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ABSTRACT
The poor quality of data constitutes a major concern world-
wide, and an obstacle to data integration and analysis ef-
forts. Detecting errors and inconsistencies using application
specific data quality rules play an important role in data
quality assessment. These rules have different efficacy and
cost under different circumstances. In our previous work,
we have proposed a quantitative framework for measuring
and comparing data quality rules in terms of their effective-
ness. Effectiveness formulas are built from variables that
represent probabilistic assumptions about the occurrence of
errors in data values, and our earlier work gave examples of
how to derive these formulas in an ad-hoc fashion.

This paper lays the foundations of a workbench-approach
for systematically deriving effectiveness formulas. The ap-
proach involves several steps, including building Bayesian
network graphs, adding (symbolic) probabilities to the nodes
in the graph, and deriving effectiveness formulas. The graphs
are built algorithmically, for a large and useful class of data
quality rules. We present this approach and its implemen-
tation in Python, and report its evaluation results, which
show that the resulting formulas give reasonable estimates
of effectiveness scores under various scenarios.

1. INTRODUCTION
The poor quality of data constitutes a major concern

world-wide, and an obstacle to data integration and analy-
sis efforts. The first necessary step towards better quality is
being able to effectively detect “problematic” data. DQ as-
sessment techniques in practice heavily rely on application-
specific data quality (DQ) rules (or simply rules), which
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specify what data values are (likely to be) consistent and
error-free [2, 1]. In DBMS, this is achieved through the use
of SQL check constraints, or code embedded in transactions.

It is not unusual that a piece of data could be assessed in
multiple ways. For example, consider a CustomerOnt(sin,
name, city, street, pcode) table, which stores information
about the customers of a company living in Ontario, in-
cluding their social insurance number (sin) and postal-code
(pcode). Postal-code values in the table could be assessed
using (i) a regular expression, (ii) a pre-compiled list of valid
postal-codes for the application of interest, (iii) an extended
conditional functional dependency [5] such aspcode 6= “M8V
4G1” → city 1, or (iv) a separate table of postal-code /
phone area-code matches (since the correlation cannot be
captured using a functional dependency – but only with a
separate mapping table [12]). If there were another table
about customers available (e.g., by a different department
of the same company, or by another company), we can also
assess values of postal-code (and other attributes) by (v)
linking customers from different, independently-created ta-
bles.

Ideally we would assess data using all possible alterna-
tives: together they provide better coverage of detectable
errors. For example, (i) can be used to detects syntacti-
cally invalid Canadian postal-codes, while (ii) can be used
to further identify customers with non-Ontario postal-codes;
furthermore, (iii) and (iv) can be used to detect additional
errors in Ontario postal-codes (when they do not match
with the corresponding city or phone area-code properly).
However, using all possible rules is likely unfeasible in prac-
tice because each of them incurs some costs, including hu-
man/organizational costs in entering and maintaining data
that is not strictly needed for the application, and computer-
related costs for checking constraints. For example, (iv)
would require an additional attribute, area-code, to be added
and updated for the CustomerOnt schema, and as well as a
separate postal-code / phone area-code mapping table.

Our ultimate goal is to provide a workbench which sup-
ports comparative cost-benefit analyses for DQ rules. This
workbench would be useful to designers during the initial

1pcode values uniquely determines city values except for
“M8V 4G1”, which lies the boundary between the cities of
Toronto and Etobicoke



design of a database (since some alternatives require differ-
ent schemas), as well as in a data cleaning initiative during
administration (e.g., deciding which alternative to carry out
depending on available resource). In our previous work [11],
we have introduced the concept of “effectiveness” as a mea-
sure of benefit, and proposed a quantitative framework for
measuring and comparing DQ rules in terms of their effec-
tiveness. The following example illustrates effectiveness of
DQ rules and its measurement.

