
Traceable PeertoPeer Record Exchange

Fengrong Li
supervised by Yoshiharu Ishikawa
Graduate School of Information Science

Nagoya University, 4648601, Japan

lifr@db.itc.nagoyau.ac.jp

ABSTRACT
Peer-to-peer (P2P) technology allows us flexible informa-
tion sharing and communications in a wide-spread network.
Unlike the traditional client-server architecture, a P2P net-
work enables a peer to publish information and share data
with other peers without central server control. In such an
environment, tracing how data is copied between peers and
how data modifications are performed is not easy because
data replications and modifications are performed indepen-
dently by autonomous peers. This brings inconsistency in
exchanged information and results in lack of reliability.

To provide reliable and flexible information exchange fa-
cility in P2P networks, I am working on a framework for
traceable record exchange in a P2P network. In this frame-
work, a peer can exchange structured records with a prede-
fined schema among other peers. The framework supports a
tracing facility to query the lineage of the obtained records.
A tracing query is described in datalog and executed as a
recursive query among cooperating peers in a P2P network.
In the query execution process, the exchange and modifica-
tion histories of the queried records are collected dynami-
cally from the related peers. In this paper, the background,
the motivation, the outline of the approach, and the current
on-going work are presented.

1. INTRODUCTION
In recent years, peer-to-peer (P2P) technologies have at-

tracted much attention [3]. Although existing file exchange
services proved the potential effectiveness of P2P technolo-
gies by showing their flexibility and scalability, several im-
portant issues occurred such as copyright violation and ex-
change of unreliable information. Development of reliable
information exchange in a P2P network has been one of the
important issues. One approach to cope with the problem
is to support lineage tracing facilities [15, 16], which tries to
give us evidences how a data item was obtained from other
peers and why a data item exists in a peer.

Based on the background, we proposed a network-wide

.

system framework for traceable P2P record exchange [10,
12]. We have extended the notion of lineage tracing to in-
formation exchange in a P2P network. A record , in our
framework, is a tuple-structured data item that obeys a pre-
defined schema globally shared in the network. Records are
exchanged between peers and peers can modify, store, and
delete their records independently. Record exchange and
modification histories are maintained in a database of each
peer in a distributed manner. The main objective of our
work is to realize the traceability facility based on the his-
torical information maintained in peers. Using histories, a
user can know, for example, which peer initially created a
specific record, and how the record was exchanged between
peers until it reached the current peer. Since a user can un-
derstand why and how a record exists in his or her peer, the
user can rely on the information contained in the record. An
important feature of our P2P record exchange architecture
is that it is based on the database technologies to support
record exchange and traceability.

A user can trace the lineage of a target record by issu-
ing a tracing query. For helping a user to write a recur-
sive tracing query, the framework provides an abstraction
layer which virtually integrates all distributed relations and
a datalog-based query language for describing tracing queries
in an intuitive manner. Another feature of the framework
is that it employs “pay-as-you-go” approach [9] for tracing.
Given a tracing query, distributed peers cooperatively an-
swer it by integrating historical data maintained by them.
Such a query can be expressed by a recursive query that tra-
verses peers in the P2P network. The framework provides
two query execution modes, ad-hoc queries and continual
queries, for fulfilling different tracing requirements.

This paper gives an overview of our contributions. Sec-
tion 2 reviews the related work. Section 3 describes the
traceable P2P record exchange framework. Section 4 in-
troduces definition of the tracing queries and two execution
modes. Section 5 provides the query processing strategies
for ad-hoc queries and continual queries. Section 6 describes
an on-going work to enhance the framework by using mate-
rialized views. Finally, Section 7 concludes the paper.

2. RELATED WORK
There are a variety of research topics on P2P databases,

such as coping with heterogeneity, query processing, and in-
dexing methods [1]. The most related field to our research
is information integration in a P2P network. Record ex-
change in our framework can be considered as a special type
of information integration, in which information (records)

66

uqxzhou
Typewritten Text
Copyright is held by the author/owner(s).VLDB 2010 PhD Workshop, September 13, 2010, Singapore

are loosely but cooperatively shared in the network. In this
sense, a highly related project is Orchestra [7], which aims
at collaborative sharing of evolving data in a P2P network.
However, our framework is totally different from P2P in-
formation integration because we do not try to collect all
the information in the P2P network. The key point is that
we can trace all the histories about exchanged records if we
want using tracing queries.

