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ABSTRACT

Matching dependencies (MDs) have recently been proposed
[10] in order to make dependencies tolerant to various in-
formation representations, and proved [13] useful in data
quality applications such as record matching. Instead of
strict identification function in traditional dependency syn-
tax (e.g., functional dependencies), MDs specify dependen-
cies based on similarity matching quality. However, in prac-
tice, MDs may still be too strict and only hold in a subset
of tuples in a relation. Thereby, we study conditioning MDs
in a subset of tuples, called conditional matching dependen-
cies (cMDs), which bind matching dependencies only in a
certain part of a table. Compared to MDs, CMDs have more
expressive power that enable them satisfy wider application
needs.

In this paper, we study several important theoretical and
practical issues of CMDs, including inferring ¢MDs, the irre-
ducible cMDs with less redundancy, the discovery of ¢MDs
from data, and so on. Through an extensive experimental
evaluation in real data sets, we demonstrate the efficiency
of proposed cMDs discovery algorithms.

1. INTRODUCTION

Data dependencies, traditionally used for schema design
and integrity constraints, are recently revisited for improv-
ing data quality [3, 8, 10]. However, traditional dependen-
cies based on identification function, such as functional de-
pendencies (FDs), often fail in such applications, due to var-
ious information representations and formats, especially in
the Web data. For example, Joy Alice and J. Alice may de-
note the same person in the real world. Therefore, match-
ing dependencies (MDs) [10] have recently been proposed for
data quality applications, such as record matching. In order
to be tolerant to various information formats, MDs target
on dependencies with respect to similarity matching qual-
ity, instead of identification functions in traditional depen-
dency syntax. For example, we consider a relation schema
Contacts(name, address, institute, ssn), where tuples with the
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same ssn denote the same person in the real world. A typical
MD over Contacts can be

MD [name =] A [institute ~] — [ssn =].

It states that if any two tuples from Contacts have similar
(i.e., &) name and institute, then they must denote the same
person in real world with identical' (i.c., =) ssn. The MDs,
which cooperate similarity operator ~ and matching opera-
tor =, have been proved useful in real applications, such as
record matching [13].

Note that the original MDs specify dependency constraints
on all the tuples of a relation. In practice, however, it might
be too strict, that is, a MD is often valid in a subset of tuples.
For example, in Table 1, the above MD on name and institute
holds in the tuples ¢1 to t5 whose institute is similar to UST,
while ¢t7 and ts do not satisfy this MD since they share sim-
ilar name and institute but not identical ssn. It motivates
us to study the MDs specified in a subset of tuples instead
of the entire relation. In fact, conditioning dependencies in
a subset of tuples has been highlighted for data quality ap-
plications, such as functional dependencies with conditions
[3], inclusion dependencies with conditions [5], and sequen-
tial dependencies with conditions [16]. The basic idea of
these condition extensions is making the dependencies, e.g.,
FDs that originally hold for the whole table, valid only for a
subset of tuples.

In this study, we propose conditional matching dependen-
cies (CMDs), which declare matching dependencies on a sub-
set of tuples specified by conditions.

Examples

A cMD with conditions on determinant can be
CMD [name = ] A [institute &~ UST] — [ssn = %],

where * is a virtual value that is similar/identical to any
value. Intuitively, a CMD requires that two tuples should
not only be similar on certain attributes, i.e., ~, but also be
similar to the specified conditions, e.g., UST. It states that
only in the institute of UST, if two tuples have similar name
(and similar to %), then they must denote the same contact
with identical ssn (also identical to ).

Moreover, according to the data set in Table 1, we may
find another cMD with respect to the condition of Alice on

lcould also be identified via update with dynamic seman-
tics [10, 13]. Without loss of generality, “identical” in the
following also interpret the dynamic semantics via update,
while “not identical” means not identified even via update of
dynamic semantics.



Table 1: Example instance of Contacts

tid name address institute  ssn
t1  J.C. Alice  #7, C.R. UST, HK 111
to J. Alice No. 7, Central Road UST 111
ts  Joy Alice No. 7, Central Rd. UST 111
ta Alice 7th, Central Road UST 111
ts Miss Alice  7th, Central Rd. UST 111
te  Prof. Alice 8th, Clear Water Bay CityU 222
tr Prof. Alex No. 7, Central Road PloyU 333

ts Bob Alex No. 7, Central Road PloyU 444

attribute name,
CMD;  [name = Alice] A [address & *] — [ssn = *].

For any two tuples, whose name values are similar with each
other and also similar to Alice, i.e., t1 to tg in Table 1, if their
address values are also similar, then they must be identical
on ssn. Such dependencies from name, address to ssn might
not be valid over other subsets of tuples in Table 1, e.g.,
t7,ts with condition Alex.

A cMD with conditions on dependent can be

Observations

In this paper, we propose a novel class of dependencies con-
sidering both similarity matching quality and condition. To
motivate our work, we study the following observations.

The first observation is the relationship among conditions.
To formally define conditional matching dependencies (CMDs),
we introduce syntax with conditions, e.g., [name & Alice].
Given a finite domain of an attribute, two conditions may
cover similar semantics of constraints. For example, any
value similar to Joy Alice is always similar to Alice (see Ex-
ample 2.1 for details). We say Alice dominates Joy Alice with
respect to the domain of name attribute.

The second observation is the relationship of cmbs. For
example, according to the dominating relationship between
Alice and Joy Alice, we may imply the cMD with condition
of Joy Alice based on another cMD with condition Alice (see
Example 3.1 in Section 3 for details). In other words, given
a set of CMDs, one may imply another, i.e., redundancy. Ob-
viously, a concise set of CMDs with less redundancy is always
preferred by real applications in order to reduce unnecessary
overhead. It raises the problem of finding irreducible CMDs.
Moreover, in practice, it is rather difficult to generate CMDs
by users’ domain knowledge, especially getting those spe-
cific values as conditions. Similar to discovering FDs [22, 19,
30], a practical way is to give a sample data which embeds
possible cMDs. The discovery problem is then to find those

CMD2 [name = Alice] A [address = 7th, Central Rd.] — [ssn = 111]JcMDs from the sample data. Again, it is promising to find

It states that for any two tuples agreeing the left-hand-side
of CMDag, their ssn values must be identical with each other
and also should be identical to 111.

