
UpStream: Storage-centric Load Management for Data
Stream Processing Systems

Alexandru Moga
(supervised by Nesime Tatbul)

Systems Group, Computer Science Department
ETH Zurich, Switzerland

amoga@inf.ethz.ch

ABSTRACT
Processing fast updating data streams in real-time must reflect the
most recent data. A number of technologies including Data Stream
Management Systems have emerged to respond to this challenge.
While running their queries in a continuous fashion on high-volume
push-based data streams (e.g. sensor data, GPS coordinates, stock
quotes), one of the most important optimization problems that these
systems face is load management based on Quality of Service (QoS).
In stream processing, QoS may depend on a number of factors like
latency, freshness, quality and completeness of the results. In this
work, we focus primarily on freshness of results while we consider
data streams to haveupdate semantics. To date, we have found no
framework that defines a clean and systematic way of using update
semantics for load management in push-based stream processing.
This PhD proposes such a framework, called UpStream. In the face
of overwhelming data rates, our solution to directly minimize the
impact of overload on QoS is a storage-centric approach using up-
date queues. This paper describes the UpStream framework with
respect to its mission, architectural considerations, integration with
a state-of-the-art stream processor, progress to date and research
directions.

1. INTRODUCTION
Processing dynamic data in real time has been a challenge for

many applications including financial services, security monitor-
ing, location tracking systems, sensor data monitoring and so forth.
While traditional processing infrastructures, like Database Man-
agement Systems (DBMS) are having difficulties keeping up with
fast-changing data generated by push-based data streams, several
technologies have emerged to respond to the requirements of mod-
ern real-time applications. These include Stream Processing En-
gines (SPE) like Aurora [3] and Borealis [2], STREAM [5] or Tele-
graphCQ [9]. In an SPE, data flows through continuous query exe-
cution plans most commonly involving sliding window operations,
filtering, aggregations, unions or correlations ([5]). We have ob-
served that usually, data is aggregated and processed based on cer-
tain items of interest from the observed world (e.g. aggregations
over sensor readings, where the sensor id is part of the answer). We

.

refer to these items of interest askeysand to the nature of queries
that preserve key information askey-sensitive queries. The ulti-
mate goal of an SPE is to deliver query results in near real-time
while keeping up to data rates. As a result, load management is a
central focus in this line of research.

In stream processing, load management efficiency has been mea-
sured in terms of Quality of Service (QoS) which may depend on
the response time (latency), completeness of results (tuple drops)
or relevance of the delivered values ([3]). Traditionally, stream
processing engines have assumed applications to have append se-
mantics, i.e., results must be delivered based on all (or as much
of) the input values and with the lowest possible latency. There
are, however, a common set of applications that exhibitupdate se-
mantics. Such applications require the freshest possible results for
all the items of interest (i.e., keys). Let us consider an application
that monitors the location and movement of cars within a certain
region. What is of utmost importance to the car monitoring appli-
cation is that its queries are run on the latest reportings from all
the cars, while getting query answers that reflect all the reportings
from each car during a time interval is less of a focus. An appli-
cation with update semantics relaxes the completeness requirement
while maximizing the importance of fresh results. Therefore, there
is no need for all input data to be processed. To sum up, at any
point in time, a query result which is produced by using themost
up-to-dateinput values (per key) is correct and more valuable to
the application compared to query results produced by usingall of
the available input values ever existed so far. This is a radically
different semantics than the traditional append semantics.

SPEs commonly model streams as unbounded in-memory FIFO
queues. In the context of append semantics, queues tend to grow
when the system cannot keep up with input data rates, ultimately
leading to QoS degradation. To solve this, various load shedding
techniques have been proposed which target latency. However,
these techniques result in inaccurate query answers and the focus
has therefore been on minimizing the degree of this accuracy loss
(e.g., number of dropped tuples). For applications with update se-
mantics, such an issue is not important as long as the results are
fresh (i.e., not stale). In this respect,update streams(i.e., data
streams with update semantics) naturally lend themselves to load
shedding and we believe that judging the efficiency of load man-
agement for update streams is best done in terms of staleness rather
than latency and accuracy loss.

