, recommen-

dation systems, etc. have been a topic of immense interest in
recent times. While some solutions use a collection of user’s
behavior at providers’ side or may substantially modify the
retrieval system, our solution does not require that the infor-
mation server maintains any user profile and is non-intrusive
for retrieval systems. Moreover, we focus on a description
of the query in order to watch documents in the light of its
needs, and do not invent a new query formulation paradigm,
or a reindexing of documents. Once users provide similar-
ity and propagation functions, our system is lightweight and
can be integrated in most information systems, assuming the
system use semantic vector representations for queries and
documents; then our solution can be used with documents,
comments in blog, etc.
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ABSTRACT
Relational database systems are becoming increasingly popular in
the scientific community to support the interactive exploration of
large volumes of data. In this scenario, users employ a query inter-
face (typically, a web-based client) to issue a series of SQL queries
that aim to analyze the data and mine it for interesting information.
First-time users, however, may not have the necessary knowledge
to know where to start their exploration. Other times, users may
simply overlook queries that retrieve important information. In this
work we describe a framework to assist non-expert users by provid-
ing personalized query recommendations. The querying behavior
of the active user is represented by a set of query fragments, which
are then used to identify similar query fragments in the recorded
sessions of other users. The identified fragments are then trans-
formed to interesting queries that are recommended to the active
user. An experimental evaluation using real user traces shows that
the generated recommendations can achieve high accuracy.

Keywords: recommender systems, collaborative filtering, relational
databases, interactive exploration

1. INTRODUCTION
Relational database systems are becoming increasingly popular

in the scientific community in order to provide access to large vol-
umes of scientific data. Examples include the Genome browser1

that hosts a genomic database, and SkyServer2 that stores large
volumes of astronomical measurements. Scientific databases are
usually accessed through a web-based interface that allows users
to submit SQL queries and retrieve the results. Even though users
have the ability to issue complex queries over large data sets, the
task of knowledge discovery remains a big challenge. Users may
not know which parts of the database hold useful information, may
overlook queries that retrieve relevant data, or might not have the
1http://genome.ucsc.edu/
2http://cas.sdss.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

required expertise to formulate such queries. Moreover, because
of the continuously increasing size of the database, an extensive
exploration of the whole database is usually very time-consuming.
These factors clearly hinder data exploration and limit the benefits
of using a relational database system.

To address the important problem of assisting users when ex-
ploring a database, we designed the QueRIE framework (Query
Recommendations for Interactive data Exploration). QueRIE as-
sists users by generating dynamic, personalized query recommen-
dations in ad-hoc or form-based query environments. The idea is to
provide the user with a set of SQL queries that are expected to be
relevant to their information needs. The user will be able to directly
submit or further refine these queries, instead of having to compose
new ones.

QueRIE is built on a simple premise that is inspired by Web rec-
ommender systems: If a user A has similar querying behavior to
user B, then they are likely interested in retrieving the same data.
Hence, the queries of user B can serve as a guide for user A. Col-
laborative filtering is a well known, mature technique for realiz-
ing this idea that we can borrow from Web recommender systems,
but its application to database queries presents several challenges.
First, SQL is a declarative language, and hence syntactically dif-
ferent queries may retrieve the same data. This complicates the
evaluation of similarity among users, since, contrary to the web
paradigm where the similarity between two users can be expressed
as the similarity between the items they visit/rate/purchase, we can-
not rely directly on the SQL queries. A second important challenge
is how to assign importance to the data retrieved by a user’s queries,
since we cannot assume an explicit rating system as in the case of
the Web. Finally, the recommendations to the users have to be in
the form of SQL queries, since recommending specific data items
may not be very intuitive. Thus, we need to “close the loop” by first
decomposing the user queries into lower-level elements in order to
compute similarities and make predictions, and then map the rec-
ommended elements back to meaningful and intuitive SQL queries
that users can understand or refine. All those issues make the prob-
lem of interactive database exploration very different from its web
counterpart.

In our previous work [2, 9], we presented the QueRIE archi-
tecture, framework, and the application of user-based collabora-
tive filtering using witness tuples to represent user queries. In this
papers, we propose an item-based approach that uses query frag-
ments to represent the user queries. The recorded fragments are
used to identify similar query fragments in the previously recorded
sessions, which are in turn “assembled” in potentially interesting
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queries for the active user. We show through experimentation that
the proposed method generates meaningful recommendations on
real-life traces from the SkyServer database.

The rest of the paper is organized as follows: in Section 2 we
review related research performed in the area of query recommen-
dations for relational databases; in Section 3 we provide a brief
overview of the QueRIE conceptual framework; in Sections 4 and
5 we present the proposed fragment-based instantiation of the con-
ceptual framework, along with some specific implementation de-
tails concerning the queries’ preprocessing; Section 6 includes some
experimental results that evaluate several parameters of our frame-
work and Section 7 concludes the paper with our plans for future
work.

2. RELATED WORK
Even though the problem of generating personalized recommen-

dations has been broadly addressed in the Web context [10], only
a handful of related works exist in the database context. Some
work has been done in the area of personalized recommendations
for keyword or free-form query interfaces [11]. In this scenario,
a user queries a database using keywords or free-form text and
the personalization system recommends items of interest. Our ap-
proach is different from this scenario because it aims to assist users
who query relational databases using either ad-hoc or form-based
queries. Also, our framework recommends queries instead of “items”
from the database. Finally, QueRIE does not require from the users
to explicitly declare their preferences beforehand in order to gener-
ate recommendations.

A multidimensional query recommendation system is proposed
in [3, 5, 4]. In this work the authors address the related problem of
generating recommendations for data warehouses and OLAP sys-
tems. In this work, the authors propose a framework for generat-
ing Online Analytical Processing (OLAP) query recommendations
for the users of a data warehouse. Although this work has some
similarities to ours (for example, the challenges that need to be ad-
dressed because of the database context), the techniques and the al-
gorithms employed in the multidimensional scenario (for example,
the similarity metrics and the ranking algorithms) are very different
to the ones we propose.

The necessity of a query recommendation framework is empha-
sized in [6], where the authors outline the architecture of a collab-
orative query management system targeted at large-scale, shared-
data environments. As part of this architecture, they suggest that
data-mining techniques can be applied to the query logs in order
to generate query suggestions. The authors present a general out-
line of a framework for query recommendations pointing out that
this is a challenging process. However, they do not provide any
technical details on how such a recommendation system could be
implemented.

Two very recent works propose frameworks for query recom-
mendations using the information recorded in the query logs [13,
14]. In [13], the authors propose a query recommender system that
represents the past queries using the most frequently appearing tu-
ple values. Then, after predicting which new tuples might be of
interest to the end user, they reconstruct the query that retrieves
them. Contrary to our work, this approach is tuple-based. More-
over, the proposed scheme works better with relations that have dis-
crete attribute values, contrary to scientific databases, where most
attributes are numeric. The authors also propose a global ranking
of the queries, based on the statistics of the database and not the
query logs. Both approaches are evaluated in a preliminary em-
pirical study, yet no discussion on scalability issues is provided.
In [14], the authors propose a framework that recommends join

queries. They use the data recorded in the query logs and recon-
struct queries, however they assume that the end user should pro-
vide the system with some tables to be used as input and other
tables to be used as output, along with the respective selection con-
ditions. This approach clearly differs from ours in that they do not
take the current user’s session into consideration, neither they per-
form recommendations in the traditional “personalized” form (i.e.
finding similarities among users or items).

In our previous work [2, 9] we defined the QueRIE conceptual
framework and proposed a user-based approach that focused on the
tuples touched by each query in a user’s session. The system finds
similarities among the current and past users based on this tuples’
representation of the user sessions. A session summary predict-
ing tuples of interest is constructed and used to identify queries
recorded in the query logs that touch the same tuples. Since the
proposed instantiation is based on user-based collaborative filter-
ing, an approximation technique for accelerating the real-time cal-
culations was also proposed. Contrary to our previous work, in
this work we follow the item-based collaborative filtering approach
that allows most of the calculations to be performed offline, thus
enhancing the real-time performance of the system. Moreover, the
queries are represented by their fragments and not the tuples they
retrieve. In this way, the proposed instantiation focuses on identi-
fying similar queries in terms of structural similarity thus capturing
the semantics of the database exploration. The prototype of the
QueRIE framework, incorporating both instantiations, will be pre-
sented in [1].

3. PRELIMINARIES
Users typically explore a relational database through a sequence

of SQL queries. The goal of the exploration is to discover inter-
esting information or verify a particular hypothesis. The queries
are formulated based on this goal and reflect the user’s overall in-
formation need. As a consequence, the queries posted by a user
during one “visit” (commonly called session) to the database are
typically correlated, in that the user formulates the next query in
the sequence after having inspected the results of previous queries.

Given a user i, let Qi denote the set of SQL queries that the
user has posed. We model this subset of the database covered by
the queries of each user as a session summary. This summary cap-
tures the parts of the database accessed by the user and incorpo-
rates a metric of importance for each part. Contrary to Web rec-
ommender systems, where the users are represented by the items
they visit/rate/purchase, in the context of relational databases, sev-
eral ways to model the session summaries exist. For instance, a
crude summary may contain the names of the relations that appear
in the queries of the user, and the importance of each relation can
be measured as the number of queries that reference it. On the
other extreme, a detailed summary may contain the actual results
inspected by the user, along with an explicit rating of each result tu-
ple. Assuming that the choice of the summary is fixed for all users,
we use Si to denote the summary for user i.