A related topic is data provenance. The target field of
that is quite wide and it covers data warehousing [6], un-
certain data management [16], database curation [5], and
other scientific fields such as bioinformatics [4]. Historical
information to support data provenance is often called lin-
eage. In our framework, exchange and modification histories
stored in peers correspond to lineage to explain how records
are obtained and modified in the P2P network. In typical
implementation, lineage information is attached to a data
item and modified when the item is updated. In contrast,
lineage information in our framework is scattered in the P2P
network and collected when it is required.

Another related concept is dataspace system [9]. It focuses
on a highly flexible integration scenario. In some application
situations, it is not reasonable to integrate all the available
information beforehand. For example, a personal informa-
tion management system does not necessarily require full
integration of information sources. It may be reasonable
to perform integration dynamically when a user request is
issued. Such integration is called the “pay-as-you-go” ap-
proach [9]. Since we can assume tracing requirements do
not occur quite often, the “pay-as-you-go” approach will be
a better choice. It does not highly interfere with the au-
tonomity of peers.

A tracing query in our framework is represented as a re-
cursive query executed in a P2P network. To describe a trac-
ing query in a user-friendly manner, we use datalog , which
is a well-known query language for deductive databases [2].
The most related work to our research is declarative net-
working [14]. In their research, a datalog-based recursive
query processing framework is used for collecting informa-
tion from P2P networks and sensor networks. In contrast
to declarative networking, our framework has the following
features: 1) The objective of our framework is to realize
traceable record exchange in a P2P network and is based on
the architecture introduced in Section 3. Datalog queries are
used not only for describing high-level tracing requirements,
but also for representing distributed query execution. On
the other hand, declarative networking focuses on contin-
ual monitoring in a distributed network and does not have
the high-level abstraction feature. 2) Declarative network-
ing mainly focuses on continual queries because their target
is continual monitoring in a network, but our framework
considers ad-hoc queries in addition to continual queries.
3) We use datalog¬ for representing tracing requirements.
By allowing the use of negations, we can greatly improve
the query expression power. We carefully restrict allowable
tracing queries and effectively use the insertion-only feature
of the underlying databases, and construct a clear query
processing framework.

3. TRACEABLE P2P RECORD EXCHANGE
In this section, we provide an overview of traceable P2P

record exchange framework [10, 12] in which tuple-structured

records are exchanged in a P2P network.1 The framework
consists of the following three layers—the user layer, the lo-
cal layer, and the global layer. In the following, we describe
the role of each layer with examples. We assume that in-
formation about novels is exchanged among peers in a P2P
network.

3.1 User Layer
A peer in our framework corresponds to a user and main-

tains the records owned by the user. Roughly speaking, the
user layer supports what a user sees. A peer can create,
delete, modify, and register records in its record set based
on the peer’s decision. Peers can behave autonomously and
exchange records when it is required. In addition, a peer
can find desired records from other peers by issuing a query.

We assume that each peer in a P2P network maintains a
Novel record set that has two attributes title and author.
Figure 1 shows four record sets maintained by peers A to
D in the user layer. Each peer maintains its own records
and wishes to incorporate new records from other peers in
order to enhance its own record set. For example, the record
(t1, a1) in peer A may have been copied from peer B and
registered in peer A’s local record management system.

Peer A
title author
t1 a1
t2 a3

Peer B
title author
t1 a1
t4 a4

Peer C
title author
t1 a1

Peer D
title author
t1 a1

Figure 1: Record sets in user layer

3.2 Local Layer
Each peer maintains its own relational tables for storing

record exchange and modification histories and facilitates
traceability. For example, peer A shown in Fig. 1 contains
the four relations shown in Fig. 2 in the local layer.

Data[Novel]@’A’

id title author
#A1 t1 a1
#A2 t2 a2
#A3 t2 a3

Change[Novel]@’A’

from id to id time
− #A2 . . .

#A2 − . . .
#A2 #A3 . . .