Applications

In contrast to FDs used for schema design, MDs are proposed
for various data quality applications. Similar to MDs, the
CMDs can also be applied in these data quality applications,
with more expressive power.

Record Iinkage. Dependencies can be used as matching
rules in a rule-based method of record linkage [18, 29, 6].
We can directly use MDs (as well as CMDs) as matching rules
[13]. It tells how the attributes in a relation should be com-
pared in order to identify duplicate records. As mentioned,
CMDs can address more dependencies which only hold in a
subset of tuples, that is, more expressive power with respect
to matching rules. For example, by using the above MD,
both (t2,t3) and (t7,ts) in Table 1 are identified as pairs
of duplicates (should having same ssn), while our CMD; can
successfully tell that (t2,¢3) are duplicates but (¢7,ts) are
not.

Violation detection. As integrity constraints, it is natural
to use CMDs for violation detection. Tuples that do not fol-
low cMDs are detected as violations, that is, those ones agree
the left-hand-side of cMDs but disagree the right-hand-side.
Compared with MDs, the proposed CMDs have more expres-
sive power with respect to integrity constraints. It requires
that the right-hand-side attributes should not only be iden-
tical but also identical to certain values, e.g., [ssn = 111]
in the above cMD>. Those tuples agreeing left-hand-side
of cMD2 and having same ssn but not equal to 111 are
then detected as violations, which are ignored by MDs with
[ssn = #].

irreducible ¢MDs from the sample data.

Contributions

With the above observations, it is notable that conditional
matching dependencies (CMDs) are not simple extensions to
conditional functional dependencies (CFDs) [3]. The pro-
posed CMDs have to handle dominating relationships be-
tween domain values, in both inferring and discovering CMDs.
Moreover, similarity metrics in ¢cMDs make the computation
of agree and error rates difficult, since grouping of tuples by
equal values for CFDs is no longer valid for cMDs. Our main
contributions are summarized as follow.

e We propose conditional matching dependencies (CMDSs).
A comprehensive syntax system is introduced includ-
ing formal definitions of cMDs and dominating rela-
tionships of conditions.

e We introduce the logical implication of cMDs. Infer-
ence rules including augmentation and left-dominating
are presented, which can be used in discovery problem.
The concept of irreducible ¢cMDs, which are irreducible
and imply others, is also proposed in order to reduce
redundancy.

e We investigate the discovery of ¢MDs from a sample
data. Unfortunately, a set of all irreducible cMDs dis-
covered from data can be exponentially large in size.
Thereby, we develop pruning algorithms based on the
implication properties, in order to improve the discov-
ery performance.

e We report an extensive experimental evaluation in real
data sets. Our advanced discovery algorithms can achieve
several orders of magnitude improvement compared
with the straight-forward method.

The remainder of this paper is organized as follows. First,
in Section 2, we introduce syntax and formal definitions of



dom(name)

Figure 1: Similarity graph of dom(name)

conditional matching dependencies. Section 3 presents the
logical implication of cMDs and studies the discovery of irre-
ducible ¢cMDs. An extensive experimental evaluation is then
reported in Section 4. Finally, we discuss the related work
in Section 5 and conclude this paper in Section 6.

2. SYNTAX AND SEMANTICS

In this section, we introduce the notations and definitions
for conditional matching dependencies. We consider a rela-
tion schema R, where each attribute A has a finite domain
denoted by dom(A).

A similarity operator = on an attribute A is defined on
the domain of A,

~: dom(A) x dom(A) — {true,false},

which satisfies reflerivity, i.e., a ~ a, and symmetry, i.e., if
a ~ b then b = a, where a,b € dom(A). It indicates true if
two values are similar. This operator can be domain-specific
or any similarity metrics, such as edit distance and cosine
similarity, with a predefined threshold. Since it is not the
focus of this paper to find perfect similarity operator for
a given attribute, in the following, we assume a similarity
operator for each attribute. For a set X of attributes, the
similarity operator = indicates true, iff the similarity oper-
ators on all A € X indicate true.

A matching operator = on an attribute A is also defined
on the domain of A. It indicates true if two values are iden-
tical. It is notable that they could also be identified via
update with dynamic semantics [10, 13].

A matching dependency (MD) has a form

X ~]=[Y =],

where X C R, Y C R, and =, = denotes the corresponding
similarity /matching operators on attributes of X and Y, re-
spectively. It states that for any two tuples from an instance
of relation R, if they are similar on attributes X, then their
Y values should be identical.

We say a MD [X =] — [Y =] holds in an instance I of
relation R, or I satisfies a MD [X =] — [V =], denoted by
IE[X =] = [Y =] if Vi, t2 € I, t1[X] = t2[X] implies
tl[Y] = to [Y]

Conditional Matching Dependencies

We now extend the above matching dependencies with con-
ditions, that is, MDs conditionally hold in a subset of tuples
instead of the entire table. To introduce the formal defi-
nition, we first define a virtual value * in dom(A) for each

attribute A, which is similar/identical to all the values in
dom(A), i.e., * = a,* = a,Va € dom(A).

DEFINITION 2.1. A conditional matching dependency (CMD)
has a form

X ~z] = [Y =y,

where x and y are domain values of X C R and Y C R,
having x € dom(X) and y € dom(Y"), respectively.

It states that for any two tuples from an instance I of
relation R, if they are similar on attributes X and similar to
x as well, then their Y values should be identical with each
other and also identical to y. We have presented several
examples of CMDs in the introduction. For instance, CMD;
does not specify constraints on all the tuples in a table, but
only those tuples whose name values are similar to Alice. As
special cases of CMDs, all the MDs can be represented by
CMDs syntax, i.e., [X ~ x] = [Y = ], since virtual value x*
is always similar/identical to any value.