Example 1: Consider the CustomerOnt table defined ear-
lier, and a DQ rule φ0 which checks CustomerOnt.pcode
values against a list of pre-compiled Ontario postal-codes
(stored in the table LOnt with a single attribute pcode).
Whenever the pcode value v in a CustomerOnt tuple is not
found in LOnt, the rule is violated and the value v is as-
sessed as erroneous. Intuitively, effectiveness of φ0 measures
the likelihood that φ0 produces a correct / incorrect assess-
ment. More specifically, effectiveness of φ0 can be quantified
using the number of true positive (TP), false positive (FP)
and false negative FN .

For example, a TP occurs when CustomerOnt.pcode con-
tains some factual error and it is signaled erroneous by φ0

(i.e., φ0 is violated). There are actually two cases where
this can happen (assuming LOnt contains only valid Ontario
postal-codes):

• v is not the correct pcode in that tuple, and is an in-
valid Ontario postal-code (and therefore is not con-
tained in LOnt).

• v is not the correct pcode in that tuple but happens to
be a different valid Ontario postal-code, which luckily
is missing from LOnt.

To estimate the number of TP, we need to assign proba-
bilities (symbolic ones, rather than specific numeric values)
to various events whose occurrence (or absence) leads to one
of these two cases:

• p: the probability that a postal-code value in the Cus-
tomerOnt table is wrong;

• c: the probability that a factually incorrect postal-code
value in the CustomerOnt table happens to still be a
valid Ontario postal-code;

• s: the probability that a valid Ontario postal-code is
missing from LOnt

The expected number of TP is then expressed by the fol-
lowing formula:

(p× (1− c) + p× c× s)×N

where p×(1−c) is the probability of the first case, p×c×s is
the probability of the second case, and N is the total number
of tuples in CustomerOnt. In a similar way, we can obtain
the expected number of FP (i.e., v is factually correct but
φ0 is violated):

((1− p)× s)×N
and the expected total number of FN (i.e., v is factually
incorrect yet φ0 is not violated):

(p× c× (1− s))×N.

The expected number of TP, FP, FN can then be combined
to produce measures such as precision, recall and F-measure,
which we call the effectiveness formulas for φ0.

�

Effectiveness formulas are parametrized by symbolic vari-
ables for the various probabilities (e.g., p, c). This allows
us (i) to evaluate the effectiveness of a rule as a function of
changing values of these probability parameters (i.e., rang-
ing from 0 to 1), (ii) to identify the most effective region(s)
for a rule, (iii) to compare rules in terms of their effective-
ness, and (iv) to obtain reasonable effectiveness scores for a
rule by estimating values for these parameters via sampling.
We emphasize again, that the ultimate goal of these formu-
las is to perform cost-benefit analysis of alternative DQ rules
when we cannot implement them all.

As an example of rule evaluation, consider Figure 1 (taken
from [11]), which shows how the effectiveness of φ0 chances
with two parameters: s and p. We can see as s increases,
precision drops dramatically while recall increases slightly.
Moreover, by comparing 1(a) and 1(b), we can observe that p
has much larger influence on precision than on recall: recall
remains almost unchanged in the relative clean (i.e., p =
0.05) and dirty (p = 0.3) database; however, in the relative
dirty database, precision decreases considerably slower as s
increases from 0 to 0.2.

(a) A relative clean database

(b) A relative dirty database

Figure 1: Evaluation of φ0.



From our experience in [11], derivation of effectiveness
formulas is a complex and error prone process even for a
simple rule as shown in the previous example. The analysis
in the example will be further complicated if we remove the
assumption that “LOnt contains only valid Ontario postal-
codes”; new probabilistic variables need to be introduced to
accommodate the cases where LOnt contains non-Ontario
postal-codes and where LOnt contains plain invalid Cana-
dian postal-codes.

This particular paper concentrates the derivation of effec-
tiveness formulas for DQ rules. The main contributions of
the paper include:

• a characterization of the main factors that determine
effectiveness of DQ rules (Section 2),

• a novel, semi-automatic approach to derive effective-
ness formulas for a large and useful class of DQ rules
(including both equality- and tuple-generating depen-
dencies) (Section 3); it consists three phases:

– construction of a Bayesian network graph of events
of interest,

– assignment of (symbolic) probabilities to the events,
and,

– generation of effectiveness formulas from the graph;

• an evaluation of the proposed approach using simula-
tions (Section 4).

