
Discovering Conditional Functional Dependencies to
Detect Data Inconsistencies

Peter Z. Yeh
Accenture Technology Labs

San Jose, CA 95113

peter.z.yeh@accenture.com

Colin A. Puri
Accenture Technology Labs

San Jose, CA 95113

colin.puri@accenture.com

ABSTRACT
Poor quality data is a growing and costly problem that affects many
enterprises across all aspects of their business ranging from opera-
tional efficiency to revenue protection. In this paper, we present an
approach that efficiently and robustly discovers conditional func-
tional dependencies for detecting inconsistencies in dataand hence
improves data quality. We evaluate our approach empirically on
three real-world data sets, and show that our approach performs
well on these sets across several dimensions such as precision, re-
call, and runtime. We also compare our approach to an estab-
lished solution and show that our approach outperforms thisso-
lution across the same dimensions. Finally, we describe efforts to
deploy our approach as part of an enterprise tool being developed
at Accenture to accelerate data quality efforts such as dataprofiling
and cleansing.

1. INTRODUCTION
Many organizations suffer from poor quality data – a problem

that is getting worse because data is growing at astonishingrates
and few organizations have an effective data governance process.
A 2002 study estimated that data quality problems cost U.S. busi-
nesses more than $600 billion annually [5]. These problems impact
all aspects of an organization ranging from operational efficiency to
revenue protection.

Poor data quality can occur along several dimensions (e.g. con-
formity, duplication, consistency, etc.), and consistency (i.e. ensur-
ing that values across interdependent attributes are correct) is one
dimension that many organizations struggle with. The process of
detecting inconsistencies in data is labor-intensive. Forexample,
Table 1 shows a sample of records (and attributes) for U.S. fed-
eral grants given to the state of Michigan as part of the economic
recovery program. This sample contains several inconsistencies,
which are not obvious. In row 1, theRcpt Cityattribute (i.e. the
recipient’s city) has the value ofLansing, but theRcpt Districtat-
tribute (i.e. the recipient’s congressional district) hasthe value of
6, which is incorrect. The correct value is 8. Similarly, in row 4 the
Rcpt CategoryandAgencyattributes have values ofFor Profit and
HUD respectively, but theProgramattribute has the value ofPub-

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘10,September 13-17, 2010, Singapore
Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

lic Housing, which is also incorrect. The correct value isSection 8
Housingbecause the recipient is a “for profit”.

Hence, many organizations often ignore this critical dimension,
which leads to various problems such as inaccurate reporting of key
metrics (e.g. who received grants, what types of grants, etc.) used
to inform critical decisions.

Recently Conditional Functional Dependencies (CFDs) werein-
troduced for detecting inconsistencies in data [2], and were shown
to be more effective than standard Functional Dependencies(FDs)
[2] and association rules [4]. We can use CFDs to formulate the
following rules which can detect the inconsistencies in Table 1.

(Rcpt City→ Rcpt District, (Lansing‖ 8))

(Rcpt Category, Agency→ Program,
(For Profit, HUD ‖ Section 8 Housing))

Each CFD is a rule of the form(X → Y, Tp) whereX and Y

are attributes from a relation of interest (e.g. Table 1),X → Y is
a FD, andTp is a pattern tuple. This tuple consists of values from
attributes inX andY along with a wildcard (i.e. ’’) that can match
any arbitrary value.

Approaches have also been proposed for automatically discov-
ering CFDs from data [4, 6, 7]. These approaches, however, have
various limitations. Approaches such as [7] require FDs as inputs
which is not feasible in practice, as the FDs are not always avail-
able. Approaches such as [4, 6] do not have this limitation, but
they have difficulty scaling to relations with a large numberof at-
tributes (it is not uncommon for enterprises to have relations with
100 attributes) and are not robust to dirty data (these approaches
will overlook many CFDs, and clean data sets are often not avail-
able for discovering CFDs in practice).

In this paper, we present a solution that addresses these limita-
tions. Our solution can:

• Effectively prune the search space and hence can handle re-
lations with a large number of attributes (e.g. up to 100).

• Robustly handle dirty data during discovery and hence can
discover useful CFDs even when the data has a large per-
centage of inconsistencies (e.g. up to 50%).

• Determine when a rule becomes stable and hence can avoid
examining the entire data set and overfitting.