In this research, we plan to address the problem of minimizing
staleness for streaming applications with update semantics by push-
ing down the update semantics in the stream processing pipeline.
Our solution is a storage-centric approach that is aimed both at
directly minimizing QoS degradation when faced with overload
and minimizing memory consumption. We propose the UpStream

1

uqxzhou
Typewritten Text
Copyright is held by the author/owner(s).
VLDB 2010 PhD Workshop, September 13, 2010, Singapore

End−point

ApplicationSource
Data

update
stream

push

update
stream

push
Continuous

Query

SPE

Figure 1: Continuous Query Models

framework, a systematic way of capturing update semantics in a
stream processor. As a first step, we have extended the Borealis
stream processing engine withupdate queuesto incorporate update
semantics at the storage level. This offered us an appropriate in-
frastructure to investigate load management techniques that exploit
the characteristics of update streams (i.e. key update patterns and
probabilities) or the behavior of the end-point application (i.e. ac-
cess patterns). Further issues to explore are related to scheduling
of multiple queries and adaptive load management in the presence
of update semantics. We plan to do this by exploiting modern soft-
ware and hardware platforms to increase the scalability of a stream
processing system.

The rest of this paper is structured as follows. Section 2 gives
an overview of the UpStream framework and its progress to date.
Then, in Section 3 we discuss some interesting challenges that this
research will address further. Finally, we give a brief description of
our closest related work in Section 4 and we conclude in Section 5.

2. THE UPSTREAM FRAMEWORK

2.1 Update-based Stream Processing Model
Data streams are generated by push-based Data Sources (see Fig-

ure 1) and consumed by Continuous Queries inside a Stream Pro-
cessing Engine (SPE). We consider such a query to be a directed
acyclic graph (DAG) of stream-oriented operators ([13]) linked by
arcs that have queues to temporarily store data stream items (i.e.
tuples). We assume the query produces results for the End-point
Application with a non-negligible processing cost and in a sequen-
tial manner. Under update semantics, each result is viewed by the
application as an update. Therefore, we interpret the results stream
as anupdate stream. Given that each result is produced by the
query based on a finite set of input stream tuples, we consider each
such set an input update. That is, the continuous query acts on a
stream of updates to produce another stream of updates. The type
of processing that operators apply on streams affects the scope of an
input update. For instance, tuple-based operators (e.g., filter, map)
consider individual tuples to be updates, while windowing opera-
tors (e.g., sliding window aggregate) consider full windows as up-
dates. As part of our stream processing model, we also consider
key-sensitive queries that perform processing based on particular
items of interest from the input stream (e.g., a group-by attribute
for an aggregation query). In this case, the update stream schema
has a field called theupdate key. Updates can only take place for the
same update key and key-agnostic queries are treated as single-key
queries.

If applications with append semantics care about latency, appli-
cations with update semantics focus onstaleness. Latency captures
the total time to deliver a result to the application (i.e. queueing
+ processing) since the corresponding input update arrived ([3]).
Staleness, on the other hand, captures the total time to deliver a
result since updatesfirst became available. Therefore, by using
staleness, we can reason at any point in time about whether (i) the
application has a result based on the latest update from the Data
Source (i.e. fresh output), or (ii) the current result has been su-
perseded by newer input updates (i.e. stale output). Staleness is
measured continuously for every update key.

Figure 2: UpStream Storage Manager Architecture

2.2 Storage-centric Architecture
In this work, we take a storage-centric approach to load man-

agement for streaming applications with update semantics. Our
motivation for doing so is threefold. First of all, storage is the first
place that input tuples hit in the system before they get processed
by the query processing engine. The earlier the update semantics
can be pushed in the processing pipeline, the better it is for tak-
ing the right measures for lowering staleness. Second, it is rather
easy to capture update semantics as part of a tuple queue. Per-
forming load management at this level prevents the need to store
unnecessary data items, which greatly improves memory consump-
tion. Finally, a storage-based framework allows us to accommodate
continuous queries with both append and update semantics in the
same system, by defining their storage mechanisms accordingly.
This kind of a model is also in agreement with recently proposed
streaming architectures that decouple storage from query process-
ing such as the SMS framework [8]. To support the new update-
based query processing model, we have extended the traditional
append-based model withupdate queues. An update queue groups
the input stream by update key (where applicable), and for each dis-
tinct update key it is only responsible for keeping the most recent
update (i.e., “in-place updates”).