2. THE DETERMINING FACTORS FOR EF-
FECTIVENESS OF DQ RULES

We consider DQ rules that can be expressed in the follow-
ing form

H(z̄) ← R1(x̄1), . . . , Rm(x̄m),M1(ȳ1), . . . ,Mn(ȳn)

where each Ri (i = 1 . . .m) is the name of a database re-
lation, each Mj (j = 1 . . . n) is an arithmetic (in)equality
and H(z̄) is either another relation R0(x̄0) or (in)equality
M0(ȳ0); x̄i, ȳj and z̄ are tuples of variables and/or con-
stants2. As usual, we require that a DQ rule be “safe” in
the sense every variable appearing in some ȳj must also ap-
pears in some x̄i.

Without loss of generality, we impose two additional con-
ditions: (i) every x̄i contains variables only (e.g., R(x, 6) is
expressed as R(x, y), y = 6) and (ii) variable occurrences in
xi must be distinct, so each variable uniquely identifies a
database relation occurrence and an attribute/column in it.
Furthermore, we assume every rule is put into a standard
form where: all tautologies (e.g., x = x), contradictions
(x > y and x < y) and redundancies (e.g., x = z given
x = y and y = z) are removed. Variables that appear only
in x̄i are irrelevant as far as effectiveness is concerned, hence
are replaced by .

DQ rules defined in this way can be used to express a large
and useful class of integrity constraints that includes both
tuple-generating and equality-generating dependencies, as
illustrated by the following examples.

2Variables that appear only in the body of a rule are im-
plicitly existentially quantified, while others are implicitly
universally quantified.

Example 2: Consider the Ontario customer schema Cus-
tomerOnt again. The rule φ0 discussed in Example 1 can
be expressed as:

φ0 : LOnt(pcode : x2) ← CustomerOnt(sin: ,name: ,city: ,street: , pcode:x1),
x1 = x2.

The conditional FD (iii) from Section 1 is expressed as:

φ1 : y1 = y2 ← CustomerOnt(sin: ,name: ,city:y1,street: ,pcode:x1),
CustomerOnt(sin: ,name: ,city:y2,street: ,pcode:x2),
x1 = x2, x1 6= “M8V 4G1”.

�

The effectiveness of a rule is intended to measure the like-
lihood it produces a correct/incorrect assessment result. To
understand why a rule may produce an incorrect result, it
helps to note that data used to evaluate the rule is not neces-
sary the same as data assessed by the rule. For example, to
evaluate a rule which asserts that employees always earn less
than their managers, we need values for the salary of em-
ployees and their managers; but we almost always use this
rule to detect/assess cases where the employee was assigned
a salary that was too high, rather than the manager’s salary
was too low or that the manager assignment was incorrect.

Given a DQ rule φ, let Xφ be the set of attributes cor-
responding to the named variables in x̄j ; Xφ specifies ex-
actly what data is needed to evaluate φ. For example, for
φ1, Xφ1 = {CustomerOnt.pcode, CustomerOnt.city}; this
means we need both pcode and city values from the Cus-
tomerOnt table in order to evaluate φ1.

The data assessed by φ is a nonempty subset Yφ of Xφ.
We make this explicit by adding the set of the named vari-
ables corresponding to the attributes in Yφ as the arguments
of φ. For example, for φ1, we have several choices, including
Yφ1 = {CustomerOnt.pcode} (assessing CustomerOnt.pcode
values only, in which case we write φ1(x1, x2)), or Yφ1

= {CustomerOnt.pcode, CustomerOnt.city} (i.e., assessing
both CustomerOnt.pcode and CustomerOnt.city values, in
which case we write φ1(x1, x2, y1, y2)).

What data is assessed by a rule is the choice of the person
who performs the DQ assessment activity. The algorithm to
be presented in Section 3 can be equally applied no matter
what choice is made.