To generate recommendations, the framework computes a “pre-
dicted” summary Spred

0 . This summary captures the predicted de-
gree of interest of the active user S0 with respect to all the parts of
the database, including those that the user has not explored yet, and
thus serves as the “seed” for the generation of recommendations.
The predicted summary is defined as follows:

Spred
0 = f(α ∗ S0, (1− α) ∗ {S1, . . . , Sh}). (1)

In other words, the predicted summary depends on both the active
user S0 and the summaries S1, . . . , Sh of past users.
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Contrary to Web recommender systems that rely exclusively upon
the summaries of past users, we introduce a “mixing factor” α ∈
[0, 1] that determines the importance of the active user’s queries as
opposed to these of the past users in the computation of the pre-
dicted summary. In this way, we are able to predict queries that
“expand” queries previously submitted by the user, in terms of
adding slightly different clauses, parameters, or restructuring the
query. Intuitively, we expect the active user to behave in a simi-
lar way, by posing queries that cover adjacent or overlapping parts
of the database, in order to locate the information they are seek-
ing. We should note, however, that the framework will also predict
completely different queries as well, depending on the information
recorded in the query logs.

Using Spred
0 , the framework constructs queries that cover the

subset of the database with the highest predicted importance. In
turn, these queries are presented to the user as recommendations.
This step differs from the respective one in Web recommender sys-
tems since, in this case, the predicted summary is not a straight-
forward representation of queries. On the contrary, we need to de-
vise algorithms that, given the predicted summary, can synthesize
meaningful queries that will form the recommendation set.

Overall, our framework consists of three components: (a) Ses-
sion summaries: the construction of a session summary for each
user based on her past queries, (b) Recommendation seed compu-
tation: the computation of a predicted summary Spred

0 that serves as
the seed, and (c) Generation of query recommendations: the gener-
ation of queries based on Spred

0 . An interesting point is that compo-
nents (a) and (c) form a closed loop, going from queries to session
summaries and back. Again, this design choice follows the fact
that all user interaction with a relational database occurs through
declarative queries.

In what follows, we investigate a query fragments-based approach
to modeling the queries, and consequently the users.

4. FRAGMENT-BASED RECOMMENDATIONS
In order to generate recommendations, we follow a methodology

similar to the item-based collaborative filtering. This approach is
based on the pair-wise similarity among the items involved in the
recorded user sessions. Items that co-appear in many sessions are
considered similar to each other and these similarities are used in
order to generate recommendations for an active session. Contrary
to user-based collaborative filtering, this technique allows the cal-
culation of all similarities offline, thus accelerating the real-time
calculations and enabling fast recommendations’ generation.

In this paper, we represent each user session by the query frag-
ments (attributes, tables, joins and predicates) identified in the re-
spective queries. The objective is to identify fragments that co-
appear in several queries posed by different users, and use them
in the recommendation process. Thus, QueRIE first calculates of-
fline the pair-wise similarities of all query fragments recorded in
the query logs. These similarities are subsequently used to pre-
dict, in real time, the “ranking” (i.e. importance) of each fragment
with regards to the current user session. In turn, the highest ranked
query fragments are selected and used to retrieve queries that in-
clude them, which are used as recommendations. The proposed
algorithm is presented in more detail in what follows.

4.1 Session summaries.
The session summary vector Si for a user i consists of all the

query fragments φ of the user’s past queries. Let Qi represent the
set of queries posed by user i during a session and F represent the
set of all distinct query fragments recorded in the query logs. We
assume that the vector SQ represents a single query Q ∈ Qi. For

a given fragment φ ∈ F , we define SQ[φ] as a binary variable that
represents the presence or absence of φ in a query Q. Then Si[φ]
represents the importance of φ in session Si.

We propose two different weighting schemes for computing the
fragment weights in Si:

Binary scheme.

Si =
∨
Q∈Qi

SQ. (2)

In this scheme all participating fragments receive the same impor-
tance weight, regardless of whether they appear in many queries in
the session or only one.

Weighted scheme.

Si =
∑
Q∈Qi

SQ. (3)

In this approach fragments that appear more than once in a user
session will receive higher weight than others.

4.2 Recommendation seed computation.
Using the session summaries of the past users and a vector simi-

larity metric, we construct the (|F | × |F |) fragment-fragment ma-
trix that contains all similarities sim(ρ, φ), ρ, φ ∈ F . Intuitively,
and according to the item-based collaborative filtering approach,
the more the sessions that include both fragments, the more sim-
ilar these fragments are. The similarity metric employed depends
on the weighting scheme that was chosen in the previous step, thus
we employ Jaccard’s coefficient and cosine similarity for the binary
and weighted schemes respectively. We should note that all pair-
wise similarities are calculated and stored off-line. This results in a
very efficient execution of the algorithm in terms of computational
time.

The recommendation seed, modeled by Spred
0 , represents the es-

timated importance of each query fragment with regard to the ac-
tive user’s behavior S0. Similarly to the item-to-item collaborative
filtering approach of web recommender systems, we employ the
fragment-to-fragment similarities that are computed in the previ-
ous step:

Spred
0 [φ] =

∑
ρ∈R S0[ρ] ∗ sim(ρ, φ)∑

ρ∈R sim(ρ, φ)
, (4)

where R represents the set of top-k similar query fragments (k ≤
|F |). Please note that, even if we follow the binary approach, Spred

0

is not a binary vector.
As shown in Equation 1, we introduce a “mixing factor” α ∈

[0, 1] that allows us to include or exclude the fragments of the active
user session in the recommendation process. α is a parameter of the
QueRIE framework. When α = 0 we follow the classic item-based
collaborative filtering approach, whereas when α = 1 we follow a
content-based approach, in that only the fragments included in the
active user’s queries are taken into consideration. More discussion
on the effect of α is included in Section 3.

4.3 Generation of query recommendations.
The recommendation set will include queries that have been pre-

viously recorded in the query logs. In this way, we ensure that
the queries are understandable and executable, since they were au-
thored by humans. This decision allows for faster and more intu-
itive recommendations, as compared to the option of synthesizing
queries on the fly.

Once the predicted summary Spred
0 has been computed, the top-

n fragments Fn (i.e. the fragments that have received the higher
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weight) are selected. Then all past queries Q, Q ∈
⋃
iQi receive

a rank QR with respect to the top-n fragments:

QR(Q) =
|FQ ∩ Fn|
|FQ|

∗ |FQ ∩ Fn|
n

, (5)

where FQ represents the fragments of query Q. In other words,
the queries are ranked based on a normalized metric measuring the
number of common query fragments of each query Q to the top-n
list. Finally, the top-m ranked queries are used as the recommen-
dation set.

5. QUERY PREPROCESSING
In order to create the fragment-based query and session vectors,

we needed to preprocess the queries included in the query logs and
decompose them. This process consists of two steps, namely query
generalization and query parsing. In the first step, the queries are
generalized based on a set of rules, in order to be analyzed and
matched more efficiently. Then, they are parsed and converted into
a template, in preparation for comparison analysis.

5.1 Query Relaxation
Because of the plethora of slightly dissimilar queries existing in

the query logs, we decided to relax them in order to increase their
cardinality, and thus the probability of finding similarities between
different user sessions. Our intuition is that if two users query the
same table and attributes, using slightly different filtering condi-
tions, the algorithm should consider them as similar.

As part of this relaxing process, we follow a simplified version
of the framework proposed in [7]. In essence, all the WHERE
clauses are relaxed by converting the numerical data and string lit-
erals to generic string representations. For example, all strings are
replaced by STR, all hexadecimal numbers by HEXNUM and all
decimals by NUM. A similar generalization is also followed for
lists or ranges of numbers and strings. The mathematical and set
comparators are also replaced by string equivalents, for example
“=” is replaced by EQU and “≤” by COMPARE . In the current
implementation of QueRIE we do not treat different numeric inter-
vals as separate, however this is orthogonal to the framework and
part of our future work plans.

5.2 Query Parsing
Once the queries are generalized, they are converted into frag-

ments. The current implementation of QueRIE only supports SPJ
(SELECT, PROJECT, JOIN) queries, whereas if a query includes
sub-queries, these are dropped. However, this is an implementa-
tion detail orthogonal to the overall framework, which can be eas-
ily extended to support subqueries. Each of the SPJ fragments are
separated using regular expressions. The Start and End designated
keywords used to identify fragments are shown in Table 1.

Each distinct fragment is assigned a numerical identifier, used
in the query and session vector representation. For each new frag-
ment not previously recorded in the query log, QueRIE generates a
new identifier. Such updates occur in real-time, as the current user
posts a query including new fragments. In the case of the WHERE
clause, only the joins and the filter conditions are stored. Because
of the generalization, the fragments in the WHERE clause are not
differentiated based on their actual values, rather based on the at-
tributes used for filtering. For example, s.x ≥ 0.2 and s.x ≥ 0.8
will be represented by the same fragments. In addition we do not
differentiate (i.e. handle differently) between joins and filters, as
we anticipate the similarity calculation would generate proper re-
sults regardless of the type of WHERE condition.

Table 1: Parsing keywords
Fragment name Start keyword End keyword
Attribute string SELECT FROM

Relation string FROM
WHERE, GROUP BY,
ORDER BY, end of
query

Where string WHERE GROUP BY, ORDER
BY, end of query

Group By string GROUP BY ORDER BY, HAV-
ING, end of query

Having string HAVING ORDER BY, end of
query

Table 2: Data Set Statistics
# Sessions 180
# Distinct queries 1400
# Distinct query fragments 755
# Non-zero pair-wise fragment similarities 30436

6. EXPERIMENTAL EVALUATION
The framework proposed in this paper has been implemented

in a prototype that will be demonstrated in [1]. In this section
we present preliminary experimental results using real user traces.
More specifically, we evaluate several parameters of the frame-
work, namely the value of items used for the generation of recom-
mendations n, the effect of the mixing factor α, and the employed
weighted schemes.

6.1 Data Set.
We evaluated our framework using traces of the Sky Server database3.

The traces contain queries posed to the database between the years
2006 and 2008. The query logs are anonymous, thus we used the
methods described in [12] to clean and separate the query logs in
sessions. For this reason, each session is considered as a different
user. The characteristics of the data set and the queries are summa-
rized in Table 2. Two real user sessions including a total of eight
queries is included in [1].