From[Novel]@’A’

id from from time
peer id

#A1 B #B1 . . .

To[Novel]@’A’

id to to time
peer id

#A1 C #C1 . . .

Figure 2: Relations in local layer for peer A

The roles of four relations are described as follows:

• Data[Novel]: It maintains all the records held by the
peer. Every record has its own record id for the main-
tenance purpose. Each record id should be unique in

1We use the term “record exchange” differently from data
exchange in [7]. The latter is the problem of taking data
that obeys a source schema and creating data under a tar-
get schema that reflects the source data as accurately as
possible.

67

the entire P2P network. Even the deleted and modi-
fied records, which are hidden from the user, are also
maintained for lineage tracing.

• Change[Novel]: It is used to hold the creation, mod-
ification, and deletion histories. Attributes from id

and to id express the record ids before/after a mod-
ification. Attribute time stores the timestamp infor-
mation. When the value of the from id attribute is
the null value (−), it represents that the record has
been created at the peer. Similarly, when the value of
the to id attribute is the null value, it means that the
record has been deleted.

• From[Novel]: It records which records were copied
from other peers. When a record is copied from other
peer, attribute from peer contains the peer name and
attribute from id has its record id at the original peer.

• To[Novel]: It plays an opposite role of From[Novel]
and stores information which records were sent from
the current peer to other peers.

Note that From[Novel] and To[Novel] contain duplicates,
but they are stored in different peers. For example, for the
first tuple of From[Novel]@’A’ in Fig. 2, there exists a cor-
responding tuple (#B1, A, #A1, ...) in To[Novel]@’B’.
When the record is registered at peer A, From[Novel]@’A’
and To[Novel]@’B’ are updated cooperatively to preserve
the consistency.

In the local layer, all the information required for trac-
ing is maintained in peers in a distributed manner. When
a tracing query is issued, we need to collect the required
information from the related peers. The record set in the
user layer of a peer is just a restricted view of its local layer
relations. Figure 3 illustrates the relationship between the
user layer and the local layer.

Record

Set

From

Change

To

Local Layer

Data

browse, search,

register, delete

User Layer

local

virtual

view

Figure 3: Local layer vs. user layer

3.3 Global Layer
For ease of understanding and writing tracing queries, we

provide an abstraction layer called the global layer which vir-
tually integrates all distributed relations in the local layer.
Figure. 4 shows three virtual global views for peers A to D
shown in Fig. 1. Note that we do not materialize the three
views shown in Fig. 4. The global virtual views are just used
as intuitive images for describing tracing queries.
Data[Novel] view in Fig. 4 expresses a view that uni-

fies all the Data[Novel] relations in peers A to D shown in

Data[Novel] View

peer id title au-
thor

A #A1 t1 a1
A #A2 t2 a2
A #A3 t2 a3
B #B1 t1 a1
B #B2 t4 a4
C #C1 t1 a1
C #C2 t5 a5
D #D1 t1 a1

Change[Novel] View

peer from to time
id id

A − #A2 . . .
A #A2 − . . .
A #A2 #A3 . . .
B − #B2 . . .
C − #C2 . . .
C #C2 − . . .
D − #D1 . . .

Exchange[Novel] View

from peer to peer from id to id time
D B #D1 #B1 . . .
B A #B1 #A1 . . .
A C #A1 #C1 . . .

Figure 4: Three views in global layer

Fig. 1. The peer attribute stores peer names. Change[Novel]
is also a global view which unifies all Change[Novel] rela-
tions in a similar manner. Exchange[Novel] unifies all the
underlying From[Novel] and To[Novel] relations in the lo-
cal layer. Attributes from peer and to peer express the
source and the destination of a record exchange, respec-
tively. Attributes from id and to id contain the ids of the
exchanged record in both peers.

Figure 5 illustrates the relationship between the local layer
and the global layer.

From

Change

To

Local Layer

Data

trace

Global Layer

global

virtual

view

From

Change

To

Data

…

Peer 1 PeerN

ExchangeChangeData

Figure 5: Local layer vs. global layer

4. TRACING QUERIES
In this section, we describe how to define tracing queries

and introduce two execution modes.