Figure 2 shows the architecture of our storage manager. Stor-
age manager interfaces with input sources, output applications, and
Query Processor through its iterators. During runtime, statistics
data is produced or retrieved to/from the Statistics Monitor. The
Update Queue Manager itself is broken into three main compo-
nents. In our design, these three components are layered on top
of each other and handle three orthogonal issues The Key Sched-
uler (KS) decides when to schedule different update keys for pro-
cessing and can employ various different policies for this purpose.
Scheduling points are decided by the Query Processor between two
consecutive query runs. The Window Manager (WM) takes care of
maintaining the window buffers according to the desired sliding
window semantics. Finally, the Memory Manager (MM) compo-
nent oversees the physical page allocation from the memory pool.
Basically, the role of the Memory Manager is to allow in-place up-
dates per key group and prevent memory proliferation at overload.

2.3 Key Scheduling

2.3.1 IN-PLACE Update Queue
An IN-PLACE update queue is one that stores the most recent

updates for all unprocessed keys and services them in FIFO en-
queue order. In Figure 3 we show the behavior of the IN-PLACE
update queue (Figure 3(c)) vis-a-vis the traditional append queue
(Figure 3(b)), given a stream of tuple-based stock updates, like the

2

IBM1MSFT1INTC1IBM2INTC2

2 1345 time

input arrivals

(a) Stock update stream
t = 3 IBM1MSFT1INTC1

IBM1MSFT1INTC1

IBM1MSFT1INTC1

IBM2

IBM2INTC2

t = 4

t = 5

(b) Traditional Append queue

t = 3

t = 4

t = 5

MSFT1

IBM2MSFT1

IBM1MSFT1

IBM2

INTC2

INTC1

INTC1

(c) IN-PLACE Update queue

Figure 3: Append Queue vs. IN-PLACE Update Queue

one in Figure 3(a). For instance, at time t=4, IBM2 overwrites
IBM1 in its original place in the update queue, while in an append
queue it would have required a new location for IBM2 at the end.
Assuming there is a scheduling point after t=5, we can clearly see
that IN-PLACE update queue delivers the most recent update for
key IBM and that memory usage was minimal. More generally, the
benefits of the IN-PLACE update queue reflect in both load shed-
ding and key scheduling:

• Efficient load shedding: As the default behavior of our up-
date queues, IN-PLACE scales very well with increasing load.
The load factor LF is given by the ratio between input rate and
processing rate (e.g. LF=10 when results get processed every
100msec and inputs arrive every 10msec). We have experimen-
tally verified this claim in a number of settings, varying load
factor and number of keys, using our UpStream prototype. Re-
sults for the single key tuple-based case are depicted in Figure
4(a) which shows a comparison between the IN-PLACE update
queue and the traditional append queue plus two variants of
load shedding based on random drops performed by a special-
ized operator (RD-Append) and in-queue (RLS-Append), re-
spectively. The update queue tends to stabilize staleness when
load increases while the append-based counterparts seem to
fall behind. We have also looked at memory usage and ob-
served a drastic improvement as well on the update queue side.
When varying the number of keys (Figure 4(b)), both update
queue and append-based load shedding counterparts exhibit lin-
ear scale-up. In the update queue case, staleness grows because
the average queue length, which directly influences the waiting
time, is proportional to the number of keys. However, the in-
crease in staleness is much slower for the update queue and this
comes primarily from the fact that it keeps only the most recent
updates for all keys, which is not guaranteed by the random
drop techniques.

• Efficient key scheduling: IN-PLACE policy results in the low-
est average staleness that can be achieved when the update fre-
quencies of the update keys are uniformly distributed. In brief,
this is due to the fact that IN-PLACE policy always chooses the
key with the maximum waiting timeW , which directly influ-
ences staleness. A detailed proof can be found in our technical
report ([14]).