6.2 Methodology.
In order to measure the prediction accuracy of QueRIE, we use

the holdout set methodology [8]. The data is divided into two dis-
joint sets, the training set and the test set. The pair-wise fragment
similarity is computed against the training set. Each user session in
the test set is divided in two parts. One part is treated as the active
user’s queries, while the second part is treated as unseen (i.e. fu-
ture) queries. Subsequently, using the active user’s queries from the
test set and the pre-calculated fragment-based similarities, QueRIE
generates a set of query recommendations. We compare the rec-
ommended queries with the unseen queries from the test set and
calculate the precision, recall and F-score for each session. This is
performed by calculating these measures for each pair of queries,
as shown in Equations 6, 7 and 8 and keeping the maximum value,
assuming that the end user will also select only one out of the m
recommended queries each time.

Precision =
|Fr ∩ Fu|
|Fr|

(6)

Recall =
|Fr ∩ Fu|
|Fu|

(7)

3We used the BestDR6 version.
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Table 3: Default parameter values
Top-k 5
Top-n 5
Top-m 5
α 0.5
# weighting scheme weighted (cosine)
Training set 160 sessions
Test set 20 sessions

F − Score = 2 ∗ Precision ∗Recall
Precision+Recall

(8)

In the formulas above, Fr and Fu represent the fragments of the
recommended and unseen queries respectively. In the experiments
that follow, we report the average precision and recall over the 160
sessions of the data set.

We performed several experiments evaluating the performance
of the framework, and the effect of the various parameters of the
algorithm. Due to space constraints, in this paper we present the
most important findings in terms of the number of fragments n se-
lected from Spred

0 to calculate the query rankQR, the mixing factor
α, and the weighting scheme. Table 3 shows the default values kept
constant for the remaining parameters in each case.

6.3 Experimental Results
Evaluation of the Top-n parameter. The recommended queries
in QueRIE are identified, by first selecting the top-n fragments of
the predicted summary Spred

0 and using them to rank all previous
queries using the QR formula. Figures 1 and 2 show the average
precision and F-score for various top-n values (n ∈ {3, 5, 10, 50}).
We notice that the accuracy of the recommendations increases, as
expected, with the value of n. However, for very large values of n,
the accuracy decreases again. This is completely justifiable, since
when n is a very large number, the notion of “most similar” frag-
ments does no longer hold and barely similar items are included in
the recommendation process. QueRIE achieves the higher preci-
sions for n = 10 and n = 5 (0.8 and 0.75 respectively), whereas
F-score is the same for both values (0.76 and 0.75 respectively).
Given the small difference in terms of accuracy and the fact that
the lower the number of fragments n, the faster the real-time calcu-
lations, we adopt n = 5 as the default value for the framework.
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Figure 1: Average precision for various top-n values

Evaluation of the mixing factor α. In this instantiation of the
QueRIE framework, the mixing factor α is introduced before the
selection of the top-n fragments. Since including only the current
user’s session (α = 1) is a content-based approach not employ-
ing the collective intelligence recorded in the query logs, we only
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Figure 2: Average f-score for various top-n values

evaluate the impact of including (α = 0.5), or excluding (α = 0)
the fragments recorded in the active user’s session. As expected
intuitively, the accuracy of the recommendations is enhanced sig-
nificantly when the active user’s fragments are incorporated in the
recommendation process. More specifically, precision and F-score
are 0.76 and 0.74 respectively for α = 0.5, whereas they drop to
0.48 and 0.43 when α = 0, as shown in Figures 3 and 4. This ver-
ifies our initial claim that database recommender systems are very
different in nature from their web counterparts. As pointed out in
Section 3, one significant difference is that, in the case of SQL
queries we want to expand or enhance the queries that were previ-
ously submitted by the user. The user benefits from this addition,
since probably most users are interested in posting queries similar
to the ones they have already posted during the same session.
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Figure 3: Average precision for different α values
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Figure 4: Average f-score for different α values

Evaluation of the weighting scheme. Depending on the weight-
ing scheme selected, the representation of the query and session
vectors, and consequently the metrics used to calculate the simi-
larities between fragments, differs. In this instantiation we have
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introduced the binary and the weighted schemes and employ the
Jaccard coefficient and the cosine similarity metric respectively. In
this set of experiments, we evaluate the effect of the representation.
Intuitively, the binary representation is much more simplistic and
is expected to provide less accurate results, since valuable informa-
tion with regards to the importance of each fragment in a session
is missing. The results, shown in Figures 5, 6 verify this intuition,
however we notice that the difference is very small, with a preci-
sion of 0.74 and 0.79 for the binary and weighted schemes respec-
tively, and an F-score of 0.69 and 0.74 respectively. For the specific
dataset both schemes performed similarly in terms of real-time per-
formance. Thus we adopt the weighted scheme as the default value,
since it resulted in slightly better prediction accuracy.
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Figure 5: Average precision for different weighting schemes
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Figure 6: Average f-score for different weighting schemes

7. CONCLUSIONS
In this paper we presented a fragment-based instantiation of QueRIE,

a recommender system that assists users when interacting with large
database systems. QueRIE enables users to query a relational database,
while generating real-time personalized query recommendations
for them. We also performed an experimental evaluation of various
parameters of the framework using real traces from the SkyServer
database.

Overall, we showed that the precision of the recommendations
is close to 80% when the active user’s session is included in the
prediction process, we employ the weighted scheme, and top-n ∈
{5, 10} (with all other parameters set to default). This shows that
QueRIE is very effective in generating useful recommendations to
the end users of relational database systems. In terms of perfor-
mance, QueRIE’s fragment-based recommendation engine is able
to generate real-time recommendations in quite fast (an average of
25 sec for each session in the test set).

We are currently working on evaluating the remaining parame-
ters of the problem. We also plan to compare the fragment-based

instantiation with the tuple-based one, proposed in our previous
work.

8. ADDITIONAL AUTHORS

9. REFERENCES
[1] J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy,

S. Mittal, D. On, N. Polyzotis, and J. S. V. Varman. SQL
QueRIE Recommendations (demo paper). In Proc. of the
36th International Conference on Very Large Data Bases
(VLDB 2010), 2010.

[2] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis.
Collaborative filtering for interactive database exploration. In
Proc. of the 21st International Conference on Scientific and
Statistical Database Management (SSDBM ’09), 2009.

[3] A. Giacometti, P. Marcel, and E. Negre. Recommending
Multidimensional Queries. In Proc. of the 11th International
Conference on Data Warehousing and Knowledge Discovery
(DaWaK’09), 2009.

[4] A. Giacometti, P. Marcel, E. Negre, and A. Soulet. Query
recommendations for olap discovery driven analysis. Intl.
Journal on Data Warehousing and Mining (IJDWM) (to
appear).

[5] A. Giacometti, P. Marcel, E. Negre, and A. Soulet. Query
recommendations for olap discovery driven analysis. In
Proc. of the ACM 12th International Workshop on Data
Warehousing and OLAP (DOLAP’09), 2009.

[6] N. Khoussainova, M. Balazinska, W. Gatterbauer, Y. Kwon,
and D. Suciu. A case for a collaborative query management
system. In Proc. of the 4th Biennal Conference on Innovative
Data Systems Research (CIDR 2009), 2009.

[7] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica. Relaxing
join and selection queries. In Proc. of the 33nd international
conference on Very large data bases (VLDB ’06), pages
199–210, 2006.

[8] B. Liu. Web Data Mining: Exploring Hyperlinks, Contents
and Usage Data. Springer, 2nd edition, 2007.

[9] S. Mittal, J. S. V. Varman, G. Chatzopoulou, M. Eirinaki, and
N. Polyzotis. QueRIE: A Recommender System supporting
Interactive Database Exploration. In 2009 edition of the
IEEE International Conference on Data Mining series
(ICDM’09) - to appear in ICDM 2010 proceedings because
of editor’s error, 2009.

[10] B. Mobasher. The Adaptive Web: Methods and Strategies of
Web Personalization, volume 4321 of LNCS, chapter Data
Mining for Personalization, pages 90–135. Springer,
Berlin-Heidelberg, 2007.

[11] A. Simitsis, G. Koutrika, and Y. Ioannidis. Precis: From
unstructured keywords as queries to structured databases as
answers. VLDB Journal, 17(1):117–149, 2008.

[12] V. Singh, J. Gray, A. Thakar, A. S. Szalay, J. Raddick,
B. Boroski, S. Lebedeva, and B. Yanny. Skyserver traffic
report - the first five years. Microsoft Research, Technical
Report MSR TR-2006-190, 2006.

[13] K. Stefanidis, M. Drosou, and E. Pitoura. ”You May Also
Like” Results in Relational Databases. In 3rd International
Workshop on Personalized Access, Profile Management, and
Context Awareness in Databases (PersDB 2009), 2009.

[14] X. Yang, C. M. Procopiuc, and D. Srivastava.
Recommending join queries via query log analysis. In 25th
International Conference on Data Engineering (ICDE 2009),
pages 964–975, 2009.

PersDB 2010                                                                                                                                                                Page 28 of 40.



Re-ranking Web Service Search Results
Under Diverse User Preferences

Dimitrios Skoutas
L3S Research Center

Hanover, Germany

skoutas@L3S.de

Mohammad Alrifai
L3S Research Center

Hanover, Germany

alrifai@L3S.de

Wolfgang Nejdl
L3S Research Center

Hanover, Germany

nejdl@L3S.de

ABSTRACT
Web service discovery aims at finding available services that
match a given service description. This involves mainly the
matchmaking of the functional parameters of the services,
whereas non-functional attributes can also be considered
and aggregated in the matching score of a candidate ser-
vice as additional criteria for ranking the results. In this
paper, we address the problem of re-ranking discovered ser-
vices that include nominal attributes in their descriptions in
order to satisfy users with diverse preferences. We present
an approach to diversify the search results combining the
degree of match on functional parameters with a method to
achieve good coverage with respect to the values of nominal
attributes. An evaluation on a publicly available dataset of
Semantic Web services is also presented.