4.1 Definition of Tracing Queries
When a tracing requirement occurs, the user needs to ag-

gregate the related lineage information stored in the dis-
tributed peers. Since recursive processing in a P2P network
is required to collect such information, the datalog language
[2] appears to be one of the most promising language for
specifying queries. Furthermore, by using datalog, we can
reduce the program size greatly and can cope with various
types of tracing queries [10, 12]. The language datalog¬ is
defined by allowing negated literals in the bodies of rules [2].
In the following, we simply call it datalog . We introduce the
notation and semantics of a tracing query with an example.

68

Example 1. Suppose that peer A holds a record with title
t1 and author a1 and that peer A wants to know which peer
originally created the record. The following query Q1 fulfills
the requirement:

Query Q1
BReach(P, I1) ← Data[Novel](’A’, I2, ’t1’, ’a1’),

Exchange[Novel](P, ’A’, I1, I2,)
BReach(P1, I1) ← BReach(P2, I2),

Exchange[Novel](P1, P2, I1, I2,)
Origin(P) ← BReach(P, I),

¬ Exchange[Novel](, P, , I,)
Query(P) ← Origin(P)

P and I1 are variables and ‘ ’ indicates an anonymous vari-
able. Relation BReach defined by the first two rules means
“Backward Reachable”. It recursively traverses the arriv-
ing path of tuple (t1, a1) until it reaches the origin. The
third rule is used for finally determining the originating peer
name—it should be reachable from peer A and should not
have received the record from any other peer. The last rule
represents the final result expected by the user. 2

Note that the query is written using the three views in
the global layer. The user does not need to consider how
the actual data is distributed among the peers. The next is
another example.

Example 2. Consider the following query Q2:

Query Q2
Reach(P, I1) ← Data[Novel](’A’, I2, ’t1’, ’a1’),

Exchange[Novel](’A’, P, I2, I1,)
Reach(P, I1) ← Reach(P1, I2),

Exchange[Novel](P1, P, I2, I1,)
End(P) ← Reach(P, I),

¬ Exchange[Novel](P, , I, ,)
Query(P) ← End(P)

This query is similar to query Q1, except for exchanging
BReach and Origin by Reach and End. It finds the peers
which located at the end of the peers that recursively copied
(t1, a1) from peer A. In contrast to query Q1, its query
result may change as time passes. For example, if we apply
the query to our sample database, we get the result Query =
{(C)}. Assume that peer E copied the record from peer C.
After that, the result will change as Query = {(E)}. 2

As shown in these examples, datalog is so flexible that
we can specify various queries for tracing. Other types of
examples are shown in [10, 12].

4.2 Adhoc Queries and Continual Queries
Our framework supports two types of query execution

modes, the ad-hoc execution mode and the continual exe-
cution mode. Depending on the execution mode, a query is
called an ad-hoc query or a continual query, respectively.

First we consider ad-hoc queries. When query Q1 is is-
sued from a user in an ad-hoc manner, the query is processed
with the cooperation of distributed peers, then the result is
returned the original query issuer (the initial peer). Ad-hoc
queries are effective when we want to trace lineage informa-
tion currently available in the network.

We can execute Q2 as an ad-hoc query, but there is a
problem. Other peers may copy the target record after the
query is executed. If we want to know up-to-date informa-
tion, we need to issue ad-hoc queries repeatedly. To solve
the problem, we introduce the continual execution mode.

When a tracing query is executed in the continual execution
mode, the query is firstly executed as if in the ad-hoc exe-
cution mode and an initial result is returned to the query
peer, but the query is replicated in the related peers while
the distributed query execution. The query is registered in
each related peer as a continual query . A continual query
monitors changes in its peer, and may report an incremental
query result to the query peer when an additional result is
obtained. A continual query may be copied repeatedly when
some related events happen. To quit a continual query, a
user explicitly removes the query to clear the states in the
related peers.

Note that the continual execution mode is not effective
for the queries asking past information only. For example, if
we run query Q1 in the continual mode, the new result will
not appear because the query only refers to past histories.

5. QUERY PROCESSING
The complete algorithms are described in [13]. In this

section, we only describe the overview of query processing.