2.3.2 Linecutting
The previous section indicated that IN-PLACE key scheduling

policy is the best if all keys update at the same frequency. However,
often times the update frequencies are not uniform. We have ana-
lyzed such a situation for financial market data taken from NYSE
Trade & Quote (TAQ) database for a trading day in January 2006
[1]. More than 3000 different stock symbols (i.e., update keys)
were involved, and we observed 49% of them to update rather
rarely while the rest of 51% updated quite frequently. Based on
these observations, we have raised the following questions: Is IN-
PLACE policy still the best that we can do for such non-uniform

 INPLACE−Update
 RLS−Append
 RD−AppendAppend

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1 2 3 4 5 6 7 8 9 10
Load Factor

 0.35
 20

 40

 60

S
ta

le
ne

ss

(a) Single update keys

 INPLACE−Update

RD−Append
 RLS−Append

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 25 50 75 100
of keys

S
ta

le
ne

ss
(b) Multiple update keys (Load Factor 4)

Figure 4: Update Queue vs. Append Queue

update frequencies? If not, how can we exploit the differences in
update frequencies to find a better scheduling algorithm? To find
the answers, we considered a simplified distribution of update prob-
abilities containing two classes of keys:slowupdaters andfastup-
daters. We assumed all keys contained in a class to update with the
same probability while the difference between classes is denoted
by what we call theskewparameter (e.g. fast keys update 10 times
more frequently than slow keys).

In order to build a policy that improves on IN-PLACE we have
considered the following observation. IN-PLACE always chooses
the key with the greatest waiting timeW (now - first enqueue time)
regardless of how often that key updates. This causes even slow
updating keys to wait the same amount of time on average as the
regular ones. To make the key scheduler more aware of update fre-
quencies, we introduced the LINECUTTING heuristic. Basically,
LINECUTTING tries to promote slow updating keys to the front
of the queue of keys. However, this is not done invariably, so a
few rules have to be in place: (1) LINECUTTING should be able
to identify the slow updaters with respect to the current state of the
queue and (2) Promoting keys to the front of the queue should not
starve the keys over which it jumps.

To minimize staleness, LINECUTTING orders the queue of keys
based on a sum of factors coming from the above-mentioned de-
sign principles, respectively. The first is what we callslownessof
a key and the second is the waiting time of that key given the cur-
rent state of the queue. The greater the sum, the closer the key is
to being served. Slowness is computed based on the key update
rate and its position in the queue. Slowness values are big for slow
keys and small for fast keys. Based on this, LINECUTTING has
the following effects: (i) the waiting time for slow updaters is re-
duced, which means their overall average staleness is reduced as
well; (ii) fast updaters are still served as in the IN-PLACE case, but
with some penalties that come from promoting other keys. That is,
we get benefits from slow updaters with penalties on fast updaters.
However, LINECUTTING makes sure the benefits are greater than

3

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 1 10 25 50 100 150

S
ta

le
ne

ss
 r

at
io

 IN
−

P
LA

C
E

/L
IN

E
C

U
T

T
IN

G

Skew

 LF = 15 LF = 25LF = 5

Figure 5: LINECUTTING vs. IN-PLACE

the penalties.
We have experimentally compared LINECUTTING to IN-PLACE

in a number of scenarios characterized by various load levels and
different two-classes distribution instances (given by number of
slow updaters and skew). For instance in Figure 5, we have varied
the skew of a symmetric distribution of 20 keys (10 slow, 10 fast)
and we observed the improvement offered by LINECUTTING over
IN-PLACE (horizontal line at 1 shows zero improvement) for three
load levels (LF): 5,15 and 25. The graph reveals a general trend
of increasing improvement with skew while increasing the load af-
fects improvement negatively. The former point is explained by
slow keys updating less and less as skew grows. However, with in-
creasing load, the update rate of the slow updaters decreases more
slowly, which would account for the latter point. Another thing
to note here is that the non-improvement at skew=1 (uniform dis-
tribution) proves LINECUTTING to be an adaptive heuristic by
not making unnecessary promotions. Even though not shown here,
we have also experimented with asymmetric distributions (varying
number of slow updaters) and we have again seen LINECUTTING
doing better than IN-PLACE. However, the amplitude of the im-
provement depended on the ratio between the number of slow and
fast keys affecting the balance between benefits and penalties.