1. INTRODUCTION
Web service discovery aims at finding services whose de-

scription matches that of a desired service. The descrip-
tion of a service contains a functional and a non-functional
part. The former provides information about what the ser-
vice does and how it works. This is basically expressed in
terms of the required inputs and generated outputs, as well
as any pre-conditions that need to be satisfied in order for
the service to be executed and any effects that result from
its execution. Several methods exist for the matchmaking of
functional service parameters. More traditional techniques
include the application of string similarity measures on the
parameter names, whereas, in the case of services in the Se-
mantic Web, they mainly rely on logic-based match between
concepts in an ontology that annotate service parameters;
moreover, combinations thereof have also been proposed.
The result is typically a score indicating the degree of match
between the service request and the service advertisement,
which is used to rank the discovered services.

The non-functional part of a service description may in-
clude information about the service provider and quality
of service (QoS) parameters, such as price, response time,

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
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or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘10, September 13-17, 2010, Singapore
Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

availability or reputation. These attributes can also be used
during the service discovery and selection process as addi-
tional criteria to improve the ranking of the match results.
A typical case is to use such information to resolve ties. For
example, if two services have the same functional degree of
match, then the one with the lowest cost or response time is
preferred. Alternatively, an aggregate degree of match can
be calculated, possibly using different weights on the various
parameters. However, such solutions focus on numerical at-
tributes, for which a total ordering exists, since these can be
more easily handled and incorporated in the matchmaker.
For example, it can be rather safely assumed that all users
would prefer services that have cost and response time as low
as possible or availability and reputation as high as possible.

However, some of these attributes contained in the ser-
vice descriptions are nominal attributes, which can not be
seamlessly incorporated in the matchmaker, since for them
it is not possible to specify an ordering. On the contrary,
different users, or even the same user in different contexts,
may have different preferences regarding the values of these
attributes. Typical examples include the provider of a ser-
vice, the communication or security protocols a service may
support, accepted file formats or different algorithms the ser-
vice may employ to solve a specific problem. Matching such
types of attributes is not straightforward, since the match
depends on the user preferences for the values of these at-
tributes. However, gathering explicit or implicit knowledge
about the preferences of users on the Web is often very dif-
ficult or even impossible.

In this paper, we present a method for the discovery and
selection of Web services focusing on attributes for which an
ordering of the values is not defined, but instead it depends
on the preferences of the user. The main idea underlying our
approach is to increase the diversity in the search results in
order, consequently, to increase the probability of satisfying
users with different preferences. Diversifying search results
has already been investigated in the context of document
search on the Web [9, 6, 22]. Proposed solutions rely es-
sentially on introducing more dissimilar documents in the
result set, finding an appropriate balance between the rel-
evance of the results and their dissimilarity. Our approach
follows the same direction, but it proposes a different diver-
sification objective that emphasizes on selecting represen-
tative results that provide good coverage of the whole list
of matches. Moreover, Web service descriptions are com-
plex objects; hence, simpler models, such as a bag-of-words
model, which often work well for documents, are not appro-
priate for Web services search.
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The main goal and advantage of this approach is to allow
for personalized results in a flexible way and minimizing the
burden to the user. One possibility for personalized search
would be to request each user to create a profile with his/her
preferences. However, this is not always desired; moreover,
these preferences may change over time or may depend on a
particular information need (e.g., a preference for a service
provider). Alternatively, the system could ask the user to
indicate his/her preferences at query time. However, this is
cumbersome, and in addition, the user may not be aware
in advance of the possible options. Instead, the described
approach constitutes a two-step process to personalizing the
results. First, starting from a potentially underspecified re-
quest, the system retrieves a diverse set of results aiming at
covering the available options as much as possible. Then,
once the user indicates a preferred result, a nearest neigh-
bor query can be issued to retrieve more similar services.
Hence, the user preferences are indicated implicitly, dynam-
ically, and with minimum overhead.

In summary, our main contributions are listed below.

• We propose a method for re-ranking Web service search
results to satisfy users with diverse preferences.

• We propose a diversification objective that favors rep-
resentative services to achieve good coverage of the
result set.

• We show how the diversification objective can be com-
puted based on the different types of attributes in the
service descriptions.

• We present an experimental evaluation of our approach
on a collection of Semantic Web services.

The rest of the paper is structured as follows. Section 2
presents related work. Section 3 introduces our method for
diversifying Web service search results. Section 4 presents
our experimental evaluation. Section 5 concludes the paper.

2. RELATED WORK
Service discovery. Several approaches have been pro-

posed for matching a Web service request with available ser-
vice descriptions. These approaches can be categorized in
two main families. The first -more traditional ones, based
on WSDL and UDDI standards- follow IR-style search, per-
forming a keyword-based search on the textual descriptions
of the services or comparing the parameter names in the
service descriptions using some standard string similarity
measure [8]. The second family of approaches considers ser-
vices in the Semantic Web, where service parameters are
annotated using concepts from domain ontologies. Then,
the matchmaking between service parameters is transformed
to logic-based match between the corresponding ontology
concepts, i.e., inferring, by means of an ontology reasoner,
whether the denoted ontology classes are equivalent, super-
class or subclass of each other, or disjoint [17, 16, 7, 20, 4].
To combine the advantages of both categories and to address
their limitations, hybrid approaches have also been proposed
and implemented. These compute aggregate scores based
on both logic-based matching and string-based parameter
similarities [14, 12]. Finally, ranking of services based on
dominance relationships computed over multiple matching
criteria has been proposed in [19].

In addition, there exist some approaches that involve the
user in the service discovery process. The approach pre-
sented in [3] employs ontologies and user profiles, and uses
techniques such as query expansion or relaxation to better
satisfy user requests. The work in [23] focuses on QoS-based
Web service discovery, proposing a reputation-enhanced model.
Reputation scores are assigned to the services by a reputa-
tion manager based on user feedback regarding their perfor-
mance. Then, a discovery agent uses the reputation scores
for service matching, ranking and selection. User prefer-
ences, expressed in the form of soft constraints, are applied
for Web service selection in [13], focusing on the optimiza-
tion of preference queries. Utility functions are used in [15]
to model service configurations and associated user prefer-
ences for optimal service selection. In [8], different types of
similarity for service parameters are combined using a linear
function, with weights being assigned manually. It is men-
tioned that the weights can be learned from user feedback,
but this is not addressed.

Our approach defers from the above works mainly in two
aspects. First, the aforementioned approaches deal with nu-
merical QoS parameters, for which a global and total order-
ing exists; hence, they can more easily be incorporated to
and combined with other criteria for service selection and
ranking. Instead, we focus in this paper on QoS parameters
with non-numeric values (e.g., text or categorical data), for
which no ordering can be defined. Second, the approaches
above assume that a user profile, preferences or feedback is
available for the service requestor. However, collecting such
implicit or explicit information for Web users at large is not
practical, if not infeasible. Nevertheless, the fact that dif-
ferent users have different preferences and needs still needs
to be taken into account. Our approach addresses this issue
by re-ranking the match results to increase their diversity,
and, hence, to reduce the risk that for a given user there is
not any result that meets his/her preferences.

Diversification of Web search results. Recently, the
problem of diversifying Web search results has received a
lot of attentions as a means to satisfy users on the Web
with diverse preferences and information needs. The prob-
lem is typically formulated as optimizing an objective func-
tion that specifies a trade-off between the relevance of the
returned documents with respect to the given query and
the dissimilarity among these documents [9]. Essentially,
this is similar to the idea of the Maximal Marginal Rele-
vance criterion, which has been proposed in [6] for re-ranking
the query results and it is also applied often for document
summarization. It combines query relevance and novelty of
information, by measuring the dissimilarity of a search re-
sult with respect to the ones before it in the ranked result
list. In a similar direction, [22] addresses the problem of re-
ranking search results adopting the idea of Modern Portfo-
lio Theory from the field of finance. It considers documents
not individually but in combination with other documents,
formulating the problem as a portfolio selection problem.
Results are then selected to maximize the relevance, while
minimizing the variance, where the notion of variance cor-
responds, inversely, to that of diversity. The problem of
diversifying query results from a database has been consid-
ered in [21]. However, that approach assumes that there
is a known ordering of the user preferences with respect to
the involved attributes. For example, for a query for “cars”,
the returned tuples should be first diversified with respect
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to the car model, then to price and then to color. More-
over, we propose and apply a diversification objective that
targets the selection of more representative results in order
to achieve better coverage.

The main difference of our approach is that it deals with
Web service search results rather than documents. Service
descriptions are complex objects, comprising parameters of
different types (functional and non-functional, numeric and
non-numeric) that need to be handled accordingly.

3. DIVERSIFYING DISCOVERED SERVICES

3.1 Diversification Objective
Assume a service request R and a repository containing

a set of service advertisements S. To discover services that
match the request R, a matchmaker is invoked, which ap-
plies one or more matching criteria to calculate a degree of
match (dom) between R and each available service S ∈ S
(see Section 2 for more details). The core of this operation
is to match the input and output parameters in the two
descriptions, although pre-conditions and effects or other
parameters can also be taken into account. Then, the found
matches are sorted according to their degree of match and
the ranked list (or the top-k matches) is returned to the user.
However, this list may often contain services that are very
similar to each other, hence being biased toward the needs
and preferences of only a subset of users. For this reason,
the goal is to re-rank the list of results in order to include
services that are still relevant to the request but less similar
to each other.

Let sim : S × S → [0, 1] be a function that computes the
similarity between two service descriptions. Notice that the
two functions, dom and sim, serve very different purposes.
Function dom checks, for example, whether the outputs of
the advertised service “fulfill” the outputs of the request,
whereas function sim checks, for example, whether two ser-
vices have the same provider or whether they support the
same protocols or file formats. Then, the goal is to re-rank
the discovered services so that the top-k results have a de-
gree of match to the query that is as high as possible, while
at the same time being as dissimilar to each other as possi-
ble. However, these two objectives are often contradictory,
since a new service that is introduced to make the result list
more diverse may have lower degree of match than the one
it replaces. Therefore, these two factors need to be balanced
using an objective function.