5.1 Query Mapping
Remember that tracing queries are described in datalog

in terms of three global virtual views in the global layer. In
order to process a tracing query, first we need to transform
the query for distributed execution using the information
in the local layer. The transformation is based on mapping
rules [13]. The following shows an example of mapping.

Example 3. Query Q1 is mapped as follows:

Mapped Query Q1
BReach(P, I1) ← Data[Novel]@’A’(I2, ’t1’, ’a1’),

From[Novel]@’A’(I2, P, I1,)
BReach(P1, I1) ← BReach(P2, I2),

From[Novel]@P2(I2, P1, I1,)
Origin(P) ← BReach(P, I),

¬ From[Novel]@P(I, , ,)
Query(P) ← Origin(P)

We call the symbol ’@’ a location specifier. If a constant peer
name follows this symbol as @’A’, it means that the relation
is located at peer A. From[Novel]@P2 represents From[Novel]
relation at peer P2, where P2 is a variable representing a peer
name. It is instantiated while the query processing. 2

Note that the mapped query is described by using rela-
tions in the local layer. In the global to local mapping step,
we select one of the executable programs after applying the
mapping rules. After that, we go to the actual query execu-
tion process.

5.2 Adhoc Query Processing
In the case of ad-hoc execution mode, to execute a mapped

query, we further need to translate the query into the form
that is suit for distributed execution. We employ the semi-
naive method [2], which is the most basic method for datalog
query evaluation. The outline is given as follows:

1. First we derive query fragments for each idb (inten-
sional database) based on the seminaive method.

2. Given query fragments (and intermediate relations, if
the peer is not an initial peer), peer p performs query
processing locally as possible. Using the terminology
of deductive databases, we execute the query frag-
ments until we reach the local fixpoint .

69

3. If the remaining part of the query process can be exe-
cuted by other peers, p forwards the query fragments
and intermediate relations to such peers p1, . . . , pn.
Peers p1, . . . , pn perform similar processes recursively.

4. Peer p merges the query results from p1, . . . , pn and
own result then return the merged result. If p is called
recursively from another peer, the result is returned to
the peer. If p has no peer for forwarding in Step 2, it
returns the own result only. After that, p deletes all
the local intermediate data.

5. When the initial peer receives all the results, it returns
the final result to the user by merging them.

Example 4. Figure 6 illustrates how query Q1 is exe-
cuted for our example. Since we do not have enough space
for describing the query processing algorithm, the process is
explained intuitively. At first, the initial peer A executes
the query locally and gets intermediate results ∆new

BReach and
BReachnew. BReachnew contains the information of the peers
which are on the path from peer A to the origin. ∆new

BReach con-
tains tuples which are new in the step. It drives the query
process based on the seminative method. Since peer A have
reached the fixpoint, it tries to find other peers to continue
the query process. In this case, peer B is such a peer—the
decision is made by considering the contents of ∆new

BReach.
After receiving the intermediate results from peer A, peer

B starts the local query process and gets new ∆new
BReach and

BReachnew. Based on the similar decision, the query is fi-
nally forwarded to peer D. In the query process of peer D,
the third rule is executed because peer D is the origin. In this
case, the seminaive query evaluation iterates twice in peer D
and reaches the fixpoint. Since there are no following peers,
we terminate the process, and then the results are returned
in the backward direction through the forwarding path. 2

new

BReachD

P I

B #B1

peer A

(a) Execute Q1_init

exec_
query@B

new

BReachD

P I

D #D1

peer B

P I

B #B1

D #D1

newBReach

new

BReach

(b) Iterative execution

P I

B #B1

exec_
query
@D

peer D

P I

B #B1

D #D1

new

BReach

(c) Iterative execution

new

OriginD

P

D

new

Origin

P

D

P I

B #B1

D #D1

new

BReach

(d) Iterative execution

new

Origin

P

D

new

QueryD

P

D

new

Query

P

D

Figure 6: Execution of Q1 in ad-hoc mode

The seminaive method is quite popular for the query eval-
uation in deductive databases and also used in declarative
networking [14]. The main difference between declarative
networking and our approach is in their targets. In declar-
ative networking, the target is to monitor information from
a network such as a sensor network. Each node has connec-
tion information of neighboring nodes, but does not have
network-wide information. Thus, recursive query process-
ing is effective for traversing the connection paths. In con-
trast, a tracing query in our approach traverses the record

exchange paths between peers. In this sense, its query pro-
cessing is content-based ; a query is forwarded to other peers
if they have record exchange histories and the forwarding is
not depend on the physical P2P network. In addition, our
approach has two abstraction layers, the user layer and the
global layer. Especially, the global layer is quite important
to write a tracing query in an intuitive manner.