For any t1,t2 € I, if t1]X] = t2[X], t1[X] = = and t2[X] =~
x, we say that t1,t2 agree the condition [X ~ z], denoted
by (t1,t2) < [X =~ z]; otherwise, not agree, denoted by
(t1,t2) % [X = z]. If t1]Y] = t2[Y] = y as well, we say
that t1,t2 agree the cMD [X =~ z] — [Y = y], denoted by
(t1,t2) X [X =] A[Y = 9.

Formally, an instance I of relation R satisfies a CMD, de-
noted by I E [X = z] = [Y = y|, if Vi1,t2 € I, (t1,t2) <
[X =~ z] implies (t1,t2) < [Y = y]. That is, Vt1,t2 € I,
if t1[X] ~ t2[X], t1[X] = z and t2[X] = z, then t;[Y] =
t2[Y] = y. Note that any two tuples (t1,t2) % [X =~ z] al-
ways satisfy a dependency (t1,t2) F [X ~ 2] = [Y = y] but
do not agree the dependency (t1,t2) % [X = z] A[Y = y].

Dominating Relationships

According to the above definition, any value z € dom(X)
can be specified as a condition for cMDs. However, as illus-
trated in the following example, two arbitrary values of X as
conditions in CMDs may overlap and introduce redundancy
with respect to dependency semantics.

EXAMPLE 2.1. We consider all the values in a finite do-
main of attribute name. As presented in Figure 1, each node
denotes a value of name, and the edge between two nodes
means that they are similar, i.e., . According to the simi-
larity graph, any value similar to Joy Alice always be stmilar
to Alice as well. Consequently, the subset of tuples speci-
fied by using condition Joy Alice should be a subset of the
tuples specified by Alice, i.e., redundancy on dependency se-
mantics, which will be discussed in detail in the following
FEzample 3.1.

Motivated by the above example of redundancy issues,
we introduce an order relation of conditions, namely dom-
inating relationships. First, we formalize the set of all the
domain values that agree a given condition z. A group of
a value = on attributes X, denoted by group(z), is a set
of values with respect to ~ in dom(X) such that for any
z1,%2 € group(z), if 1 & x2, then x1 ~ = and z2 ~ x. That
is, if &1 & @2, then (z1,z2) < [X =~ z].

CLAmM 2.1. For any z1 € dom(X), we have z1 € group(z),
iff ©1 ~x.



The group of virtual value  is group(*) = dom(X'), which
includes all the values. An order relation > is then defined
on values based on their corresponding groups.

DEFINITION 2.2. Let x3 and x4 be two values in dom(X).
If group(z3) D group(xa) with respect to =, we say xs dom-
inates x4, denoted by x3 = x4.

It states that any two domain values agreeing condition
Z4, €.g., (x1,22) X [X = 4] must also agree the condi-
tion xs, ie., (z1,22) < [X = x3]. For example, as illus-
trated in Figure 1, the group of Joy Alice is a subset of
Alice group, i.e., Alice = Joy Alice, which has the following
semantics. Any value similar to Joy Alice must be simi-
lar to Alice, according to Claim 2.1. Any two values in
group(Joy Alice) that are similar, e.g., (J.Alice, J.C.Alice) =<
[name = Joy Alice], should belong to group(Alice) as well,
i.e., (J.Alice, J.C.Alice) < [name = Alice].

Recall that the similarity operator ~ on X indicates true
iff each A € X is similar, i.e., 1 ~ z iff z1[A] ~ z[A],VA €
X. In other words, according to Claim 2.1, any value x1 €
group(z) always has z1[A] € group(z[A]),VA € X. Conse-
quently, it is natural to have the following claim.

CLAIM 2.2. We have x3 = x4, iff VA € X, z3[A] = z4[A].

Since the virtual value * is similar to all the values of X,
the group of * is a superset of any other.

CLAM 2.3. For any x € dom(X), we have * = x.

3. IRREDUCIBLE CMDs

In this section, we discuss logical implication for infer-
ring CMDs, which raises the problem of finding irreducible
oMDs. Before introducing technique details, we first illus-
trate the following motivation example. As discussed, due
to the dominating relationships of conditions, there may ex-
ist redundant dependency semantics among CMDs.

ExaMPLE 3.1. Consider the following CMDs,

CMD;  [name =2 Alice] A [address ~ %] — [ssn = ],

CMD2 [name & Joy Alice] A [address & %] — [ssn = ],

3.1 Rationale

As presented in Example 3.1, any two tuples satisfying
CMD; must satisfy cMD2. We say that ¢cMD; can logically
imply CMDa.

Inferring CMDs

Let 31 and X2 be two sets of CMDs over relation R. We say
31 implies Y2, denoted by X1 F 3o, if for all instances I over
relation R, I F ¥ implies I F 3. According to the prop-
erties of CMDs, we can investigate the following inference
rules.

LEMMA 3.1 (AUGMENTATION). For all instances I over
relation R, if I F [X = z] —» [Y = y|, then [ F [X =
)N [Z =z =Y =y

PROOF. (sketch) Since any tuple pairs agreeing [X =~ z]A
[Z =~ 2] must also agree [X ~ z], the tuples in I agreeing
on [X =~ 2] A [Z =~ z] should be a subset of those agreeing
[X = z]. For those tuples satisfying [X ~ z] — [Y = y],
any subset of them can also determine [Y = y]. [

For instance, ¢MD; in Example 3.1 can imply cMD3, de-
noted by cMD; E cMD3. That is, for any ¢; and t2 from
instance of relation R, if (¢1,t2) satisfy ¢MD1, it always has
(t1,t2) FE cMD3 as well. To illustrate this conclusion, we
consider three possible cases:

e if (t1,t2) % [name = Alice] A [address ~ x|, then (t1,t2)
satisfy both ¢MD; and CMDs, since they do not agree
the left-hand-side;

e if (¢1,t2) =< [name = Alice| A [address & x| but (¢1,t2) %
[institute ~ %], then (¢1,t2) satisfy cMD3 too;

e if (t1,t2) < [name =& Alice] A [address &~ #|Alinstitute & «],
then we have (t1,t2) =< [ssh = %] according to CMD1,
ie., (t1,t2) satisfy cCMD3 again.