A diversification objective, referred to as MaxMin, has
been proposed in [9] for diversifying search results of key-
word queries on the Web. Applying this objective would
return a set of k services that maximize the minimum de-
gree of match and the minimum dissimilarity in the set.
Formally, it selects the set of top-k results that maximizes
the function:

f(Sk) = λ · min
S∈Sk

dom(R, S) + min
S1,S2∈Sk

dist(S1, S2) (1)

where distance (i.e., dissimilarity) is measured by dist(S1, S2)
= 1 − sim(S1, S2) and λ > 0 is a parameter that specifies
the relative emphasis between the two factors.

The drawback of this diversification objective is that it
measures the degree of match and the dissimilarity only
within each candidate top-k list of results, ignoring the re-
maining ones, i.e., the ones below rank k. This has the side

effect that it is biased towards more extreme rather than
more representative cases. In other words, it might give pri-
ority to outliers. Assume, for example, a list of matches
containing two services that have a high degree of match
to the request and are very dissimilar to each other with
respect to other characteristics. Then, this objective would
favor these services for the top 2 results. However, these are
not necessarily representative of the rest of the matches.

To address this issue, we propose a different diversifica-
tion objective that aims also at providing good coverage of
the whole result list, selecting services that are good rep-
resentatives of the whole result set (and, consequently, also
diverse with respect to each other). The main idea is that,
in order to achieve good coverage, for each identified match
there should be at least one service in the top-k list that
is sufficiently similar to it. Moreover, since this apparently
can not be achieved for all the services in the result list, pri-
ority should be given to those services with higher degree of
match to the request. That is, if a service has a very high
degree of match to the query, it should be well represented
in the top-k results, either by including itself or by including
one that is very similar to it. Notice however that this does
not mean necessarily a higher representation, in terms of
number of services, in the output set for the more relevant
services. Indeed, if the services with high degrees of match
happen to be very similar to each other, then they can be
adequately covered with just a few representatives, or even
a single one. Hence, this method is robust with respect to
the problem of diminishing returns, as pointed out in [1],
which leads to decreased user satisfaction.

We now formalize this diversification objective. Given a
subset Sk of the query results, and a service S, we define
the coverage error of S with respect to Sk as the minimum
distance between S and any of the services in Sk, i.e.:

cerr(S,Sk) = min
S′∈Sk

dist(S, S′) (2)

Lower values mean that there exists a selected service that
is highly similar to the considered one. Hence, the quality
of Sk is characterized by its maximum error in representing
the matched services for the given request. Moreover, the
coverage error for a service should be weighted according
to its degree of match. If a service has a high degree of
match to the request but is poorly covered, i.e., it is neither
included in the top-k results nor there exists another suffi-
ciently similar service in the top-k list, this should incur a
higher penalty. Hence, this objective selects the subset of
query results that minimizes the following function:

f(Sk) = max
S∈S

{dom(R, S)λ × cerr(S,Sk)} (3)

where the parameter λ determines, as previously, the trade-
off between the two factors, namely the degree of match and
the diversity of the results.

We refer to this diversification objective as MaxCov. No-
tice that the score of the set Sk in Equation 3 depends on all
the matched services for the query (max is computed over
all the services in S), while in Equation 1 it depends only
on the top-k subset (min is computed over Sk).

Example. We present a simple example to illustrate the
difference between the MaxMin and the MaxCov objec-
tives. Assume a service request R and a set of 6 relevant
services S1, S2, . . . , S6, with distances from each other as
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Figure 1: Illustrative example showing the differ-
ence between the MaxMin and MaxCov objectives

depicted in Figure 1. Assume also that we want to select as
answer to this request a subset comprising k = 2 of these
services. Disregarding the factor of the degree of match, i.e.,
assuming that all these services equally match the request,
the MaxMin objective, which is driven by the pair-wise dis-
tances of the objects within the result set, selects as output
the set M1 = {S1, S6}. These are indeed the most dissim-
ilar services. On the other hand, the MaxCov objective,
which considers the distances of the selected objects to the
whole result set, selects as output the subset M2 = {S2, S5}.
These can indeed be considered as better representatives.

3.2 Computing DoM and Similarity
In the following we discuss how to compute the degree of

match dom between a service request R and a set of available
service descriptions S and the similarity between two service
descriptions S1 and S2.

As presented in Section 2, there exists several methods for
matching a service request R with a service advertisement S.
This operation is based on matching functional service pa-
rameters, typically inputs and outputs. Recently a lot of ef-
forts have focused on the discovery of services in the Seman-
tic Web and three main languages have been proposed to
semantically mark up service descriptions, namely WSDL-S
[2], OWL-S [5] and WSMO [11]. The main idea underlying
all these approaches is to associate service parameters with
classes in a domain ontology O. This allows both the ser-
vice provider and the user searching for a service to describe
the intended meaning of the parameters in an unambiguous
way, which facilitates the automation of the discovery pro-
cess and increases the precision w.r.t. plain keyword search,
where ambiguity, synonyms and homonyms need to be taken
into account. In this setting, a reasoner is employed to infer
the relationship between the corresponding ontology classes
(i.e., equivalence, subsumption, disjointness) and based on
that the type of match is determined accordingly (e.g., ex-
act, plug-in, subsumes, subsumed-by or fail) [17].

For simplicity, we consider here only input and output
parameters. A service advertisement S matches a service
request R if (a) the outputs requested by R are matched
by those offered by S and (b) the inputs required by S are
provided in R. To quantify the degree of match, a method
that considers the “proximity” of classes in the ontology can
be applied [20, 18]. More specifically, the degree of match
between two parameters can be measured by means of the
common super classes of the corresponding classes C1 and
C2 in the ontology O, as follows:

dom(C1, C2) =
|{C | C v C1 ∧ C v C2}|

max(|{C | C v C1}|, |{C | C v C2}|) (4)

Then, the degree of match between the request and the ad-
vertisement is computed by aggregating the degrees of match
of individual parameters. This can be extended to other pa-
rameters, apart from inputs and outputs.

As a metric for computing the similarity between two ser-

Algorithm 1 Approximate algorithm for MaxCov

Input: : A service request R, the available service descriptions
S, an integer k

Output: : The re-ranked list Sk of top-k matches
1: d = arg max

S∈S
dom(R, S)

2: Sk = {d}
3: for i = 1 to k − 1 do
4: S = arg max

S∈S
{dom(R, S)λ × cerr(S,Sk)}

5: Sk = Sk ∪ {S}
6: end for

7: return Sk

vice descriptions S1 and S2 we use the Jaccard similarity,
which is also commonly used in information retrieval for
measuring the similarity between two documents.

The Jaccard similarity (also known as the Jaccard Coef-
ficient) between two sample sets A and B is defined as the
size of the intersection divided by the size of the union of
the two sample sets, i.e.:

sim(A, B) =
|A ∩B|
|A ∪B| (5)

For computing the similarity between two services, we
compare the non-functional part of the descriptions, and
in particular nominal attributes, e.g. the set of supported
protocols for transport, security, transactions etc.

3.3 Diversification Algorithm
The MaxMin diversification objective presented in Sec-

tion 3.1 corresponds to the vertex weighted version of the
Minimum k-Center problem, which is known to be NP-
hard [10] (for metric distances). Notice that the same also
holds for the MaxMin objective specified in Equation 1
which was proposed in [9]. Consequently, one needs to re-
sort to greedy approximation algorithms. For the MaxCov
objective, a 2-approximation greedy algorithm can be de-
rived from the Minimum k-Center problem. According to
that, the re-ranking of services is done as specified in Algo-
rithm 1. The algorithm works as follows. First, the service
with the highest degree of match is selected. Then, the algo-
rithm proceeds in k−1 iterations, selecting in each iteration
the service with the maximum weighted coverage error with
respect to those selected so far.

4. EXPERIMENTAL EVALUATION
In this section we describe our experimental evaluation

of the proposed method for diversifying the results of Web
service search.

For our experiments, we have used the OWLS-TC v2 col-
lection1. This is a publicly available collection of Semantic
Web services described in OWL-S and it is often used to
evaluate and compare different matchmaking algorithms. It
comprises 1007 services retrieved from public UDDI reposi-
tories. These services have then been described in OWL-S,
using ontologies from 7 different domains to semantically
annotate service input and output parameters. This col-
lection provides also a set of 28 service requests and their
corresponding relevance sets identified manually, in order to
allow different matchmakers to compare the results based
on the standard recall and precision measures. However,

1http://projects.semwebcentral.org/projects/owls-tc/
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Table 1: Non-Functional Attributes

Attribute Possible Values

Message
Encoding

XML

SOAP 1.1

SOAP 1.2

WS-Addressing

Security
Protocol

WS-Security SOAPMessageSecurity 1.0

WS-Security SOAPMessageSecurity 1.1

WS-Security UsernameTokenProfile 1.0

WS-Security UsernameTokenProfile 1.1

WS-Security X.509 Certificate 1.0

WS-Security X.509 Certificate 1.1

WS-Security X.509 Kerperos 1.0

WS-Security X.509 Kerperos 1.1

WS-SecureConversationLanguage

WS-TrustLanguage

WS-ReliableMesseging 1.0

WS-ReliableMesseging 1.1

Transport
Binding
Protocol

HTTP 1.1

SOAP 1.1 HTTP Binding

SOAP 1.2 HTTP Binding

Transaction
Protocol

WS-Coordination 1.0

WS-Coordination 1.1

WS-Coordination 1.2

WS-AtomicTransaction 1.0

WS-AtomicTransaction 1.1

WS-AtomicTransaction 1.2

WS-BusinessActivity 1.0

WS-BusinessActivity 1.1

WS-BusinessActivity 1.2

this benchmark is not appropriate for our purpose, since it
only indicates services that are relevant to the request w.r.t.
input and output parameters without any consideration on
the diversity of the results. Therefore, we have used the
provided queries for our experiments but we do not conduct
any evaluation in terms of recall and precision w.r.t. the
provided relevant sets; instead, we want to measure the im-
provement in terms of the coverage error, as shown below.
Moreover, the service descriptions included in this collection
contain information only about input and output parame-
ters, since these are the typical criteria taken into considera-
tion by existing matchmakers, as described in Section 2. To
overcome this limitation, we have extended the description
of each Web service in the dataset with a vector of 4 non-
functional attributes: Message Encoding Schema, Security
Protocol, Transport Binding Protocol and Transaction

Protocol. For each one of these attributes, we have identi-
fied a set of possible values, as shown in Table 1. Then, we
have randomly assigned to each Web service in the collection
a value for each of these attributes. For the implementation,
we have used the OWL-S API2 for parsing the OWL-S de-
scriptions of the services in the collection.