Although we only mentioned the use of the seminaive
method, we performed some experiments for comparing the
seminaive method and the magic set method in [11]. The re-
sult indicates that the magic set method is effective in some
specific conditions, but the seminaive method is simple and
applicable to any queries.

5.3 Continual Query Processing
As described in Section 4.2, a continual query is executed

for a potentially long period of time, and is particularly use-
ful in our context where information of record exchange is
updated frequently in a distributed P2P network. Consider
Example 2 again. The result of a tracing query may change
when an update is performed in any related peers. To mon-
itor updates, we introduce the continual execution mode.

A continual query can be executed based on the seminaive
method as in the case of ad-hoc queries. The difference is
that we store the partial results of a continual query as the
state of the query. When an update occurs, we restart the
query processing.

Example 5. We explain how query Q2 is executed as a
continual query in an intuitive manner. First, the query is
executed like an ad-hoc query. Figure 7 shows the result for
our example. The result Query = {(C)} obtained in peer C
is returned to peer A, then it is returned to the user as a
final result. The execution is same as the ad-hoc mode, but
the difference is that we do not delete the given queries and
their intermediate data in the peers.

Suppose that peer E copied the record (t1, a1) from peer
C now, and assume that its record id in peer E be #E1. In
this case, some tuples are inserted in the local databases of
peer C and E. Especially, the insertion of a new tuple in
To[Novel]@’C’ triggers the new query process. We restart
the query evaluation process in peer C and utilizes ∆new

Reach and
Reachnew, which are stored in peer C as the state to contine
the query. By reevaluating the query from peer C, we get new
results as shown in Fig. 8. Based on the reevaluation, we
obtain a new result Query = {(E)}. This new result replaces
the former result in peer A. 2

new

ReachD

P I

C #C1

peer A

(a) Execute Q1_init

new

Reach

P I

C #C1

exec_
query
@C

peer C

P I

C #C1

newReach

(b) Iterative execution x 2

new

End

P

C

new

QueryD

P

C

newQuery

P

C

Figure 7: Continual query execution: before update

6. FRAMEWORK ENHANCEMENT BASED
ON MATERIALIZED VIEWS

We describe on-going work for enhancing our framework
based on materialized views. Materialized views play im-
portant roles in databases [8], especially for reducing query

70

exec_
query
@E

peer C

P I

C #C1

E #E1

new

ReachD

(c) Iterative execution

P I

C #C1

new

Reach

peer E

P I

C #C1

E #E1

new

Reach

(d) Iterative execution x 2

newEnd

P

E

new

QueryD

P

E

new

Query

P

E

Restart query from peer C

Figure 8: Continual query execution: after update

processing cost. In our context, materialized views are quite
helpful because most of tracing queries (except for continual
ones) use past histories. As described below, they are also
useful for fault-tolerance because duplicated information is
maintained in different peers.

In the following, we describe the basic idea to use mate-
rialized views effectively in our framework. In addition to
own record exchange history, each peer maintains exchange
histories which are reachable within k hops in the record
exchange paths. For example, From[Novel]@’A’ in Fig. 2
contains the information that record #A1 is a copy of record
#B1 in peer B. If k is specified as k = 2, peer A also maintains
the information that record #B1 in peer B is a copy of record
#D1 in peer D. We can define similar replication methods for
Data and Change relations. Datalog-based query definitions
are useful for describing such replication schemes as materi-
alized view definitions.

One benefit of the approach is that we can skip some peers
when we traverse the record exchange path. For example, an
execution of query Q1 can directly go from peer A to peer D
without accessing peer B. Other benefit is in its use for fault-
tolerance. Even if a peer is disconnected from the network
due to some failure, we may be able to recover its historical
information by combining the replicated information in the
related peers.