The rule φ produces an incorrect assessment result exactly
when

• the data values assessed by φ are factually correct, but
φ is still violated (i.e., an FP), or,

• the data values assessed by φ are factually incorrect,
yet φ is not violated (i.e., an FN ).

Otherwise, φ produces a correct result. For example, a viola-
tion of φ0 caused solely by erroneous (or missing) LOnt.pcode
values is an incorrect assessment result; similarly, φ0 pro-
duces an incorrect result when an erroneous CustomerOnt.pcode
value does not trigger its violation (because it is “cancelled
out” by erroneous (or missing) values in LOnt.pcode).

The likelihood that a rule produces an incorrect result (i.e.
FP or FN ) depends on the specification of the rule, the data
used to evaluate the rule, and the data assessed by the rule.



More specifically, as we shall see below, the effectiveness
of a rule φ is effected by the conjuncts in rule, the sets
Xφ and Yφ, and chances of errors in them, as well as the
probability of missing tuples from relations. Another factor
for effectiveness is whether or not the rule has exceptions
(i.e., its violation does not caused by erroneous data). In
this paper, we ignore this factor, assuming rules to be always
valid.

3. SEMI-AUTOMATIC DERIVATION OF EF-
FECTIVENESS FORMULAS

We describe a novel, semi-automatic approach to derive
effectiveness formulas for the class of DQ rules as defined in
Section 2. It generates the effectiveness formulas for a rule
in three phases:

• construction of a Bayesian network graph of events of
interest,

• assignment of (symbolic) probabilities to the events in
the graph, and,

• formulation of effectiveness formulas from them.

3.1 Phase 1: Construct a Bayesian network
graph of events

A Belief/Bayes Network graph is a directed acyclic graph
G = (V,E), where V is a set of nodes representing the events
(in this case, those deemed relevant in determining the ef-
fectiveness of a rule φ) and E is a set of edges represent-
ing probabilistic relationships among these events: there is
an edge (vi, vj) if the probability distribution of node vj
(called the child node) is directly influenced by that of node
vi (called the parent node). A missing edge between two
nodes means they are (conditionally) independent.

In our case, the relevant events will be comparisons be-
tween real/stored versions of database table “cells” — at-
tribute fields of relation tuples. Given a specific attribute A
of a specific tuple t, we represent the “cell” using xt where
x is the variable in the position of attribute A. We use
real(xt) to refer to the value that is supposed to be stored
at xt, and use stored(xt) to refer the value that is actually
stored at xt. So each event is a (conjunction of) comparisons
involving terms like real(xt), stored(xt) and constants.

For example, consider the rule φ1. Events of interest in-
clude: (i) real(xt11 ) 6= stored(xt11 )? (whether or not the pcode
value supposed to be stored in xt11 is the different from the
one actually stored), and (ii) stored(xt11 ) = store(xt22 ) ∧
stored(yt11 ) 6= stored(yt22 )? (whether or not the tuples t1
and t2 have the same stored pcode and city values). The
question marks emphasize that each event has two possible
output: true or false. We use Error(xt)? as a shorthand for
the event real(xt) 6= stored(xt)?. We ignore the superscript
in the events when it is clear from the context. Finally, if
E(w̄) is an expression in a rule, we’ll use E(real(w̄)) for
E(w̄) with each variable w in w̄ being replaced by real(w)
(similarly for E(stored(w̄))).

The algorithm for constructing the Bayesian network graph
for a rule φ starts with a node, to be called Root?, which
is intended to represent the evaluation of the rule over the
database. It stands for the event R1(stored(x̄1)) ∧ . . . ∧
Rm(stored(x̄m)) ∧ M1(stored(ȳ1)) ∧ . . . ∧ Mn(stored(ȳn))

∧ ¬H(stored(z̄))?, which is true exactly when the rule φ is
violated.