We evaluate our approach empirically on three real-world data
sets. We show that our approach performs well on these sets across
several dimensions such as precision, recall, and runtime.We also
compare our approach to an established solution and show that our
approach outperforms this solution across the same dimensions.
We conclude by describing efforts to deploy our approach as part of

Table 1: A sample of records and attributes from U.S. Federalgrants received by Michigan.
Rcpt Category Rcpt City Rcpt District Agency Agency Code Program CFDA No.
1 Government Lansing 6 ED 9131:DOED Pell 84.063
2 Government Lansing 8 FHA 6925:DOT Highway Planning 20.205
3 Government Lansing 8 FHA 6925:DOT Highway Planning 20.205
4 For Profit Lansing 8 HUD 8630:HUD Public Housing 14.885
5 Higher ED Ann Arbor 15 ED 9131:DOED Pell 84.063
6 Higher ED Ann Arbor 15 ED 9131:DOED Work Study 84.033
7 For Profit Detroit 13 HUD 8630:HUD Section 8 Housing 14.317
8 For Profit Detroit 13 HUD 8630:HUD Section 8 Housing 14.317

an enterprise tool being developed at Accenture to accelerate data
quality efforts such as data profiling and cleansing.

2. APPROACH
Our approach – we call CFinder – discovers Conditional Func-

tional Dependencies (CFDs) from a relation of interest through the
following steps. CFinder first generates an initial set of candidate
CFDs. CFinder then refines each CFD by removing extraneous
(or invalid) conditions, and stops refining a CFD when it becomes
stable. Finally, CFinder filters weak (and subsumed) CFDs, and
generalizes the remaining ones to increase their applicability.

2.1 Generate Candidate CFD
Given a relationR, CFinder generates candidate CFDs – i.e.

(X → Y, Tp) – by first generating all attribute combinations of
sizeN + 1 from R whereN is the maximum number of attributes
(and hence conditions) allowed in the antecedent (i.e.X) of a CFD.
CFinder imposes this restriction because CFDs with a large number
of conditions in the antecedent have limited applicabilityin prac-
tice.

CFinder then generates candidate CFDs from each combination.
For each attribute in a combination, CFinder turns that attribute into
the consequent (i.e.Y) of a CFD and turns the remaining attributes
into the antecedent (i.e.X).1 CFinder then instantiates the pattern
tuple with respective values from these attributes whose frequency
exceeds the minimum support threshold.

For example, given a minimum support of 20% and the following
attribute combination from Table 1:

(Agency, Agency Code, Program, CFDA No.)

some of the CFDs that CFinder will generate include:

(Agency Code, Program, CFDA No.→ Agency,
(9131:DOED, Pell, 84.063‖ ED))

(Agency, Agency Code, Program→ CFDA No.,
(HUD, 8630:HUD, Pell‖ 14.317))

However, the number of combinations (and hence candidate CFDs)
can be extremely large, so CFinder prunes combinations thatare
unlikely to produce useful CFDs based on two heuristics.

The first heuristic is useful CFDs are more likely to be generated
from attributes that are strongly related (e.g.AgencyandAgency
Code). CFinder implements this heuristic by treating each combi-
nationc as a fully connected graph with attributes as nodes and by
1Generating candidate CFDs with only one attribute in the con-
sequent (i.e.minimal CFDs) does not limit the generality of our
approach because CFDs with multiple attributes in the consequent
can be decomposed intominimal CFDs, which can be considered
individually [2].

computing the averagestrengthacross all edges (and hence how
strongly are the attributes related to each other) using thefollowing
equation:

P

(A,B)ǫE(c) Strength(A,B)

|E(c)|

whereE(c) are all edges inc, (A, B) is an edge between attributes
A andB, andStrength(A,B) measures how stronglyA is re-
lated toB. A good measure forStrength(A,B) is the mutual
dependence between these attributes, as high mutual dependence
indicates a strong relationship betweenA andB. Hence, CFinder
definesStrength(A,B) as the mutual information shared between
A andB:

X

aǫU(A)

X

bǫU(B)

P (a, b)log
P (a, b)

P (a)P (b)

whereU(A) andU(B) are the unique values inA andB respec-
tively; andP is the relative frequency of a value (or value pair) in
an attribute (or attribute pair).

CFinder prunes combinations with low strength, and sets thede-
fault strength threshold to 0.5. For example, Figure 1 (top)shows
the fully connected graph for the following attribute combination
from Table 1.

c1: (Rcpt Category, Rcpt City, Agency, Agency Code)

The edge labels indicate the strengths between these attributes. Since
the average strength (i.e. 1.13) is greater than 0.5, CFinder will
keep this combination.

The second heuristic is many combinations are variants of one
another and can be pruned. These variants often result in thedis-
covery of the same CFDs because CFinder refines CFDs by re-
moving extraneous (or invalid) conditions from the antecedent (see
Section 2.2).