2.4 Windowing Operations
Sliding window queries take as input a window that consists of a

finite collection of consecutive tuples and apply an aggregate pro-
cessing on them, resulting in a single output tuple for that window.
In this case, there is no1 − 1 mapping between the input and the
output, but ann − 1 mapping, wheren is the number of tuples in
the input window. Due to this difference in operational unit, our
problem has an additional challenge compared to the tuple-based
scenario: Besides worrying about the recency of our outputs, we
must also make sure that they correspond to the results of “seman-
tically valid” input windows. We define semantic validity based
on the “subset-based” output model used by previous work on ap-
proximate query processing and load shedding (e.g., [20]). In Up-
Stream, an input update is a full window. We adopted the follow-
ing two design principles for handling windowed updates correctly:
(1) Windows should either be processed in full, or not at all (All or
nothing); (2) If we decide to open a window and start processing
it, we must finish it all the way to the end (No undo). Changing
decisions on a partially processed window is not allowed. In this
case, we say that we “committed” to that window.

In [20], load shedding is achieved through a special Window
Drop operator which injects window keep/ drop decisions into the
input tuples by marking them with window specification bits. These
marks are then interpreted by the downstream aggregate operators,
which can be arranged in arbitrary compositions (pipeline, fan-
out, or their combinations). As a result, subset results are pro-

duced. In UpStream, we have essentially pushed the above tuple
marking logic down to the storage level, by making our update
queue “window-aware”. Instead of a window drop operator, the
UpStream update queue manager marks the tuples inside the stor-
age before the query processing on those tuples actually starts. As
such, our window-aware update queues have one additional advan-
tage over the window drop approach: windows which are redun-
dant (if any) can be identified and their tuples can be immediately
pruned inside the update queue before they hit the query processor
(this is analogous to the in-place updates in the tuple-based case).
Another difference from the window drop approach, consists in the
manner of marking which windows to keep and which to drop. Up-
Stream keeps the most recent windows. This is done with the help
of window buffers which maintain the data structures for managing
windowed updates. There exists one window buffer for each key
in the update queue. The Window Manager takes care of window
buffers and dictates when to commit to a window: at window starts
or window ends. We have come up with two window management
policies based on the moment when the commit decision is taken.

• Lazy Window Buffer: The first approach is a direct adapta-
tion of the tuple-based update processing approach: the query
only consumes a fully arrived window at each scheduling time
point, and it must be the most recently arrived one. We call this
approachlazy, since the window commit decision is postponed
until we are sure that we have a full window.

• Eager Window Buffer: The second approach can be seen as an
adaptation of append-based windowing to update-based seman-
tics. As in the append case, we commit to windows from their
starting points (not necessarily to all the starting windows). We
only commit to the latest started ones at each scheduling time
point. We call this approacheager, since the window com-
mit decision is eagerly taken as soon as a fresh window is seen
(even if it has not fully arrived yet).

Both approaches are designed to deliver fresh results and are supe-
rior to append-based approaches. However, from our experiments
in the prototype system, we have observed the lazy approach to be
more suitable for non-incremental window processing while eager
was more suitable for incremental window processing.

3. RESEARCH DIRECTIONS
The previous section introduced the update-based stream pro-

cessing model and a suitable architecture for an update semantics
aware stream processor, UpStream. Our solution is based on up-
date queues which minimize staleness as soon as possible in the
processing pipeline and allow for minimal memory usage. Two ma-
jor features of update queues were presented: key scheduling and
windowing operations on update streams. The latter has to do with
the effect that update semantics has on operator semantics (like the
sliding window aggregate) and vice-versa. While having found a
good way to apply update semantics to windows, we are yet to have
the same for the rest of the typical streaming operators (e.g. join).
We plan to address this as part of future work. Regarding the for-
mer feature and not only, we would like to discuss some interesting
directions to follow. First, we aim to build a complete scheduling
framework. That is, we envision a set of heuristics that match static
application requirements to system and environment constraints.
Second, after having the scheduling framework in place, we plan
to study hybrid strategies that combine various specific scheduling
policies to best match changing application requirements. To this
extent, we have two research directions to explore in the context of
UpStream:real-time schedulingandadaptive load management.