The negative aspect is the increase of the maintainance
cost not only in terms of storage cost but also in terms of
processing cost. For example, when we maintain material-
ized view for From[Novel] with k = 2 as above, we need to
perform transaction processing involving three peers when
an update happens. Therefore, the tradeoff between the
cost and the benefit would become an important issue. Cur-
rently, we are developing the maintainance method of ma-
terialized views and their effective use in query processing.

7. CONCLUSIONS AND FUTURE WORK
In my work, the concept of a traceable P2P record ex-

change framework was proposed [10, 12]. It is a unique
approach to information exchange in a P2P network that
incorporates the notion of lineage tracing. One of the im-
portant features of the framework is to maintain historical
information in distributed peers and to integrate the infor-
mation based on the “pay-as-you-go” approach [9]. The use
of datalog [2] is another feature of the framework. A tracing
process basically requires a recursive traversal along the path
of record exchange. We can write various types of tracing
queries in a compact manner using datalog. In addition, we
already developed the query processing algorithms for both
of the ad-hoc execution mode and the continual execution
mode [13].

Considering the issues of performance improvement and
fault-tolerance, we are now developing an enhanced frame-

work with the support of materialized views. In addition,
we are currently developing a prototype system based on our
framework. The development will have positive feedbacks to
improve our fundamental framework.

8. ACKNOWLEDGMENTS
This research was partly supported by the Grant-in-Aid

for Scientific Research (#21013023, #22300034) from JSPS.

9. REFERENCES
[1] K. Aberer and P. Cudre-Mauroux. Semantic overlay

networks. In VLDB, 2005. (tutorial notes).

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] S. Androutsellis-Theotokis and D. Spinellis. A survey
of peer-to-peer content distribution technologies. ACM
Computing Surveys, 36(4):335–371, 2004.

[4] D. Bhagwat, L. Chiticariu, W.-C. Tan, and
G. Vijayvargiya. An annotation management system
for relational databases. In Proc. VLDB, pages
900–911, 2004.

[5] P. Buneman, J. Cheney, W.-C. Tan, and
S. Vansummeren. Curated databases. In Proc. ACM
PODS, pages 1–12, 2008.

[6] Y. Cui, J. Widom, and J. L. Wiener. Tracing the
lineage of view data in a warehousing environment.
ACM TODS, 25(2):179–227, 2000.

[7] T. J. Green, G. Karvounarakis, N. E. Taylor,
O. Biton, Z. G. Ives, and V. Tannen. Orchestra:
Facilitating collaborative data sharing. In Proc. ACM
SIGMOD, pages 1131–1133, 2007.

[8] A. Gupta and I. S. Mumick, editors. Materialized
Views. MIT Press, 1999.

[9] A. Halevy, M. Franklin, and D. Maier. Principles of
dataspace systems. In Proc. ACM PODS, pages 1–9,
2006.

[10] F. Li, T. Iida, and Y. Ishikawa. Traceable P2P record
exchange: A database-oriented approach. Frontiers of
Computer Science in China, 2(3):257–267, 2008.

[11] F. Li, T. Iida, and Y. Ishikawa. ’Pay-as-you-go’
processing for tracing queries in a P2P record
exchange system. In Proc. DASFAA, pages 323–327,
2009.

[12] F. Li and Y. Ishikawa. Traceable P2P record exchange
based on database technologies. In Proc. APWeb,
pages 475–486, 2008.

[13] F. Li and Y. Ishikawa. Query processing in a traceable
P2P record exchange framework. IEICE Transactions
on Information and Systems, E93-D(6):1433–1446,
2010.

[14] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay,
J. M. Hellerstein, P. Maniatis, R. Ramakrishnan,
T. Roscoe, and I. Stoica. Declarative networking:
Language, execution and optimization. In Proc. ACM
SIGMOD, pages 97–108, 2006.

[15] W.-C. Tan. Research problems in data provenance.
IEEE Data Engineering Bulletin, 27(4):45–52, 2004.

[16] J. Widom. Trio: A system for integrated management
of data, accuracy, and lineage. In Proc. CIDR, pages
262–276, 2005.

71