CFinder implements this heuristic by first sorting – in descend-
ing order based on strength – combinations that remain afterapply-
ing the first heuristic. CFinder then traverse this list in descending
order, and for each combinationc it finds all preceding combina-
tionsC′ that have minimal difference withc. CFinder defines this
difference as the number of attributes inc that are not inc′ where
c′ǫC′, and sets the default difference to 1 – i.e.C′ will contain all
combinations that differ fromc by one attribute.

SinceC′ contains more promising combinations (and hence CFDs)
than c, CFinder should prunec if it has significant overlap with
C′. Because each combination can be treated as a fully connected
graph, the overlap betweenc and any combination inC′ is their
maximum common subgraph. If the non-overlapping edges inc

(i.e. edges not found inC′) are weak, then it is unlikely that this
combination will produce any new, useful CFDs. CFinder captures

Figure 1: Top: The fully connected graph for c1. Bottom: Two
combinations that rank higher than c1, and have high overlap
with c1. Bold edges indicate overlaps.

this notion formally as:
P

(A′,B′)ǫE′(c) Strength(A′, B′)
P

(A,B)ǫE(c) Strength(A,B)

whereE(c) are all edges inc andE′(c) are edges inc that overlap
with combinations inC′. If this value exceeds the prune threshold
HP , then the combination is pruned.

For example, Figure 1 (bottom) shows two additional combina-
tions from Table 1 whose strengths rank higher thanc1. If HP is
0.85, then CFinder will prunec1 because it has high overlap (shown
in bold) withc2 andc3, and the non-overlapping edge inc1 is weak.

CFinder generates candidate CFDs from the remaining combi-
nations – starting with the strongest one – and refines these CFDs
in the order they are generated (see Section 2.2).

2.2 Refine CFD
CFinder refines each candidate CFD by comparing it with records

from the relation of interest. For each record, CFinder determines
whether the record is consistent, inconsistent, or irrelevant to the
CFD.

1. A record is consistent with a CFD (and hence supports it) if
all values in the pattern tupleTp of the CFD match the re-
spective values in the record. If so, then CFinder increments
the consistent record countRC by 1.

2. A record is inconsistent with a CFD if all values inTp –
that correspond to the antecedent of the CFD – match the
respective values in the record, but values that correspondto
the consequent do not. If so, then CFinder increments the
inconsistent record countRI by 1.

3. Otherwise, the record is irrelevant to the CFD, and CFinder
increments the irrelevant record countRV by 1.

CFinder uses these counts to check whether the CFD is too spe-
cific (and hence needs to be refined) and whether inconsistencies
encountered for the CFD are real errors in the data or anomalies,

which can be ignored. CFinder performs these checks – once ev-
ery M records – using the minimum support thresholdHS – i.e.

RC

RC+RV
≥ HS – and the maximum inconsistency thresholdHI –

i.e. RI

RI+RC
≤ HI .

If a CFD fails to meet the minimum support thresholdHS , then
CFinder refines the CFD by removing extraneous (or invalid) con-
ditions from its antecedent. However, the difference between the
observed support (i.e. RC

RC+RV
) and the expected support (i.e.HS)

may be due to a “sampling” effect with theM records examined.
This effect can cause the CFD to be over-refined and become too
promiscuous. Hence, CFinder needs to determine the significance
of this difference, and it uses theX 2 test, which is instantiated as:

(RC − HS(RC + RV))2

HS(RC + RV)
+

(RV − (1 − HS)(RC + RV))2

(1 − HS)(RC + RV)

CFinder will refine a CFD only if the difference is significant– i.e.
the resultingX 2 value exceeds the criticalX 2 value at the specified
confidence level, which CFinder defaults to 99%.

CFinder selects the topK most promising conditions to remove
from the antecedent of the CFD. Since the goal is to improve sup-
port, CFinder should remove conditions whose value occurs infre-
quently with the consequent’s value and whose attribute hashigh
uncertainty (i.e. many different unique value pairs) with the con-
sequent’s attribute because these conditions cause many records to
be irrelevant. CFinder implements this notion formally as:

(1 − P (Tp(A), Tp(B)))Entropy(A,B)

whereA andB are attributes of the condition and consequent re-
spectively;Tp(∗) is the value of an attribute in the pattern tuple;P

is the relative frequency of the value pairTp(A) andTp(B) across
all records examined so far; andEntropy(A,B) is the joint en-
tropy betweenA andB across all records examined so far.

CFinder selectsK conditions with the highest scores based on
the equation above, and for each condition CFinder removes the
condition from the antecedent of the original CFD to generate a
new CFD. For example, let’s assume CFinder needs to refine the
following CFD by selecting the top two conditions, and the records
in Table 1 are the ones examined so far.