The algorithm builds the graph backwards by repeatedly
applying the following actions, depending on the type of
node:

1. For a conjunction node
∧
vi?, add parent nodes v1?,

v2?, . . . ;

2. For each E(stored(w̄))?, where E(w̄) is either a Ri(x̄i),
Mj(ȳj) or ¬H(z̄), add parent nodes E(real(w̄))?

3. For each E(stored(w̄))?, where E(w̄) is either a Mj(ȳj)
or ¬H(z̄), add parent nodes Error(wi)?

4. The rule itself tells us that the truth of H(real(z̄))?
is implied by the real body atoms, thereby requiring
edges to it from each Ri(real(x̄i))? and Mj(real(ȳj))?.

The above graph represents the minimal dependencies ex-
pected to hold between the events of interest in calculat-
ing effectiveness of a DQ rule. Additional nodes and edges
could be introduced based on specific domain knowledge in
an application. For example, a person’s gender may influ-
ence the likelihood whether or not this person is a smoker.
Therefore, we need to add an edge from real(x)=“male”? to
real(y)=“smoker”? where x and y are variables in the posi-
tions for attributes Person.gender and Person.smokingStatus
respectively.

Example 3: Figure 2 shows the output of this algorithm
applied to φ1. The node 0 is the root of the graph. The
nodes 1-3, and the edges (1,0), (2,0), and (3,0) are intro-
duced by the first action in the algorithm. The nodes 4-10,
and the edges (4,1), (5,1), (6,2), (7,2), (8,2), (5,3), (9,3),
(10,3) are introduced by the second action. The edges (4,6),
(9,6) are introduced by the last action.

An important property of this algorithm is that it is in-
sensitive to the data assessed by the rule(e.g., φ1(x1, x2),
φ1(y1, y2) and φ1(x1, x2, y1, y2) all share the same graph).

�

3.2 Phase 2: Assign (symbolic) probabilities
to events

The second phase generates, for each node in the graph G,
a conditional probability table (CPT) [10], which specifies
the conditional probability distributions for the node given
all its parent nodes. A CPT of a node v is generated by
(i) finding the parent nodes parents(v) of v, and (ii) insert-
ing a row in the CPT for every possible combination of the
values of v and parents(v). There are 2n+1 possible rows
in the CPT where n is the size of parents(v). One of the
computation advantage of using the graph notation is that
normally n is much small than the total number of nodes in
G. For example, the average of n in Fig. 2 is around 1.18
compared to 11, the number total of nodes in the graph.

Each row in a CPT is associated with a constant (if the
probability for that configuration is known with certainty),
or a probabilistic variable, as illustrated in the following ex-
ample.

Example 4: Consider the graph generated for φ1 (Fig. 2).
Part of the CPT for stored(x1) = stored(x2)? is shown in
Table 1.



Figure 2: The Bayesian network graph for φ1.

Table 1: The CPT for stored(x1) = stored(x2)?.

Error(x1)? Error(x2)? real(x1) = real(x2)? stored(x1) = stored(x2)? prob.
1 true true true true s2
2 true true false true s6
3 true false true true 0
4 true false false true s5
5 false true true true 0
6 false true false true s5
7 false false true true 1
8 false false false true 0

A row in Table 1 is associated with “1” (respectively “0”)
when the corresponding configuration always (respectively
never) happens. For example, two pcode values actually
stored in the CustomerOnt table must be the same if the
real values supposed to be stored there are identical, and
both values are error-free (i.e., Row 7 of Table 1); on the
other hand, when only one of the stored values is erroneous,
they must be different (i.e., Row 3 and 5).

A row in Table 1 is associated with a probabilistic variable
when the configuration cannot be predicted with certainty.
For example, we use s2 to denote the probability of the event
that both stored pcode values contain exactly the same error
(e.g., Row 1 of Table 1).

The rest eight rows in the CPT for φ1 contains the con-
figurations in which stored(x1) = stored(x2)? is false, and
can be assigned probabilities automatically based on the fact
that the sum of the conditional probabilities of stored(x1) =
stored(x2)? being true and false (given a particular config-
uration of its parent nodes) is always 1. For example, the
probability assigned to the row, which is identical to Row 1
except for stored(x1) = stored(x2)? being false, is 1 - s2.