In this evaluation, we wanted to measure how diverse are
the results obtained by our MaxCov diversification method
as described in Algorithm 1. As a measure for diversification
we computed the objective value based on the coverage error
(as defined in Equation 3) of the results set. Notice that
lower values indicate lower coverage error and higher diver-

2http://www.mindswap.org/2004/owl-s/api/

Figure 2: Comparison of Diversity Degree @ k = 10

Figure 3: Comparison of Diversity Degree @ k = 20

sity in the results. For this purpose, we first computed the
degree of match dom between each service in the collection
and each query. The set of candidate matches for a certain
query R consists of all the services that have a non-zero de-
gree of match with R. In this experiment, we considered
only queries that have at least 100 candidate matches, since
considering coverage and diversity is less important when
dealing with queries that have a relatively small result set.
We then applied the following two methods for selecting the
top-k results of each query:

1. Top-K: this is the “default” ranking, i.e., considering
only the degree of match without taking into account
any non-functional attributes and without applying
any diversification method. The set of candidate matches
are sorted by the dom value in descending order and
the top-k services on the list are returned.

2. MaxCov: these are the top-k results returned by the
method that applies Algorithm 1 for minimizing the
objective function given in 3.

The degree of match between the query and the services
was computed based on the input and output parameters
as described in Section 3.2, while the similarity between the
services was computed on the 4 aforementioned attributes,
using Jaccard similarity, also described in Section 3.2.
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In Figure 2 and Figure 3 we compare the objective value
defined by Equation 3 of the selected top-k services for each
query with k = 10 and k = 20, respectively. As discussed
earlier in Section 3.1, the parameter λ is used to determine
the trade-off between the degree of match and the diversity
of the results. Note that in the objective function defined in
Equation 3, λ is used as an exponent of the dom value and
that the dom value is between 0 and 1. Therefore, the lower
the value of λ, the higher the weight of the dom value in the
objective function. In our experiments, we set the value of
λ to 0.5, which gives the dom value more weight than the
diversity. The results in Figure 2 and Figure 3 show that
the objective value of the MaxCov method is lower than the
objective value of the Top-K method for all queries. This
indicates that the results obtained by the MaxCov method
provide better coverage than those obtained by the other
methods w.r.t. the whole set of candidate matches. We
also observe that with k = 20 the average objective value
of both methods is lower than with k = 10. The reason for
this behavior is that the increase in the number of selected
services increases the probability that more relevant services
are represented by the top-k services, and hence lowering the
coverage error, which in turn leads to a lower value of the
objective function.

5. CONCLUSIONS
We have proposed a method to diversify Web service search

results in order to deal with users on the Web that have
different, but unknown, preferences. Our method focuses
specifically on nominal attributes in service descriptions, for
which a total ordering can not be defined, since it is de-
pendent on the preferences of each particular user. Such
attributes can not be easily incorporated in the matchmak-
ing process, when computing a degree of match to the query.
Instead, our approach relies on including diverse and repre-
sentative services in the results to satisfy different users. We
have presented a diversification method and we have evalu-
ated the results on a collection of Semantic Web services.

Directions for future work include mainly the evaluation
of our method using larger collections of services and, es-
pecially, service descriptions with a larger number of at-
tributes. We would also like to conduct a user study to ex-
amine how user satisfaction increases when providing more
diversity in the discovered services.
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ABSTRACT 
The research described in this paper focuses on adapting generic 
Hypermedia Environments with the use of Semantic Web 
technologies. The use of machine understandable semantics in 
Web applications is increasing significantly, ranging from 
semantic search queries to personalized product 
recommendations. Given the significance of human factors in 
Web structures’ transformations, we propose an Ontological Web 
Personalization and Adaptation Mechanism based on users’ 
cognitive parameters. This mechanism consists of a number of 
interrelated components; modeling users based on their cognitive 
parameters and providing content adaptation based on semantics. 
An RDFa schema has been designed that enables standard 
annotations in any XHTML Web-page, thus making structured 
data available for the adaptation process, but also for any service 
or tool that supports the same standard. Our work has been 
positively evaluated using an existing commercial Web-site that 
was filtered through the adaptation mechanism based on users’ 
cognitive parameters. 

1. INTRODUCTION 
Advances in Web-based oriented technologies and services are 
taking place with a considerable speed around the world. As 
communications and IT usage become an integral part of many 
people's lives and the available products and services become 
more varied and sophisticated, users expect to be able to 
personalize a service to meet their individual needs and 
preferences.  

Furthermore, the plethora of information and services as well as 
the complicated nature of most Web structures intensify the 
orientation difficulties, as users often lose sight of their original 
goal, look for stimulating rather than informative material, or 
even use the navigational features unwisely. As the eServices 
sector is rapidly evolving, the need for such Web structures that 
satisfy the heterogeneous needs of its users is becoming more and 
more evident [1]. 

In recent years, there has been a rapid growth in research and 
experiments that work on personalizing computer-mediated 
platforms, according to user needs and indeed, the challenges 
ranging in this area are not few. A challenge is to design a 
comprehensive and expressive user model composed of cognitive 
parameters that can be used in Web systems. Based on that user 

model, engineers will design and develop personalized and 
adaptive interfaces and software. This will enable easy access to 
any content while being sufficiently flexible to handle changes in 
users’ context, perception and available resources, optimizing the 
content delivery while increasing their comprehension capabilities 
and satisfaction. 

At a more technical level, a challenge is to study and design 
structure of meta-data (semantics) coming from the providers’ 
side, aiming to construct a Web-based personalization mechanism 
that will serve as an automatic filter adapting the received 
hypertext/hypermedia content based on the comprehensive user 
profile. The final system will provide a complete adaptation and 
personalization Web-based solution to users satisfying their 
individual needs and preferences. 

Henceforth, this paper describes a Personalization and Adaptation 
mechanism that consists of three main sections; i) description of 
an Ontological Cognitive User Model (OCUM) for modeling 
users’ unique cognitive parameters that could be used in any 
online computer mediated application, returning an optimized 
adaptive result to users, ii) an adaptation mechanism that maps the 
OCUM with semantically annotated web objects based on an 
RDFa content schema for smart web objects, and iii) description 
of an RDFa content schema that enables standard annotations in 
any XHTML Web-page, thus making structured data available for 
the personalization and adaptation process, but also for any 
service or tool that supports the same standard. An evaluation of 
the expected impact of the content reconstruction concludes the 
paper. 

2. BACKGROUND 
Effective personalization of content involves two important 
challenges: accurately identifying users’ comprehensive profiles 
and mapping any hypermedia content in such a way that enables 
efficient and effective navigation and presentation during the 
adaptation process.  

Today’s most popular Web-sites (http://www.alexa.com) like 
Google, Microsoft Live, Yahoo, Amazon, eBay, BBC news etc. 
primarily use customization techniques where users have direct 
control and explicitly select between certain options. In the same 
line, personalization is driven by the system which tries to serve 
up individualized pages to users according their profiles and 
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needs. Although, personalization is used by many of these popular 
Web-sites (especially Google), the techniques they maintain are 
lying under the predetermined customization of services or 
products and not to the actual personalization and dynamic 
reconstruction of content based on user preferences. User 
preferences might be extended beyond the traditional 
characterizations of users that might include intrinsic cognitive 
values that could be considered as the control factors for an 
efficient adaptation process. 

Many search engines/systems, such as Google Personalized 
Search (http://www.goggle.com/psearch), build a user profile by 
means of implicit feedback where they adapt the results according 
to the search history of users. Many systems employ search 
personalization on the client-side by re-ranking documents that 
are suggested by an external search engine [2, 3]. Since the 
analysis of pages in the result list is a time consuming process, 
these systems often take into account only the top ranked results. 
Also, only the snippets associated with each page in the search 
results is considered as opposed to the entire page content. 

One increasingly popular method to mediate information access is 
through the use of ontologies [4]. Researchers have attempted to 
utilize ontologies for improving navigation effectiveness as well 
as personalized Web search and browsing, specifically when 
combined with the notion of automatically generating 
semantically enriched ontology-based user profiles [5]. 

One such system is OntoSeek [6], which is designed for content-
based information retrieval from online yellow pages and product 
catalogs. OntoSeek uses simple conceptual graphs to represent 
queries and resource descriptions. The system uses the Sensus 
ontology [7], which comprises a simple taxonomic structure of 
about 50,000 nodes.  

Another similar system developed by Labrou and Finin [8] uses 
Yahoo! [9] as an ontology. The system semantically annotates 
Web pages via the use of Yahoo! categories as descriptors of their 
content. The system uses Telltale [10, 11, 12] as its classifier. 
Telltale computes the similarity between documents using n-
grams as index terms. The ontologies used in the above examples 
use simple structured links between concepts. 

A richer and more powerful representation is provided by SHOE 
[13, 14]. SHOE is a set of Simple HTML Ontology Extensions 
that allow WWW authors to annotate their pages with semantic 
expressed in terms of ontologies. SHOE provides the ability to 
define ontologies, create new ontologies which extend existing 
ontologies, and classify entities under an “is a” classification 
scheme.  