(Agency Code, Program, CFDA No.→ Agency,
(9131:DOED, Pell, 84.033‖ ED))

CFinder will selectCFDA No. andProgram– whose scores are
1.97 and 1.69 respectively (Agency Codehas the lowest score of
0.98) – and remove them from the original CFD to generate the
following new CFDs.

(Agency Code, Program→ Agency,
(9131:DOED, Pell‖ ED))

(Agency Code, CFDA No.→ Agency,
(9131:DOED, 84.033‖ ED))

For each new CFD, CFinder records the CFD to prevent it from
being generated again; and recomputesRC , RI , andRV for the
CFD. If no conditions remain in the antecedent, then the CFD is
discarded.

Similarly, if a CFD exceeds the maximum inconsistency thresh-
old HI , then CFinder determines whether the difference between
the observed inconsistency (i.e. RI

RI+RC
) and the expected incon-

sistency (i.e.HI) is significant using theX 2 test, which is instan-
tiated as:

(RI − HI(RC + RI))
2

HI(RC + RI)
+

(RC − (1 − HI)(RC + RI))
2

(1 − HI)(RC + RI)

If the difference is significant, then CFinder penalizes theCFD by
addingRI to RV and then resettingRI to 0. This penalty increases
the likelihood that the CFD will fail to meet the minimum support
threshold, which will cause the CFD to be refined and eventually
discarded (if the inconsistencies persist).

CFinder repeats the above process until all records have been
examined or the CFD becomes stable (see Section 2.3).

2.3 Determine Stable CFD
Examining all records to discover CFDs is computationally ex-

pensive and can result in CFDs that overfit the data. CFinder ad-
dresses these two issues by determining whether a CFD is stable
and hence does not need to be refined further. A CFD is stable if
both the support for the CFD and the certainty of the values that
make up the attributes referenced in the CFD are constant over a
given period of time.

CFinder captures this notion by first computing a stability score
St for the CFD using the following equation:

RC

RC + RV

X

AǫX∪Y

Entropy(A)

whereRC andRV are consistent and irrelevant record counts for
the CFD respectively (see Section 2.2);X∪Y are all attributes ref-
erenced in the CFD; andEntropy(A) is the entropy ofA across all
records examined so far. CFinder computes this score once every
M records – when it checks the minimum support and maximum
inconsistency thresholds (see Section 2.2 also).

CFinder then computes the standard deviationSDSt for the past
L stability scores; and marks the CFD as stable ifSDSt is constant
according to the equationSDSt

AvgSt
≤ HSt whereAvgSt is the aver-

age of the pastL stability scores andHSt is the stability threshold.
For example, if the certainty of the values for the attributes in a

CFD fluctuates or a condition is removed from a CFD, then the en-
tropy component of the stability scoreSt will change significantly,
which will prevent the CFD from becoming stable. Similarly,if the
support for a CFD fluctuates, thenSt will fluctuate as well, which
will prevent the CFD from becoming stable.

2.4 Filter and Generalize CFD
CFinder uses the measures of support [1] and conviction [3] to

filter weak CFDs – i.e. CFDs that do not meet (or exceed) the
thresholds specified for these measures. Support measures how
much evidence there is for a CFD, and can be defined using the
consistent and irrelevant record counts (see Section 2.2).Convic-
tion measures how much the antecedent and consequent of a CFD
deviate from independence while considering directionality. This
measure has been shown to be effective for filtering weak CFDs
[4]. Given space limitations, we refer the reader to [1, 3, 4]for
additional details on these measures.

In addition to these measures, CFinder applies an additional filter
to remove subsumed CFDs. A CFD – i.e.F1 : (X1 → Y1, Tp1) –
subsumes another CFD – i.e.F2 : (X2 → Y2, Tp2) – if Y1 equals
Y2, X1 ⊂ X2, andTp1 ⊂ Tp2. If these conditions are met, then
CFinder removes the subsumed CFD (i.e.F2) because it has less
applicability.

CFinder then generalizes the remaining CFDs to further increase
their applicability. A CFDF1 can be generalized if there exists an-
other CFDF2 such that 1)F1 andF2 have the same antecedents
and consequents (i.e.X1 equalsX2 andY1 equalsY2) and 2) the
pattern tuples ofF1 andF2 differ by a single value. If these con-
ditions are met, then CFinder generalizesF1 andF2 into a single
CFD by replacing the differing value in their pattern tupleswith a
wildcard (i.e. ’ ’). For example, given the following CFDs:

(Rcpt Category, Agency→ Program,
(Government, ED‖ Pell))

(Rcpt Category, Agency→ Program,
(Higher ED, ED‖ Pell))

CFinder can generalize them into:

(Rcpt Category, Agency→ Program, (, ED ‖ Pell))

CFinder repeats this final step until there are no more CFDs that
can be generalized.