4

3.1 Real-time Scheduling
Key scheduling to minimize staleness is a case of real-time schedul-

ing. In this section we want to discuss the research directions re-
garding key scheduling (per query) and query scheduling (multiple
queries) under update semantics using a uni-processor model.

3.1.1 Update Patterns
In Section 2.3 we showed the default behavior of the update

queue with IN-PLACE scheduling policy and an improvement in
the form of the LINECUTTING heuristic that was targeted at syn-
thetic key update distributions with fast and slow updaters. In this
specific scenario, the results are promising and motivate us to inves-
tigate further into more generic distributions. For instance, a good
immediate step would be synthetic distributions havingm classes
of update keys. Synthetic distributions drive the search for the good
scheduling heuristic. Nevertheless, our heuristics have to be tested
against well known statistical distributions, such as Poisson or Zipf.

During our investigation of a good LINECUTTING heuristic, we
observed that some configurations of factors (load, number of keys,
number of slow updaters, skew) were either very hard to optimize
or left very little room to do so. This led us to believe that there
has to be a point beyond which no optimizations could be made
for a uni-processor model. We know that whatever heuristics we
may find, they should behave at least as good as IN-PLACE. There-
fore, if IN-PLACE offers the upper bound on performance, we ask
what is the lower bound? Unfortunately, such a lower bound can
be found only off-line and this may represent a hard task to solve.
However, we plan to search for the lower bound in hope to find the
optimization space across system configurations (load + key distri-
bution parameters).

3.1.2 Access Patterns
So far, we have assumed that applications are interested in all the

keys equally. An example of such applications are the monitoring
type. Nevertheless, there are applications that need to monitor only
a subset of the keys which are more relevant or more important
during a particular time interval. The relevance that the application
assigns per key, translates into how often the application looks at
the results for that key. For instance, it may happen that sensors in
region A have started to produce high volumes of readings all of a
sudden. As these sensors represent an increased interest to the ap-
plication, treating all the keys fairly by the system is not an option.
Therefore, the system needs to explicitly prioritize them. Dealing
with this new dimension to the problem means we have to revise
our scheduling framework and introduce the so-called access fre-
quencies (i.e. priorities) into the model. The result is a system that
handles efficiently both uniform and non-uniform update frequen-
cies for a set of relevant keys while relaxing the QoS model for
others less relevant.

3.1.3 Multi-query Scheduling
We have analyzed the key scheduling problem concerning queries

with one update stream containing multiple updating keys. How-
ever, our techniques are not bound to single queries, especially
since a stream processor may run multiple user queries at the same
time. We believe that key scheduling can be extended to multi-
ple query scheduling and that for each query the storage-centric
approach can still bring benefits as shown so far. However, our
approach has to incorporate the heterogeneity of queries (e.g. dif-
ferent processing costs, different semantics, etc.) and the different
contention patterns in a shared-resources environment. It is our
intention to extend the UpStream framework to coordinate multi-
ple update streams with the goal of minimizing staleness of the

query answers, in whatever configuration or form queries may be
found. As a result, we expect to define a set of efficientmulti-query
schedulingstrategies.

3.2 Adaptive Load Management
Adaptive load management refers to the ability of the system to

sense changes in the characteristics of the streams, workload or ap-
plication requirements and employ the correct measures or strate-
gies that respond best to the new setting. In fact, the scheduling
heuristics will become the building blocks for adaptive load man-
agement techniques. We envision two directions in this respect.

3.2.1 Hybrid Semantics
As a further study in UpStream, we would like to investigate the

possibility of employing a hybrid model between append and up-
date semantics. Such a model would process all arrivals for a set
of keys while the others would be updating. The update queue is
adaptive enough to respond to varying load levels. However, hy-
brid semantics refers to the ability of the system to switch between
update and append semantics based on application requirements.
For instance, the application may want to switch focus on a set
of keys for which it wantsall values processed, while caring less
about other keys, which are left to update as usual. Hybrid seman-
tics means we may have append-based and update-based process-
ing (i) employed at the same time for distinct key or query sets
or (ii) for the same key or query. We expect to come up with a
correct configuration of this model and account for the trade-off in
staleness for switching back and forth between append and update
behavior. Another dimension of the hybrid model would be to react
to changes in the characteristics of the streams and application re-
quirements by searching the best key scheduling strategy to match
the new configuration.