Google has also recently announced 
(http://www.google.com/webmasters/tools) that their search 
engine is going to support enhanced searching in Web-pages, by 
using RDFa and Microformats embedded in XHTML. Google 
states that the extra (structured) data will be used in order to get 
results for Product Reviews (e.g. CNET Reviews), Products (e.g. 
Amazon product pages), People (e.g. LinkedIn profiles) and any 
other types of resources will be made public through the data-
vocabulary.org (http://rdf.data-vocabulary.org/rdf.xml). 

However, the abovementioned ontologies do not utilize user 
centric personalization approaches in the sense of considering 

intrinsic user values, such as cognitive characteristics for the 
adaptation of Web content. 

3. A PROPOSED ONTOLOGICAL 
ADAPTATION MECHANISM 
Web Personalization and Semantics are two research areas that 
attempt to provide solutions to user problems related to content 
navigation and presentation. They both employ specialized 
approaches and techniques for alleviating difficulties and 
constraints imposed by the Web. 

Key factors that are employed by personalization mechanisms for 
filtering user profiles and adapting content accordingly are based 
on cognitive parameters. On the other hand, Semantics contribute 
to the whole adaptation process with machine understandable 
representation of user profiles and web content. 

Therefore, the main scope of this section is to bring together the 
abovementioned considerations and propose an Ontological 
Adaptation Mechanism (OAM) (Fig. 1) that is composed of three 
main layers; i) User Profile Layer, ii) Adaptation Mapping Layer, 
and iii) Web Content Layer. 

 
Figure 1. Ontological Adaptation Mechanism 
The first layer of the OAM is the User Profile Layer; responsible 
to model users’ cognitive typologies. In a high level view, each 
user typology is a semantically defined object (RDFa object) that 
contains all the intrinsic cognitive parameters of users. On the 
other end of OAM; the Web Content Layer model’s any 
hypermedia Web content with specific meta-characteristics using 
again an RDFa vocabulary to annotate specific areas of an 
XHTML document as Smart Objects. The middle layer; the 
Adaptation Mapping Layer is responsible for mapping the User 
Typologies of the User Profile Layer with the Smart Objects of 
the Web Content Layer. Based on this mapping, all Smart Objects 
of an XHTML document are adapted (i.e. show content in a 
diagrammatical form in case of an Imager) and extra navigation 
enhancements are provided to the end-user. 

For example, a user has been identified of a particular typology in 
the User Profile Layer. Furthermore, any semantically annotated 
Web content will be derived in the Web Content Layer. Finally, 
the Adaptation Mapping Layer will map the semantic user 
typology with the semantic Web content providing an adapted 
result as well as additional navigation enhancements. 

The following sections will explain in more detail how each layer 
utilizes the theoretical conceptualization of the Ontological 
Adaptation Mechanism. 
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3.1 User Profile Layer 
The User Profile Layer implements the Ontological Cognitive 
User Model (OCUM). OCUM is based on the theoretical 
conceptualization of a comprehensive model in the field of Web 
personalization and adaptation, which integrates cognitive 
parameters and attempts to apply them on a Web-based 
environment. The particular cognitive concepts have already been 
proposed by the authors and positively evaluated in the 
information space [15].  

This model consists of an optimized series of cognitive 
parameters and tends to further enhance user profiles (considered 
the main filtering elements for Web personalization systems), that 
could be used in any hypertext computer-mediated platform in 
order to return a more enhanced user-centric result by 
reconstructing (adapting) any content coming from the provider. 

The main uses of this model are: 1) to enable consistent 
implementation (and interoperation) of all hypertext computer-
mediated systems that use human factors as their main filtering 
element, based on a shared background vocabulary, and 2) to play 
the role of a domain ontology that encompasses the core human 
factors elements for hypertext computer-mediated systems and 
that can be extended by any other individual or group. 

Table 1 shows a sample of the OCUM’s vocabulary. The full 
RDFa vocabulary can be found online in 
(http://www4.cs.ucy.ac.cy/adaptiveweb/rdf.xml). 

Table 1.  OCUM RDFa Vocabulary 

<rdfs:Class rdf:ID="Person"> 
  <rdfs:comment>Represents a Person, 
living/fictional.</rdfs:comment> 
  <rdfs:subClassOf rdf:resource="http://www.w3.org/1999/02/22-
rdf-syntax-ns#Resource"/> 
</rdfs:Class> 
<rdf:Property rdf:ID="name"> 
  <rdfs:domain rdf:resource="#Person"/>  
</rdf:Property> 
<rdf:Property rdf:ID="title"> 
  <rdfs:domain rdf:resource="#Person"/>  
</rdf:Property> 
<rdf:Property rdf:ID="affiliation"> 
  <rdfs:domain rdf:resource="#Person"/>  
</rdf:Property> 
…. 
<rdf:Property rdf:ID="imagerverbal"> 
  <rdfs:comment>The level of cognition of a person regarding 
imager and verbal can be specified by a string literal or a Person 
instance.</rdfs:comment> 
  <rdfs:domain rdf:resource="#OCUM"/>  
  <rdfs:range> 
    <owl:Class> 
      <owl:unionOf rdf:parseType="Collection"> 
 <owl:Class rdf:about="#Person"/> 
 <owl:Class rdf:about="xsd:string"/> 
      </owl:unionOf> 
    </owl:Class> 
  </rdfs:range> 
</rdf:Property> 

This vocabulary consists of a number of classes and properties 
which describe a user’s profile. With regards to the sample 
vocabulary shown in Table 1, the main class of this vocabulary is 
Person that represents a living or fictional person. The Person 
class has the following basic properties: i) “name” property; the 
Person’s name, ii) “title” property; the Person’s title (i.e. Prof. or 
Managing Director), iii) “affiliation” property; the Person’s 
affiliation. A Person class has also the following properties with 
regards its Cognitive Style parameters: i) “imagerverbal” 
property; the level of cognition of the Person regarding imager 
and verbal, ii) “wholistanalyst” property; the level of cognition of 
the Person regarding wholistic or analyst, and iii) 
“workingmemory” property; the Person’s working memory 
capacity. 

In this respect, the Person class, for example, in the RDFa 
instance (Table 2) is the main entity. Specializations of the Person 
entity are the Cognitive Styles, the Working Memory and 
Personal Detail entities. 

Table 2. RDFa Instance of a User’s OCUM 

<div xmlns:v="http://www4.cs.ucy.ac.cy/adaptiveWeb/rdf/#" 
typeof="v:Person"> 
   <div> 
         <span property="v:name">John Smith</span> 
         <span property="v:title">Managing Director.</span> 
         <span property="v:affiliation">AWeb Solutions</span> 
   </div> 
   <div>Cognitive Style 
         <span rel="v:imagerverbal">Imager</span><br /> 
         <span rel="v:wholistanalyst">Analyst</span> 
   </div> 
   <div>Working Memory 
         <span rel="v:workingmemory">Low</span> 
   </div> 
</div> 

3.2 Adaptation Mapping Layer 
The Adaptation Mapping Layer is responsible for mapping the 
Users’ Typologies of the User Profile Layer with the Smart 
Objects of the Web Content Layer. A Web Browser (Mozilla 
Firefox) Extension has been developed in order for the browser to 
recognize and implement the extended content objects (Table 5) 
and map them with the user’s OCUM instance (Table 2). 

Our main goal in this section is to show in a more detail how a 
Web browser should interpret the SmartObject of the RDFa 
schema (Table 4) and adapt the containing information based on 
the user’s OCUM and consequently the abovementioned 
cognitive factors. Based on Tables 2 and 5 (Web Content Layer), 
the Web browser combines the user’s OCUM with the containing 
information of the SmartObject entity, adapting the content. 

The adaptation process involves the transformation and/or 
enhancement of a given raw Web-based hypertext content 
(provider’s original content) based on the impact the specific 
human factors have on the information space [15] (i.e., show a 
more diagrammatical representation of the content in case of an 
Imager user, as well as provide the user with extra navigation 
support tools). Figure 2 shows the possible Web-based hypertext 
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content transformations / enhancements based on the mapping 
process that take place during adaptation process based on the 
influence of the human factors and the theory of individual 
differences. 

 
Figure 2. Hypertext Content Transformations / Enhancements 
Based on figure 2, the meta-characteristics of a user profile are 
deterministic (at most 3); Imager or Verbalizer, Analyst or 
Wholist and Working Memory level (considered only when low).  

For a better understanding, a user that happens to be an Imager 
gets a diagrammatical representation of the containing 
information of SmartObject. The “about” attribute is used by the 
Web browser to distinguish the logical meaning of a sentence 
when creating the diagrammatical representation. In other words, 
the “about” attribute is used for sub-elements of a SmartObject. 
As we will see furthermore, the “about” attribute is interpreted 
differently by the browser when the user types change. On the 
other hand, when a user is a Verbalizer (prefers text instead of 
diagrammatical representations), no changes are made to the 
containing content of SmartObject. Furthermore, if a user is an 
Analyst, the information will be enriched with a tabbed menu to 
be easier accessible. The menu will consist of the SmartObject 
sub-elements. Each sub-element along with the “title” property 
(see Table 5) is used in this case to create the tabbed menu with 
the title of each sub-element comprising an item of the menu. 

Each sub-element is added to the tabbed menu and is used as a 
dynamic link to the containing information of the particular 
entity. The same logic of transformation is used when mapping 
the SmartObject with a Wholist user. In this case, a dynamic 
floating menu with anchors is created so to guide the users on 
specific parts into the hypertext content while interacting. Again, 
the sub-elements comprise the menu’s items. 

Finally, when users happen to have a low working memory level, 
the browser will provide them with the “myNotepad” tool 
(temporary memory buffer) for storing a section (sub-element’s 
content) of the page and keep active information that is interested 
in until the completion of a cognitive task at hand. 