Consequently, we have (t1,t2) F CMD3 in all three possible
cases.

CMD3 [name = Alice] A [address ~ *] A [institute & %] — [ssn = x].

For any two tuples with stmilar address, according to CMD1,
if their name values are similar with each other and similar
to Alice as well, then they should also agree [ssn = *]. Simi-
lar dependency semantics are embedded in CMD2 and CMDs.

Suppose that we have Alice > Joy Alice with respect to the

finite domain of name, i.e., any two tuples (t1,t2) < [name = Joy A

must agree (t1,t2) < [name ~ Alice] as well. According to

CMDy, if two tuples agree (t1,t2) < [name & Alice] and (t1,t2) <

[address & |, they must also agree (t1,t2) < [ssn = x|. In
other words, CMD2y can be inferred by CMD1. In fact, as we il-
lustrate after Lemma 3.2, any two tuples satisfying (t1,t2) F
CMD1 must satisfy (t1,t2) F CMD2. Thereby, CMD2 is redun-
dant with respect to CMDj .

Similarly, any two tuples agreeing the left-hand-side of
CMDg with [institute & %] must also agree the left-hand-side
of ¢MD1 which does not require institute to be similar. Con-
sequently, CMD3 can be inferred according to CMD1 as well.

In the following, we give a formal mechanism for inferring
cMDs, and introduce the irreducible cMDs with less redun-
dancy. The discovery of these irreducible CMDs, given a
sample relation instance, is then developed.

LEMMA 3.2  (LEFT-DOMINATING). For all instances I over
relation R, if [ E [X ~ 1] = [Y = vy, then, for any x2 such
that x1 = x2, we have I E [X ~ z2] — [Y = y].

PROOF. (sketch) According to the definition of dominat-
H(l:%lvany tuple pair agreeing [X & x2] must agree [X =& z1]
as well. If [X ~ z1] is agreed, then [Y = y| should also be
concluded for the tuple pair according to [X ~ z1] = [V =
yl. O

For example, we have CMD; F CMD2 in Example 3.1. That
is, for any tuple pair satisfying (¢1,t2) F CMD1, they must
satisfy (t1,%2) F CMD2 as well. Again, we illustrate the con-
clusion by two possible cases:

e if (t1,t2) # [name = Joy Alice] A [address ~ *], then (¢1,t2) E

CMDa2, since its left-hand-side is not agreed;

o if (t1,t2) < [name =~ Joy Alice] A [address ~ x|, we have
(t1,t2) =< [name ~ Alice] A [address =~ ] as well, accord-
ing to Alice = Joy Alice. It implies (¢1,t2) < [ssn = ]
by cMD1. In other words, (t1,t2) satisfy cMD2 too;



The above augmentation and left-dominating rules are
practically important, especially in the following discovery
problem. We defer reporting other inference rules to form
a complete and sound inference system as the future work.
In fact, the implication problem of dependencies with condi-
tions is high non-trivial. For example, the CFDs implication
has been proved co-NP-complete [11], where similarity met-
rics are not considered. Interesting future work including
the consistency and implication problems for ¢MDs are dis-
cussed in Section 6.

Reducing CMDs

According to logical implication, there may exist redun-
dancy in an arbitrary set of CMDs, that is, those ones can be
implied by others. In order to reduce such redundancy, it is
natural to explore a concise set of CMDs that cannot be im-
plied with each other. However, the hardness of implication
has been mentioned above. Therefore, instead of finding a
minimal cover of CMDs which can imply all the others with
least redundancy, we study those cMDs that are irreducible,
namely irreducible CMDs.

Specifically, if a ¢MD; implies another CMD2 by augmen-
tation and left-dominating, we say that CMD2 is reducible to
CMDj.

DEFINITION 3.1. Given any instance I, a CMD having I F
[X ~ 2] — [V = y] is irreducible, if there does not exist any
z € dom(Z) such that Z C X, z = z[Z] and I E [Z =~ z] —
Y =y

Here, y € dom(Y) could also be *. Suppose that such
[Z =~ z] exists which can also determine [Y = y]. Then,
[X = z] —» [Y = y] is implied by [Z = z] — [Y = y] ac-
cording to the augmentation and left-dominating in Lemma
3.1 and 3.2, i.e., reducible. For instance, cMD2 in Example
3.1 is not an irreducible CMD, since we have Alice = Joy Alice
with respect to the domain of name. That is, CMD2 can be
implied by ¢MD; and is reducible. Moreover, CMD3, whose
left-hand-side attributes are a superset of CMD1, is reducible
too according to the irreducible definition.

Given any instance I, there exist a set ¥ of all cMDs that
hold in I. Now we can find a set X. C ¥ of all irreducible
CcMDs that can imply the other cMDs in ¥ by augmentation
and left-dominating. It is notable that a set of irreducible
oMDs is different from a minimal cover for all ¢cMDs, which
relies on a complete and sound inference system. A min-
imal cover ¥,, denotes a minimal set of cMDs which can
imply all the others, while a set ¥, consists of all irreducible
cMps. For example, let 3 = {cMD;, CMD2, CMD3} in Exam-
ple 3.1 be the set of all cMDs holding in a relation instance
I. Then, a set Y. of irreducible cMDs with respect to 3 can
be {cMD; }, where cMD; is irreducible and can imply all the
other cMD3 and CMD3 by left-dominating and augmentation,
respectively.