3.2.2 Elastic processing model
So far, we have discussed UpStream in the context of a uni-

processor model with shared system resources. We have shown that
UpStream offers guarantees in terms of the recency of processed
updates and stable staleness levels with increasing load. However,
this may not be sufficient when the application introduces some
firm constraints on staleness levels. For instance, the application
may impose that results be delivered with staleness that should not
go above a certain threshold. However, the system may not always
be able to meet this constraint under a uni-processor model. There-
fore, while still keeping the update behavior, the system may try to
parallelize execution in order to lower staleness below the thresh-
old. This introduces the need for an elastic processing model that
would achieve dynamic and minimal resource allocation.

4. RELATED WORK
This research is closely related to work in stream load manage-

ment. Existing data stream management systems, like Aurora ([3]),
treat streams as append-only sequences. Load management in such
systems is focused mainly on minimizing latency. Two classes of
approaches exist. The first class focuses on load distribution and
balancing, while the second class focuses on load shedding. Load
distribution and balancing involve both coming up with a good ini-
tial operator placement (e.g., [22]) as well as dynamically chang-
ing this placement as data arrival rates change (e.g., [6], [23], [15]).
In general, moving load is a heavy-weight operation whose cost
can only be amortized for sufficiently long duration bursts in load.
For short-term bursts leading to temporary overload, load shedding
is proposed. In load shedding, the distribution of operators onto
the processing nodes is kept fixed, but other load reduction meth-

5

ods (e.g., drop operators, data summaries) are applied on the query
plans which results in approximate answers (e.g., [19], [4], [16],
[21], [18]). All of these techniques focused on reducing latency
for applications with append semantics, and none of them provided
storage-based solutions. In UpStream, we take a storage-centric
approach to load management. Basically, the system is faced with
a resource allocation problem when running key-sensitive queries:
when overload occurs, the question is what (keys) should we pro-
cess first to minimize overall QoS degradation.

A major focus in this research is exploiting application update se-
mantics by embedding them into the streaming infrastructure. Up-
date semantics have also been studied recently in non-streaming
domains like synchronizing databases, materialized view mainte-
nance, loading data warehouses and so forth. For instance, Cho
and Garcia-Molina study the problem of update synchronization
of local copies of remote database sources in a web environment
[10]. The problem is when and what to synchronize so as to max-
imize time-averaged freshness of local copies. Although aiming at
a similar problem (staleness is the opposite of freshness), we ad-
dress an entirely different model which is push-based. This makes
the input arrival times known and synchronization is done pro-
actively through continuous queries. Sharaf et al propose a schedul-
ing policy for multiple continuous queries in order to maximize
the freshness of the output streams disseminated by a web server
[17]. Furthermore, it is assumed that occasional bursts in data rates
are short-term and all input updates are eventually delivered (i.e.,
append semantics). In our work, we focus on update semantics,
where delivering the most recent result in overload scenarios is the
main requirement. A more recent and closely related work to Up-
Stream is the DataDepot Project from AT&T Labs [12], [11], [7].
While having many warehousing features, DataDepot also deals
with real-time scheduling of update jobs in a streaming data ware-
house, which is of particular interest to us. However, in UpStream
we target continuous operations on streams (e.g., sliding window
queries) which can be interpreted as a pre-processing step for a
real-time data warehouse system such as DataDepot.

5. CONCLUSIONS
In this paper, we presented UpStream, a framework that deals

with load management for streaming applications with update se-
mantics. Such applications care more about having the most up-to-
date query results while they relax the completeness requirement.
We proposed a novel storage-centric framework for load manage-
ment based on update queues. As part of our initial and on-going
work, we have shown:

• A baseline architecture for an update semantics-aware stream
processor which was built as an extension of a state-of-the-art
streaming engine, Borealis. The goal here was to find the cor-
rect framework that is best suitable for applications with update
semantics.

• A set of new techniques for update key scheduling that prove
scalable with load. IN-PLACE policy handles best uniform
update key distributions, while LINECUTTING is designed to
cope with a special case of non-uniform update probability dis-
tribution.