�

3.3 Phase 3: Formulate effectiveness formulas
The last phase calculates the probabilities of three events,

corresponding to the occurrence of a TP, FN and FP, and
uses the result to formulate the effectiveness formulas. For
the sake of presentation, in what follows we write v (instead
of v? = true) to mean the corresponding event being true
(i.e., it occurs), and write ¬v (instead of v? = false) other-
wise. The three events are:

• vTP ⇔ vF ∧ vD

• vFN ⇔ vF ∧ ¬vD

• vFP ⇔ ¬vF ∧ vD

where vF means at lease one of the data values assessed by
the rule is factually erroneous, and vD means the rule is
violated.

Example 5: : For the DQ rule φ1(y1, y2) considered earlier,
vF and vD are defined as follows:

• vF ⇔ Error(y1) ∨ Error(y2)

• vD⇔ stored(x1) = stored(x2) ∧ stored(y1) 6= stored(y2)
∧ stored(x1) 6= “M8V 4G1′′

�

One may be tempted to calculate the probabilities of these
events (e.g., vTP ), according to the definition of joint prob-
ability. For example, pr(vTP ) = pr(vF ∧ vD) = pr(vF ) ×
pr(vD|vF ). However, in many cases (especially when the
rule is complex), it is difficult to directly obtain pr(vD|vF )
(i.e., the probability that a rule is violated given that some
value being assessed by it is factually erroneous).

Instead, we take a detour in calculating these probabili-
ties, by using nodes from the graphG as intermediate events;
they allow us to divide the calculation into smaller pieces.
For example, suppose v1? and v2? are two nodes in G and
are used as intermediate events for pr(vTP ) such that

pr(vTP ) = pr(vF ∧ vD)

= pr(vF ∧ v1 ∧ v2 ∧ vD) +

pr(vF ∧ v1 ∧ ¬v2 ∧ vD) +

pr(vF ∧ ¬v1 ∧ v2 ∧ vD) +

pr(vF ∧ ¬v1 ∧ ¬v2 ∧ vD)

G allows to dramatically simplify the calculation of these
joint probabilities if the average number of parents of a node
is much smaller than the total number of nodes in the graph,
thanks to the chain rule for Bayesian networks [10],

pr(v1 ∧ . . . ∧ vn) =

n∏
i=1

pr(vi|parents(vi))



where each pr(vi|parents(vi)) is given by the CPT of the
node vi.

In the above case, if (vF , v1), (v1, vD), (vF , v2), (v2, vD)
are the only edges inG, the calculation of pr(vF∧v1∧v2∧vD)
can be reduced to pr(vD|v1 ∧ v2)× pr(v1|vF )× pr(v2|vF )×
pr(vF ).

This approach is based on the premise that probabilities
of pr(vD|v1∧v2), pr(v1|vF ), pr(v2|vF ), pr(vF ) are much eas-
ier to obtain than that of pr(vD|vF ).

Example 5 (continued): For the rule φ1(y1, y2) (whose
graph is shown in Fig. 2), the nodes that can be used to for
the intermediate events include stored(x1) = stored(x2)?,
stored(x1) 6= “M8V 4G1′′? and stored(y1) 6= stored(y2)?.

�

3.4 Implementation
This approach has been implemented in Python in three

modules. The first module dag.py parses a DQ rule and
generates a Bayesian network graph for it in the DOT lan-
guage3, which can be visualized using graphviz4 (see Figure
2). The second module cpt.py reads the graph and generates
a file which contains CPTs for all the nodes in the graph;
each row in a CPT is assigned either a constant or proba-
bilistic variable (see Table 1). Finally, these CPTs are read
in by the third module ef.py, which generates effectiveness
formulas (precision and recall). Figure 3 shows a screenshot
of a particular run of the modules for φ1. The generated
formulas can then be fed into a tool (such as the R frame-
work5) for plotting (see the next section for such examples).

Figure 3: A screenshot of the tool for deriving ef-
fectiveness formulas.