An irreducible MD must also be an irreducible ¢cMD. The
rationale is that all the MDs can be interpreted as special
cases of CMDs. Given any instance [, let 3. be a set of all
irreducible cMDs and I'. be a set of all minimal MDs that
hold in I. We always have . D I'c.

3.2 Discovering Irreducible CMDs

Note that cMDs might hardly be given directly by user’s
domain knowledge in most cases, especially to specify those
specific conditions. In practice, a set of sample data, say I,

as truth can often be provided. Possible dependency seman-
tics are embedded in the truth data, i.e., I F ». Thus, in
the following of this section, we focus on discovering CMDs
from the sample data.

Formally, we study the discovery of irreducible cMDs that
hold in a sample data instance, to avoid redundancy.

PROBLEM 3.1. Given an instance I of relation R and a
target [Y = y] of matching rules, it is to find a set X2 for all
irreducible CMDs, which determine [Y = y].

Recall that all the attribute values including the virtual
value * can be possible conditions. Let m be the number of
attributes in R\Y. The search space of candidate conditions
for cMDs is

dom(A1) x dom(A2) X -+ x dom(An), A; € R\Y

Let D be the average size of dom(A;) of each attribute. We
have the search space complexity O(D™).

Straight-forward Algorithm

A straight-forward approach is to evaluate all the possible
candidates of the search space. Let X be the set of discovered
CMDs, initially having 3 = ). If a cMD from the search space
holds in the given instance I, then we add it into ¥. Finally,
we remove those CMDs in ¥ that are reducible.

Let n be the number of tuples in the given relation in-
stance, |I|. The evaluation of a ¢cMD in I (hold or not) can
be done in O(n?) time. We have a search space with size
O(D™). Therefore, the time complexity of straight-forward
approach is O(n?D™). Unfortunately, as illustrated in the
following, the discovery problem is intrinsically hard. It is
well known that a minimal cover of all functional depen-
dencies discovered from a sample data can be exponentially
large in size with respect to the number of attributes [25].
Since our set of all irreducible ¢MDs may not be minimal,
that is, may be larger than minimal cover, it is not sur-
prising that the exponential size carries over to irreducible
cMDs. Due to this inherent hardness in finding all irreducible
CMDs in an instance I of relation R, in the following, we fo-
cus on pruning techniques that may improve the discovery
efficiency in practice.

Domain-oriented Algorithm

Recall that, given any instance I, if a ¢MD is found to hold
in I, we can directly tell some other cMDs also holding in
I according to the logical implication in Section 3.1. Simi-
lar idea is also adopted in discovering FDs and CFDs [7, 12],
e.g., TANE [19] applies the pruning between levels of at-
tribute sets according to the augmentation rule. Besides the
augmentation, we can further utilize the left-dominating in-
ference rule for pruning cMDs. Note that the dominating
relationships between domain values are not considered in
previous work, e.g., the CFDs discovery [7, 12] only needs to
consider the relationship with respect to the virtual value.
Thereby, we develop the following domain-oriented algo-
rithm, to handle the order relation of domain values in dif-
ferent attributes respectively.

According to the augmentation property in Lemma 3.1,
for any ¢MD with left-hand-side attributes X, the corre-
sponding augmentation CMDs on supper set of X might be
implied. Therefore, similar to the level-wise algorithm for



discovering FDs [19, 20], we can also consider the left-hand-
side attributes incrementally, i.e., traverse the attributes
from a smaller attribute set to larger ones.

Let X C R\Y be the current set of left-hand-side at-
tributes, as illustrated in Figure 2. Let Xx be the set of
cMDs whose left-hand-side attributes are subsets of X and
hold in I, and S x be the set of cMDs that do not hold in
I, where Y x U Xx exactly corresponds to the search space
defined on X.
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Figure 2: Domain-oriented pruning of candidates

We consider a remaining attribute A € R\ (X UY). Ac-
cording to the augmentation property in Lemma 3.1, for any
[X =~ z] = [Y = y] € Ex, the corresponding [X ~ z]A[A ~
a] = [Y = y] must hold in I as well and is reducible. For
example, if we find ¢MD; in Example 3.1 holding in I, then
CMD3 with augmentation [institute &~ x| must also hold and
can be directly ignored without evaluation in [ since it is
reducible. In other words, we only have to consider the can-
didates with augmentation on CMDs in Sx.

Let [X ~ 2] = [Y = y] € ¥x be a cMD that does not
hold in 7. Suppose that its augmentation with [A ~ a] holds
in I based on the evaluation, i.e., I F [X =~ z] A [A =~ a] —
[Y = y]. Then, according to Lemma 3.2, the augmentation
with any [A = b],a > b,b € dom(A), must hold in I as well
and is reducible. In other words, such augmentation with
[A = b] can be safely pruned without evaluation in I. For
example, if we find ¢MD; in Example 3.1 holding in I, then
CMDz2, whose left-hand-side condition is dominated by that
of cMD1, must also hold and can be directly pruned without
evaluation in [ since it is reducible.

Algorithm 1 presents the procedure of domain-oriented
discovery, where ¥ denotes the set of cMDs that do not hold
in I with respect to current X in each iteration. To avoid
reducible case, for the values in dom(A) of each attribute A,
we consider an ordering based on the dominating relation-
ship. That is, for any i-th value a; € dom(A) and j-th value
a; € dom(A), i < j, we have either a; > a; or no dominat-
ing relationship between a;,a;. In other words, we always
first process those values dominating others. Thereby, the
results X4 in each iteration should be irreducible. Finally,
the operator W combines previous results > together with
current ones X4 and removes reducible CMDs.