• Space-efficient and low-staleness techniques for window pro-
cessing. It is our plan to also study the behavior of other stream-
ing operators (e.g. joins) under update semantics and thus pro-
vide full support for a wide range of queries.

UpStream offers two major research directions: real-time schedul-
ing and adaptive load management. Finally, for more informa-
tion about the UpStream models, initial implementation and per-

formance evaluation, we would like to refer the interested reader to
the UpStream technical report ([14]).

6. REFERENCES
[1] NYSE Data Solutions. http://www.nyxdata.com/nysedata/.
[2] D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack,

J. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul,
Y. Xing, and S. Zdonik. The Design of the Borealis Stream
Processing Engine. InCIDR, 2005.

[3] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A New
Model and Architecture for Data Stream Management.VLDB
Journal, 12(2), 2003.

[4] B. Babcock, M. Datar, and R. Motwani. Load Shedding for
Aggregation Queries over Data Streams. InICDE , 2004.

[5] S. Babu and J. Widom. Continuous queries over data streams.
SIGMOD Record, 30(3), 2001.

[6] M. Balazinska, H. Balakrishnan, and M. Stonebraker. Contract-Based
Load Management in Federated Distributed Systems. InNSDI, 2004.

[7] M. H. Bateni, L. Golab, M. T. Hajiaghayi, and H. Karloff. Scheduling
to Minimize Staleness and Stretch in Real-Time Data Warehouses. In
ACM SPAA Conference, Calgary, Canada, August 2009.

[8] I. Botan, G. Alonso, P. M. Fischer, D. Kossmann, and N.Tatbul.
Flexible and Scalable Storage Management for Data-intensive
Stream Processing. InEDBT, 2009.

[9] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and
M. A. Shah. Telegraphcq: Continuous dataflow processing. In
SIGMOD, 2003.

[10] J. Cho and H. Garcia-Molina. Synchronizing a Database to Improve
Freshness. InACM SIGMOD, 2000.

[11] L. Golab, T. Johnson, J. S. Seidel, and V. Shkapenyuk. Stream
Warehousing with DataDepot. InACM SIGMOD Conference,
Providence, RI, June 2009.

[12] L. Golab, T. Johnson, and V. Shkapenyuk. Scheduling Updates in a
Real-Time Stream Warehouse. InICDE Conference, Shanghai,
China, March 2009.

[13] L. Golab and T.Özsu. Issues in Data Stream Management.ACM
SIGMOD Record, 32(2), 2003.

[14] A. Moga, I. Botan, and N. Tatbul. UpStream: Load Management
Techniques for Update Streams. Technical report, ETH Zurich,
Switzerland, http://www.systems.ethz.ch/research/projects
/upstream/UpStream-TR.pdf, 2009.

[15] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh,
and M. Seltzer. Network-Aware Operator Placement for
Stream-Processing Systems. InICDE , 2006.

[16] F. Reiss and J. M. Hellerstein. Data Triage: An Adaptive
Architecture for Load Shedding in TelegraphCQ. InICDE , 2005.

[17] M. A. Sharaf, A. Labrinidis, P. K. Chrysanthis, and K. Pruhs.
Freshness-Aware Scheduling of Continuous Queries in the Dynamic
Web. InWebDB, 2005.

[18] N. Tatbul, U. Çetintemel, and S. Zdonik. Staying FIT: Efficient Load
Shedding Techniques for Distributed Stream Processing. InVLDB ,
2007.

[19] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and
M. Stonebraker. Load Shedding in a Data Stream Manager. InVLDB
, 2003.

[20] N. Tatbul and S. Zdonik. Window-aware Load Shedding for
Aggregation Queries over Data Streams. InVLDB , 2006.

[21] Y. Tu, S. Liu, S. Prabhakar, and B. Yao. Load Shedding in Stream
Databases: A Control-Based Approach. InVLDB , 2006.

[22] Y. Xing, J.-H. Hwang, U. Çetintemel, and S. Zdonik. Providing
Resiliency to Load Variations in Distributed Stream Processing. In
VLDB , 2006.

[23] Y. Xing, S. Zdonik, and J.-H. Hwang. Dynamic Load Distribution in
the Borealis Stream Processor. InIEEE ICDE, 2005.

6