4. EXPERIMENTAL EVALUATION
We evaluate our proposed approach by comparing its out-

put for a rule with the effectiveness scores one would obtain
when actually applying the rule to assess a database. As in
the evaluation of duplicate detection algorithms (e.g., [9]),

3http://www.graphviz.org/doc/info/lang.html
4http://www.graphviz.org/
5http://www.r-project.org/

we use a data generator to inject errors to synthesized clean
data. The advantage of using synthesized data is that we
have complete control over (and knowledge of) the type and
percentage of errors in the data; this makes it much easier
to perform a comprehensive evaluation by synthesizing, in
a systematic way, datasets of varying characteristics (e.g.,
a CustomerOnt table containing 1%, 5%, 10%, . . . of erro-
neous pcode values).

4.1 Settings
We evaluate our approach using two rules of different na-

ture. The first one is a tuple-generating dependency, spec-
ified with respect to the relation schema Address(sin, fsa,
ldu, prov, city). This schema is used to record the address
of a person (identified by his/her social insurance number
(sin)), including postal code (fsa6 and ldu7) and province
(prov) and city (city) .

φ2. LFSAOnt(y) ← Address(sin: , fsa:y, ldu: , prov:x, city: ), x=’Ontario’.

This rule asserts that if the province value in an address
tuple is ’Ontario’, its FSA code value must appear in a list
LFSAOnt of valid Ontario FSA codes.

The second rule is an equality-generating dependency, which
is specified with respect to the relation schema Restaurant(name,
addr, desc); this schema is used to record the name, address
and description of a restaurant.

φ3. y1 = y2 ← Restaurant(name:y1, addr:x1, desc: ),
Restaurant(name:y2, addr:x2, desc: ), x1 = x2.

This rule asserts that if two restaurants have the same ad-
dress, they must have the same name.

The evaluation is carried out in the following way. Given
a DQ rule φ and a relation schema R, (i) we first generate a
clean instance I of R, using real data as seed (e.g., Canada
Post’s FSA Map8 for Address, and the dataset obtained from
the Fodor’s and Zagat’s restaurant guides [3] for Restau-
rant); (ii) we then inject errors whose type and percentage
is determined in according to a set of adjustable parameters;
(iii) next we apply φ to I and count the number of TP, FP
and FN (this is possible since we have the complete knowl-
edge of the ground truth of I), and use these three numbers
to calculate specific precision, recall and FMeasure scores
for φ with respect to I (we call them measured effectiveness
scores) (iii) finally we use the effectiveness formulas (gen-
erated using the proposed approach) to obtain specific pre-
cision, recall and FMeasure scores (we call them estimated
effectiveness scores), by assigning values to the probabilistic
variables in the formulas. This process is repeated for 10
times, and in the end we compare the measured scores with
the estimated ones.

4.2 Results
The comparison of measured and estimated scores is car-

ried out in different scenarios, each of which examines the
impact of certain type/percentage of errors on the effective-
ness of a rule. We give a summary of some of these scenarios

6stands for “forward sortation area”, the first three char-
acters in a Canadian postal code identifying a geographical
region
7stands for “local delivery unit”, the last three characters
denoting a specific single address or range of addresses
8www.canadapost.ca/CPC2/addrm/hh/maps/FSA/CA01.pdf



# Impact of . . . on the effectiveness of φ2

1.1 the percentage of persons with an Ontario address (with error rate = 0.5%)
1.2 the percentage of persons with an Ontario address (with error rate = 2%)
1.3 the ratio of erroneous FSA to Province values (1:1)
1.4 the ratio of erroneous FSA to Province values (1:2)
1.5 the percentage of missing values in the list of valid Ontario FSA codes
1.6 the percentage of extraneous values in the list of valid Ontario FSA codes
# Impact of . . . on the effectiveness of φ3

2.1 the percentage of duplicated restaurant tuples (with error rate = 0.5%)
2.2 the percentage of duplicated restaurant tuples (with error rate = 2%)
2.3 the percentage of erroneous name values
2.4 the percentage of erroneous address values
2.5 the percentage of error-masking for name values9.
2.6 the percentage of error-masking for address values

Table 2: Summary of scenarios for φ2 and φ3

in Table 2. In all scenarios, we generate a total of 100,000
tuples. We show the measured and estimated effectiveness
scores (expressed using F-Measure) for the first two scenar-
ios for each rule (Figure 4 and 5). These results (and others
not shown here) confirm that our approach generates for-
mulas that give reasonable estimates of effectiveness scores
under various circumstances.