Let r be the pruning rate on average in each step, that
is, 7D values of an attribute A can be pruned on average.
Then, Algorithm 1 runs in O(n?*(1 — 7)™D™) time. Al-
though, the time complexity is still exponential with respect
to the size of relation schema |R|, in practice, the domain-

Procedure IRREDUCIBLE([Y = y|, )

Input: A target [Y = y| and an instance I.
Output: A set ¥ of irreducible ¢MDs determining [Y = y]
in 1.
1 2=0,X =0, :={ X~ = [Y =vy]}
2: foreach A€ R\ (XUY) do
Sa:=0,24:=10 -
for each [X = z] = [Y = y] € X do
for each a € dom(A) do
Ya=SaU{[A=aA[X =z = [Y =y}
for each [W ~w| — [Y = y] € 34 do
if [ E[W ~w]—[Y = y| then
Sa =S4 UW ] = [Y = ]}
remove [W ~ w] = [Y = y] from X4
remove all [W ~ v] — [Y = y] from £4 such
that w = v
122 X :=XU{A}
13: E::Z&JEA,S:ZEA
14: return X

— =

Algorithm 1: Domain-oriented pruning

oriented pruning algorithm shows significantly lower time
cost than straight-forward approach.

Tuple-oriented Algorithm

In the above domain-oriented algorithm, during the evalua-
tion of each cMD, i.e., whether I E [W =~ w] — [Y = y], the
entire instance I has to be traversed. However, according
to the implication relationship of ¢MDs, the set of tuples in
I agreeing a CMD can be a superset/subset of those tuples
agreeing another cMD. Such idea is applied as a depth-
first strategy for discovering FDs (FastFD [30]) and CFDs
(FastCFD [12]). Thereby, in the following, we present a
tuple-oriented algorithm by avoid traversing all the tuples
in [ in each evaluation. Again, we have to address the dom-
inating relationships between different values which are not
studied previously.

Given an instance I, it specifies a set of tuples that can
determine [Y = y|, or equivalently, it also specifies a set of
tuples that do not agree [Y = y]. Recall that each cMD
specifies dependency constraint on certain subset of tuples
in I which agree [Y = y], while the other tuples not agree-
ing [Y = y| are excluded by conditions [X & z]| in CMD.
Intuitively, the tuple-oriented approach targets on the cMDs
which can exclude all these tuples not agreeing [Y = y].

First, we formally introduce the exclusion of tuples by
conditions. Let T be a set of distinct tuple pairs from I,

T = {(ti, ) | ts,t; € I}.

Let [X ~ z] be any condition. We define a selection operator
o on Y with respect to exclusion, for example,

(X, ~[X ~al) = {(t:t;) € T | (ti,t;) # [X ~ ]},

where (t1,t2) % [X = x] denotes that t1, t2 do not agree the
condition [X = z], i.e., either ¢1[X] % t2[X] or 1[X] % x or
t2[X] % z. It denotes all the tuple pairs that are excluded
by [X = z], that is, not agreeing the condition.

This operator can also be applied on [Y = y] as well,

o(T, =Y = y]) = {(ti,t;) € T | (ti,t;) A[Y =y}

As illustrated in Figure 3, by applying different selection




conditions, the tuple pairs in T can be divided into four
partitions.

LEMMA 3.3. A oMD holds in an instance, I £ [X =~ x] —
Y =y), iff

o(Tr,~X =z]) Do(Y1,~[Y =y,
or equivalently,
c(Yr, [ X =z]A-Y =1y]) =0,
where Y1 denotes the set of all distinct tuples pairs from I.

In other words, to find an irreducible CMD is exactly to
find an irreducible [X & z] such that there does not exist
any tuple pair in Y agreeing [X = x| but not [Y = y], that
is, to exclude all the tuples pairs =[Y = y| by [X =~ z].

Y set of tuple pairs L
1 (1) =
Wy |4 o(Y, [X=x] A [Y=)])
R OO T
< . A
o(Y, [X=x]A—[Y=y])
=
y 0
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Figure 3: Tuple exclusion by conditions of a cmd

Next, in order to avoid traversing all the tuple pairs in T
when evaluating different conditions, we study their corre-
sponding selection results of tuple pairs in Y. Consider any
T,

LEMMA 3.4. For any z1 = x2, 21,22 € dom(X), we have
(T, [ X = z1]) D o(T1,[X = x2]),
or equivalently,
o(T,—[X =~ z1]) Co(Y,-[X =~ z2]).

Let Y = o(Y,[X = z1]). According to the lemma, we
have Y D o(Y,[X = x2]) = o(Y',[X =~ w2]). That is, we
can use the subset Y’ of tuple pairs for evaluating [X & x2],
instead of the entire Y.

LEMMA 3.5. Let [V ~v] = [X =~ z| A[A = a], we have
(T, [X = z]) Do(Y, [V =v]),
or equivalently,

o (X, (X ~ @) C o(T,~[V = v]).

Similarly, let Y = o(Y,[X = =z]). According to the
lemma, we can use the subset Y’ of tuple pairs for evalu-
ating [V = v], instead of the entire T.

Finally, Algorithm 2 presents the pseudo-code for tuple-
oriented exclusion. Instead of the entire instance I, the al-
gorithm uses Y of tuple pairs with respect to I as input.
The left-hand-side attributes X increase from small to large

Procedure IRREDUCIBLE(Y,[X = z],Z)

Input: A set T of tuple pairs from I and a condition [X =
Output: A set ¥ of irreducible cMDs determining [Y = y]
in I.
if 7 is empty then
return ()
A := an attribute removed from Z
Y := IRREDUCIBLE(Y, [X =~ z],Z)
domiocal (A) := dynamic computed from T
for each a € domjec,i(A) do
T :=0(Y,[A=al])
if Y/ = () then
9: Y=Yw{X=rz2]AN[Axad = [Y =y}
10: remove all b € domygeai(A) such that a = b
11:  else
12: Y = X WIRREDUCIBLE(Y' [X ~ x| A [A = a], Z)
13: return ¥

Algorithm 2: Tuple-oriented exclusion

in each recursion, in order to utilize the subset relationship
of T in Lemma 3.5. Initially, we have T = o (Y7, 0[Y = y]),
[X ~z]=nulland Z =R\Y.