3.3 Web Content Layer 
The third layer of OAM; the Web Content Layer models any web 
content that comes from the provider. An RDFa schema (Table 4) 
has been designed that enables standard annotations in any 
XHTML Web-page, thus making structured data available for our 
framework’s adaptation process, but also for any service or tool 
that supports the same standard. Table 5 shows an instance of the 
RDFa content model. 

Table 4. Content Model RDFa Vocabulary 

<?xml version="1.0" encoding="UTF-8"?> 
<rdf:RDF> 
<rdfs:Class rdf:ID="SmartObject"> 
  <rdfs:comment>Represents an adaptive object based on users' 
cognitive styles.</rdfs:comment> 
  <rdfs:subClassOf rdf:resource="http://www.w3.org/1999/02/22-
rdf-syntax-ns#Resource"/> 
</rdfs:Class> 
<rdf:Property rdf:ID="name"> 
  <rdfs:domain rdf:resource="#SmartObject"/> 
</rdf:Property> 
<rdf:Property rdf:ID="category"> 
  <rdfs:domain rdf:resource="#SmartObject"/> 
</rdf:Property> 
<rdf:Property rdf:ID="summary"> 
  <rdfs:domain rdf:resource="#SmartObject"/>  
</rdf:Property> 
<rdf:Property rdf:ID="title"> 
  <rdfs:domain rdf:resource="#SmartObject"/>  
</rdf:Property> 
<rdf:Property rdf:ID="content"> 
  <rdfs:domain rdf:resource="#SmartObject"/>  
</rdf:Property> 
</rdf> 
The above vocabulary consists of a number of classes and 
properties which describe an adaptive object based on users’ 
cognitive styles. The main class of this vocabulary is SmartObject 
that represents an adaptive web object. This class has the 
following properties: i) “name” property; the concept’s name, ii) 
“category” property; the concept’s category, iii) “summary” 
property; the summary description of the concept, iv) “title” 
property; the title of the concept’s sub-element, and v) “content” 
property; the concept’s sub-element content. The “about” 
property (Table 5) is used by RDFa to distinguish different sub-
elements of the concept. 

Table 5. RDFa Instance of a Content Object 

<div xmlns:v="http://www4.cs.ucy.ac.cy/adaptiveWeb/rdf/#" 
typeof="v:SmartObject"> 
     <span property="v:name">Sony</span> 
     <span property="v:category">13' Laptop</span> 
     <span property="v:summary">2.5GHz CPU Intel Core 2 Duo, 
4GB RAM, 250GB HD</span> 
     <div about="/sonyvaio/sz/memory"> 
          <span property="v:title">Memory Information</span> 
          <span property="v:content">4GB Memory RAM, 250GB 
Hard Disk</span> 
     </div> 
     <div about="/sonyvaio/sz/cpu"> 
          <span property="v:title">CPU Information</span> 
          <span property="v:content">2.5GHz CPU Intel Core 2 
Duo</span> 
     </div> 
</div> 
In order to evaluate the system’s performance as well as the 
impact of our model’s dimensions into the information space, we 
have designed and authored an experimental environment in the 
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application field of eCommerce. The eCommerce (Web) 
environment that has been developed used the design and 
information (hypermedia) content of an existing commercial 
Web-site of Sony Style.com. This Web-site provides products’ 
specifications of the Sony Company, and in general is very 
representative of the sites that we inspected in our high level 
analysis since it stands in between a serious layout and an 
aesthetically rich form of presentation. We have developed an 
exact replica of the Sony Vaio Notebooks section in 
sonystyle.com. 

4. EXPERIMENTAL EVALUATION 
The following section describes the experimental design and the 
results that support the notion of personalization and the use of 
OAM in generic Web-based hypertext environments. 

4.1 Methodology & Design Implications 
For the purposes of our research a within participants experiment 
was conducted, seeking out to explore if the personalized 
condition serves users better at finding information more 
accurately and fast. A pilot study that involved a between 
participants design demonstrated inconsistent effects, suggesting 
that a within subjects approach would yield more robust results. 

The number of participants was 89; they all were students from 
the Universities of Cyprus and Athens and their age varied from 
18 to 21, with a mean age of 19. They accessed the Web-based 
hypertext environments using personal computers located at the 
laboratories of both universities, divided in groups of 
approximately 12 participants. Each session lasted about 40 
minutes; 20 minutes were required for the user-profiling process 
(real-time psychometric tests), while the remaining time was 
devoted to navigating in both hypertext environments, which were 
presented sequentially (as soon as they were done with the first 
environment, the second one was presented). 

The hypertext content was about a series of Sony laptop 
computers: general description, technical specifications and 
additional information were available for each model. As stated in 
the introductory section, we considered that the original (raw) 
version of the environment was designed without any 
consideration towards cognitive style preferences, and the amount 
of information was so high and randomly allocated that could 
increase the possibility of cognitive overload. The personalized 
condition addressed these issues by introducing as personalization 
factors both cognitive style and working memory span.  

The psychometric materials that were used are the following: 

1. Cognitive Style: Riding’s Cognitive Style Analysis, 
standardized in Greek, assessing the Imager/Verbalizer 
and Wholist/Analyst dimensions. 

2. Working Memory Span: Visuospatial working memory 
test, examining participants’ ability to temporarily store 
visual figures. 

In each condition, users were asked to fulfill three tasks: they 
actually had to find the necessary information to answer three 
sequential multiple choice questions that were given to them 
while navigating. All six questions (three per condition) were 
about determining which laptop excelled with respect to the 
prerequisites that were set by each question. There was certainly 

only one correct answer that was possible to be found relatively  
easy, in the sense that users were not required to have hardware 
related knowledge or understanding. 

As soon as users finished answering all questions in both 
conditions, they were presented with a comparative satisfaction 
questionnaire; users were asked to choose which hypertext 
environment was better (1-5 scale, where 1 means strong 
preference for environment A and 5 for environment B), 
regarding usability and user friendliness factors. 

The dependent variables that were considered as indicators of 
differences between the two hypertext environments were: 

1. Task accuracy (number of correct answers) 

2. Task completion time 

3. User satisfaction 

At this point a few clarifications about the methodology are 
necessary: 

1. Users did not know which the personalized condition 
was, nor were they encouraged to use any additional 
features. 

2. To avoid training effects, half of the users received the 
raw condition first (considered as environment A), 
whilst the other half started the procedure with the 
personalized (again considered as environment A). 

3. To avoid a possible effect of differences in difficulty of 
each set of three questions, they were alternated in both 
environments. Due to a design error, the division was 
not in half, but 53 participants received the first 
combination and 36 the alternated. However there was 
not observed any effect; all questions were proven of 
equal difficulty- to the extent that this is possible of 
course. 

The within participants design, finally, allowed the control of 
differences and confiding variables amongst users. 

4.2 Results 
The most robust and interesting finding was the fact that users in 
the personalized condition were more accurate in providing the 
correct answer for each task. The same user in the raw condition 
had a mean of 1 correct answer, while in the personalized 
condition the mean rose to 1.9. 

Since the distribution was not normal and the paired samples t-test 
assumptions were not met, Wilcoxon Signed Ranks Test was 
performed, showing that this difference is statistically significant 
at zero level of confidence (Z= -4.755, p=0.000). This is probably 
a very encouraging finding, implying that personalization on the 
basis of these factors (cognitive style and WMS) benefits users 
within an eCommerce environment, as long as there are some 
cognitive functions involved of course (such as information 
seeking). 

Equally interesting is the fact that users in the personalized 
condition were significantly faster at task completion. The mean 
aggregated time of answering all three questions was 541 seconds 
in the raw condition, and 412 in the personalized. A paired 
samples t-test was performed (t(88)=4.668, p=0.000) 

PersDB 2010                                                                                                                                                                Page 39 of 40.



demonstrating significance at zero level of confidence. Again, this 
second dependent variable (time) shows that the personalized 
hypertext environment is more efficient. 

As it concerns the satisfaction questionnaire, 31 users leaned 
towards the personalized environment, 38 had no preference 
while 20 preferred the raw. This descriptive statistic is merely 
indicative of whether participants would consciously observe any 
positive or negative effects of the personalized condition. 

A considerable percentage leaned towards that condition (or at 
least users did not seem somehow annoyed by such a 
restructuring), but overall it cannot be supported that they were 
fully aware of their increase in performance, as shown by the 
abovementioned findings. 

5. CONCLUSIONS & FUTURE TRENDS 
The basic objective of this research paper was to introduce a 
cognitive approach to Web Personalization based on an ontology 
that contains users’ cognitive factors. Accordingly, a human 
factors’ ontology has been designed and developed using RDFa, 
and could be used in any Web-based application for returning an 
optimized adaptive result to the user. Their specific influence and 
the Web design enhancements and hypertext content 
transformations have been described and positively evaluated in 
the eCommerce domain. 
It was clearly demonstrated that users’ information finding was 
more accurate and efficient, both in terms of providing correct 
answers to the task questions and in task completion time. These 
findings reveal that our approach turned out to be initially 
successful, with a significant impact of human factors in the 
personalization and adaptation procedure of Web-based hypertext 
and hypermedia environments. 
Even though the evaluation of the OCUM concept in the 
eCommerce domain is really encouraging for the validity and 
integrity of the relation within and between these cognitive 
dimensions and their effective impact in the information space, 
this ontology can only be considered as a proposal. Main goal is 
to initiate and drive this research to a concrete human factors 
ontology that can be used in any hypertext computer-mediated 
system enhancing one-to-one services delivery based on an 
efficient user-centric dynamic content reconstruction (adaptation). 
Sub consequently, another major future step of our work, besides 
improving and extending the methodology of our experiments in a 
commercial / services Web environment, is the integration of 
emotional processing parameters, which involves the use of 
sensors and real-time monitoring of emotional arousal (Galvanic 
Skin Response and Heart Rate).  
Finally, even if the Sony site is quite a representative Web-site of 
how information is distributed in the Web, further testing on 
various types of Web-sites and other computer-mediated 
platforms is required in order to establish a rigid connection 
between human factors and information processing in Web-based 
hypertext/hypermedia environments. 
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