5. RELATED WORK
Constraint-based approaches for DQ assessment and im-

provement have recently received much attention both in the
academic and professional communities. For example, un-
like the traditional dependency theory, which was developed
mainly for schema design, conditional functional dependen-
cies (CFDs) have been studied for the purpose of data clean-
ing [4]. A CFD is functional dependency that holds only in
a context where the context is specified using constants in a
pattern tableau [4]. To cope with potentially large number
of CFDs, several discovery algorithms have also been pro-
posed [6, 8]. On the practical front, DQ rules (which may
or may not be expressed as CFDs) are often derived from
domain-specific business rules and through data profiling ac-
tivities [14, 1].

Given a set of DQ rules, either discovered automatically or
derived manually, a nature question is how we could quantify
the usefulness of these rules in a DQ assessment effort; this
is important when applying all available rules is unfeasible
(since each rule incurs some costs as discussed in Section 1).
In fact, [6] has already noted the lack of universal objective
measures for DQ rules. But also notice that the measures in
[6] are used to evaluate the validity of DQ rules while ours
are used to evaluate their usefulness assuming they are valid.
Our work is therefore a step toward objective cost-benefit
evaluation of DQ rules.

The work closest to ours is the use of performance mea-
sures to evaluate and compare record linkage and dedupli-
cation algorithms [7]. For example, [9] proposed a frame-
work for evaluating clustering algorithms in duplicate detec-
tion, in which precision, recall and F-Measures are used to
measure the quality of output clusters (compared to ground
truth clusters). However, performance measures in these ap-
proaches are obtained for a particular run of an algorithm
on an actual dataset, and are often used as a mechanism
to tune the parameters (e.g., matching threshold) that af-
fect the performance of the algorithm. Our work instead
focuses on the derivation of formulas that allow us to evalu-
ate and compare rules under different circumstances without

(a) Scenario 1.1

(b) Scenario 1.2

Figure 4: Canadian Postal Code Scenarios.



(a) Scenario 2.1

(b) Scenario 2.2

Figure 5: Restaurant Address Scenarios.

the need of actual datasets (as illustrated in Section 1; see
[11] for more details).

Our approach aims at building, in a semi-automatic way,
a probabilistic graphic model. However, our approach dif-
fers from the traditional applications of such models in an
important way: the purpose of building a Bayesian network
in most applications [13] is to perform probabilistic inference
and learning that concern individual entities. For example,
a Bayesian network can be used to update the probability
of a DQ rule being violated (or a patient having a disease)
when certain type of errors (or symptoms) are observed. In
contrast, Our approach aims at enabling the comparison of
two or more entities (i.e., DQ rules in our case) in terms of
their probabilities in some special events (e.g., vTP , vFN ,
vFP ).

6. CONCLUSION
In this paper we have presented a systematic approach to

derive effectiveness formulas for DQ rules. We introduced
the concept of effectiveness for DQ rules, and identified the
main factors that affect a rule’s effectiveness. Our approach
derives an effectiveness formula in three steps including the
construction of a Belief Network graph, the assignment of
symbolic probabilities to the events in the graph, and the
generation of the formulas from the graph. We have also
implemented and evaluated our approach — the evaluation
results show that our approach generates formulas that give
reasonable estimates of effectiveness scores under various cir-
cumstances.

In this paper we have been focusing on internal events,
which concern directly values in a database. However, prob-
abilities of these events are inevitably affected by those of
external events, which concern the processes that generate,
record and update these values. One advantage of consid-
ering external events is that they help to further break the
estimation of probabilities of internal events into more man-
ageable pieces. For example we may talk about what is the
probability of a value being erroneous, given the fact it was
entered by a trained professional (or a casual user). As the
future work, we are aiming at building an ontology of such
external events and extend our algorithm accordingly.
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