In each recursion, the current Y records tuple pairs that
agree the current [X =~ z] but not [Y = y|, ie, T =
o(Tr,[X = z] A[Y = y]). Let A be the attribute consid-
ered in the current recursion. For each [A & a], according
to Lemma 3.5, we can compute a

Y =o(T,[A~a]) = o(Tr,[X ~ 2] A[A~a] A-[Y = y)).

As stated in Lemma 3.3, if Y’ = ), then the cMD holds in 1.

As mentioned, in each recursion, we evaluate a subset
T of tuple pairs instead of the entire I. Therefore, other
than considering the full dom(A) defined on R, we dynami-
cally compute a local version with respect to the current Y,
dom|oca|(A) = {a € dOI’T'I(A) | H(ti7tj) e, (ti7tj) = [A ~
a]}. Once a oMD is found to hold, similar to the pruning of
conditions in domain-oriented algorithm, we can also prune
the remaining dominated conditions according to Lemma
3.4, i.e., line 10 in Algorithm 2.

Let [ be the exclusion rate on average in each recursion,
that is, (1 — I)|Y| tuple pairs remained after each exclu-
sion. Note that the domjocal(A) is no greater than dom(A).
In other words, the complexity of tuple-oriented exclusion
should be no worse than that of domain-oriented algorithm.
The tuple-oriented algorithm runs in O(n?(1 —1)™D™(1 —
r)™) time.

Comparison

In summary, the straight-forward approach evaluate all can-
didates in the instance I to find all irreducible cMDs. The
domain-oriented approach also evaluates the entire instance
I and studies the pruning of candidates in a static domain.
The tuple-oriented approach incrementally excludes tuple
pairs with respect to I and introduces dynamic domain ac-
cording to the currently remaining tuple pairs.

4. EXPERIMENTS

In this section, we report an extensive experimental eval-
uation. The experiments on real data sets mainly cover two
aspects, the performance of discovering cmDs. All the algo-




Table 2: Examples of discovered CMDs

CMD;  [title & %] A [venue = journal of computer and system sciences] — [id = ]

CMDy [title & a general lower bound on the number of examples needed for learning] A [venue ~ ] — [id = %]

CMD3 [title & a decision theoretic generalization of on line learning and an ...] A [venue &~ %] — [id = %]

CMDy  [author & ] A [title & %] A [venue & x| — [id = %]

CMDs  [author & %] A [title &~ bounds on the sample complexity of bayesian learning using ...] — [id = %]

CMDg  [author & a. ehrenfeucht, d. haussler, m. kearns, and I. valiant.] A [venue ~ %] — [id = %]

CMD7  [author & freund, y. and schapire, r. e.] A [venue & x| — [id = %]

CMDg  [author & freund, y. and schapire, r. e.] A [title = %] — [id = %]

CMDg [title & x] A [venue = 33 proceedings of the 1988 workshop on ...]| A [address & boston, ma] — [id = freund0000a]

rithms are implemented by Java and run on a machine with
Intel Core 2 CPU (2.13 GHz) and 2 GB of memory.

Data Sets

Two real data sets are adopted in the experiments, i.e.,
Restaurant? includes records of restaurants with schema

(name, address, city, type, id).
Cora® collects scientific research paper citations with schema
(author, volume, title, institution, venue, address, year, . . . , id).

Attribute id indicates a manually labeled identification. For
example, two tuples in Restaurant with identical id means
that they are the same restaurant in real world. Thus, the
id attribute is adopted as the right-hand-side attribute Y
in the following experiments. For the similarity operator
~~ on the remaining attributes, we use cosine similarity on
g-grams [9] with threshold 0.8.

Discovery Evaluation

The first experiment illustrates some example results found
in the data sets. Table 2 shows several irreducible cMDs dis-
covered in Cora. For example, the first ¢CMD; states that:
for any two tuples appearing in the venue similar to journal
of computer and system sciences, if their title are similar as
well, then these two tuples must describe the same paper
having identical id. As special cases, our approach can find
all the MDs as well, for instance, cMD4 holds in the entire ta-
ble without any condition, i.e., a traditional MD. The results
in Table 2 also verifies that returned cMDs are irreducible.
That is, cMDs that can be implied by the results according
to augmentation and left-dominating will not appear. With
the same condition [author & freund, y. and schapire, r. e.],
CMD7 specifies a dependency with respect to [venue = %],
while ¢MDg denotes another different case of similar title.

To evaluate the performance of discovering CMDs, we con-
duct discovery approaches in various settings of relation
schema R and instance I. Three proposed discovery al-
gorithms, including straight-forward (SF), domain-oriented
pruning (DOP) and tuple-oriented exclusion (TOE), are com-
pared. It is worth noting that these three approaches are
exact algorithms, i.e., they discover the same set of depen-
dencies.

First, we evaluate in instances from I; to Ig with number
of tuples from 100 to 600, respectively. The results are re-
ported in sub-figure (a) of Figure 4 and 5. As presented, the
advanced DOP and TOE can significantly improve the time

Zhttp://www.cs.utexas.edu/users/ml/riddle/data.html
http://www.cs.umass.edu/ - mccallum/code-data.html
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Figure 4: Discovery performance in Cora

performance compared with SF approach. Note that the av-
erage domain size of attributes in Cora is larger than that
of Restaurant. Thus, the improvement achieved by bop and
TOE in Cora data set is greater as well, i.e., about 3 orders of
magnitude. Moreover, the time cost of TOE increases a bit
slower than the increase of DOP with respect to the instance
size I. It is because the tuple-oriented approach (TOE) does
not have to traverse the entire instance in each evaluation.

Next, we study the discovery on various relation schema
R. For the Cora data set, relation schemas R; to Rg have at-
tributes from 2 to 7. Since the Restaurant data set has only
5 attributes, as presented in Table 3, the schemas are pre-
pared in different attribute sets with various domain sizes.
For example, in R2, the domain size of attribute name is 106
and the domain size of address is 22. It implies the domain
size of |dom(name, address)| = 2332.

As illustrated in sub-figure (b) of Figure 4 and 5, the dis-
covery time cost increases exponentially with the increase
of schema size. As discussed, the search space depends on
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Table 3: Restaurant schemas

R\Y |dom(R\ Y)]
Ri  name 106 =106
R2>  name, address 106*22 =2332
Rs name,city 106*52 =5512
R4 name, address, city 106*22*52 =121264
Rs name,city, type 106*52*8 =44096
Rs name,address, city, type  106%¥22*52*¥8  =970112

the size of |[dom(R \ Y)|. Thus, as presented in Figure 5
(b), the time cost is approximately proportional to the cor-
responding domain size in Table 3. Similar results are also
observed in Figure 4 (b), which increase exponentially with
respect to the number of attributes. Compared with the
straight-forward one, the advanced DOP and TOE approaches
can achieve several orders of magnitude improvement. For
example, the TOE achieves an improvement of 4 orders of
magnitude compared with SF one in R4 of Cora. And most
importantly, the tuple-oriented approach TOE scales much
better than DOP. When the schema size is small, e.g., R
of Cora or Restaurant, the domain-oriented algorithm DOP
does not need to maintain a certain set T of tuple pairs,
and thus shows lower time cost. On the other hand, if the
schema size is large, e.g., R¢ of Cora, TOE shows 2 orders of
magnitude lower time cost than that of DOP. Similar result
is also observed in Rg of Restaurant. This result also ver-
ifies our complexity analysis for DOP and TOE with respect
to schema size.

5. RELATED WORK

Recently, traditional dependencies, such as functional de-
pendencies (FDs) and inclusion dependencies (INDs) for the
schema design [1], are revisited for new applications like im-
proving the quality of data. The conditional functional de-
pendencies (CFDs), as an extension of traditional FDs with
conditions, are first proposed in [3] for data cleaning. The
basic idea of CFDs is making the FDs, originally hold for the
whole table, valid only for a set of tuples specified by the
conditions. Cong et al. [8] study the detecting and repair-
ing methods of violation by CFDs. Fan et al. [14] investi-
gate the propagation of CFDs for data integration. Bravo et
al. [4] propose an extension of CFDs by employing disjunc-
tion and negation. Golab et al. [17] define a range tableau
for CFDs, where each value is a range. In addition, Bravo
et al. [5] propose conditional inclusion dependency (CINDS),
which are useful not only in data cleaning, but are also in
contextual schema matching. Instead of associating condi-
tions based on identification, in this study, we investigate
conditions with respect to similarity matching quality.

Matching dependencies (MDs) are first proposed in [10] for
specifying matching rules for the object identification (see [9]
for a survey). The MDs can be regarded as a generalization
of FDs, which are based on identical values having similar-
ity equal to 1.0 exactly. Thus, FDs can be represented by
the syntax of MDs as well. Reasoning mechanism for de-
ducing MDs from a set of given MDs is studied in [13]. As
illustrated, MDs and their reasoning techniques can improve
the effectiveness of record matching. Besides matching de-
pendencies, in recent work, the importance of introducing
similarity metrics in dependencies has been commonly rec-
ognized. Koudas et al. [23] study the dependencies with
similarity metrics on attributes Y when given the identifica-
tion on X. Golab et al. [16] propose sequential dependen-
cies, which also targets on the metric distance/similarity of
values. A sequential dependency, in the form of X —, Y,
states that when tuples are sorted on X, the distance be-
tween the Y-values of any two consecutive tuples are within
interval g.

The discovery of dependencies from a given relation in-
stance is widely studied [2, 26, 27, 28, 24]. In discover-
ing FDs, previous work targeted on generating a minimal
cover of all Fps. Huhtala et al. [19, 20] propose a level-
wise algorithm, namely TANE, together with efficient prun-
ing when searching in the lattice of attributes. Remarkably,
TANE algorithm also supports the discovery of approximate
FDs. Wyss et al. [30] study depth-first, heuristic-driven al-
gorithm, namely FastFDs, which is (almost) linear to the
size of FDs cover. Flach and Savnik [15] discover FDs in a
bottom-up style, which considers the maximal invalid de-
pendencies first. When searching in a hypotheses space,
the maximum invalid dependencies are used for pruning the
search space. In discovering cFDs, Chiang and Miller [7] ex-
plore CFDs by considering all the possible dependency rules
when X — Y is not specified. In [12], Fan et al. also study
the case when the embedded FDs are not given, and propose
three algorithms for different scenarios. When arule X — Y
is suggested, Golab et al. [17] study the discovery of optimal
CFDs with the minimum pattern tableau size. A concise set
of patterns are naturally desirable which may have lower cost
during the applications such as violation detection by CFDs.
Unfortunately, similarity metrics of MDs and CMDs are not
considered in the previous work of discovering dependencies.



6. CONCLUSIONS

In this study, we propose conditional matching dependen-
cies. To out best knowledge, this is the first work on match-
ing dependencies with conditions. A comprehensive syntax
system is developed with formal definitions of conditional
matching dependencies and dominating relationships among
conditions. Inference rules including augmentation and left-
dominating are then introduced, which raises the problem
of finding irreducible ¢MDs. Due to the intrinsical hardness
of discovering cMDs, we develop several pruning algorithms
to improve discovery performance in practice. Finally, an
extensive experimental evaluation is reported, including the
performance of discovering CMDs.

Besides the problems addressed in this study, i.e., discov-
ery of CMDs, there are many other aspects to explore in
future work. For example, the consistency problem of ¢MDs
is: given any set X of CMDs to decide whether there exists
a relation instance I such that I F 3. It is not only theo-
retically interesting but also practically useful, e.g., in data
cleaning practice, the input constraint rules of ¢MDs should
not be self-contradictory. Another interesting problem is the
complexity of implication problem together with a complete
and sound inference system for cMDs. It is already known
that implication of CFDs is co-NP-complete, where similar-
ity metrics are not considered. The implication analysis for
CMDs appears non-trivial as well.
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