3. EVALUATION
We evaluated the following claims to show that our approach

(i.e. CFinder) can efficiently and robustly discover CFDs that can
effectively detect inconsistencies in data.

• Claim 1: CFinder can robustly discover useful CFDs even
when the data has a large percentage of inconsistencies.

• Claim 2: CFinder can efficiently discover CFDs by effec-
tively pruning the space of candidate CFDs.

• Claim 3: CFinder can further improve efficiency and prevent
overfitting by determining when a CFD becomes stable.

3.1 Data Sets
We used three real-world data sets for our evaluation. The first

data set – we callRecovery MI– contains U.S. federal grants given
to the state of Michigan as part of the economic recovery program.
Each record has information about the recipient, the grant type, etc.
This data set has 41 attributes and 2,916 records.

The second data set – we callManifest– contains manifest infor-
mation from a large U.S. shipping and logistics organization. Each
record has information about the item being shipped, the sender, the
recipient, etc. This data set has 102 attributes and 21,182 records.

The last data set – we callOps– contains operational information
from the same shipping and logistics organization. Each record has
information about which facility processed an item for shipping,
when an item was processed, etc. This data set has 12 attributes
and 51,067 records.

In each case, ensuring data consistency is important in prevent-
ing inaccurate reporting (and hence poor decisions), revenue loss,
and operational inefficiency.

3.2 Experiment Setup and Results
To evaluate Claim 1, we measured the precision and recall of in-

consistencies detected using the CFDs discovered by CFinder for
all three data sets. To obtain these measures, we first randomly in-
troduced inconsistencies into each data set at rates of 10%,20%,
30%, 40%, and 50% – e.g. if the inconsistency rate is 30%, then
there is a 30% chance that a value in a data set will be randomlyre-
placed with a different value from the same attribute in thatset. We
then performed a 10-fold cross-validation for each data setat each
inconsistency rate. We defined precision as the number of true in-
consistencies (i.e. inconsistencies that were randomly introduced)
detected by CFinder over all inconsistencies detected; andrecall
as the number of true inconsistencies detected by CFinder over all
inconsistencies introduced.

To evaluate Claim 2, we measured the runtime (in seconds) of
CFinder in discovering CFDs and the number of attribute combina-
tions (and hence candidate CFDs) pruned by CFinder. We obtained
both measures from all 10-fold cross-validation runs performed in
evaluating Claim 1.

Table 2: The average precision, recall, and runtime from 10-fold cross-validations performed for all evaluated approaches and data
sets at inconsistency rates from 10% to 50%.∗ and + indicate cases where CFinder performed significantly better than CFD-TANE
and CFinder-NoStable respectively (p < 0.01 for the 2-tail pairwise t-test, df = 9).

CFinder CFD-TANE CFinder-NoStable
Precision (%) Recall (%) Time (s) Precision (%) Recall (%) Time (s) Precision (%) Recall (%) Time (s)

Recovery MI
0.1 0.7712∗ 0.5060∗ 2428.1∗+ 0.2840 0.3494 17273.5 0.7744 0.5056 2781.0
0.2 0.8062∗ 0.5047∗ 2186.3∗+ 0.5771 0.2227 17098.0 0.8147 0.5013 2503.8
0.3 0.7878∗ 0.5599∗ 1966.8∗ 0.6866 0.1497 17291.7 0.7911 0.5560 1988.4
0.4 0.8447∗ 0.5089∗ 1374.0∗+ 0.6423 0.0625 17411.1 0.8423 0.5075 1362.0
0.5 0.8691 0.4007∗ 781.3∗+ 0.8469 0.0145 17240.1 0.8704 0.3980 883.0
Manifest
0.1 0.8406 0.6548+ 4791.4+ N/A N/A N/A 0.9391 0.4625 5487.5
0.2 0.8536 0.6587+ 6170.3+ N/A N/A N/A 0.8957 0.4347 6338.3
0.3 0.8778 0.6612+ 6105.8+ N/A N/A N/A 0.9136 0.5646 6733.3
0.4 0.9077 0.6861+ 7106.4+ N/A N/A N/A 0.9305 0.4905 7529.9
0.5 0.9209 0.6323+ 8312.5+ N/A N/A N/A 0.9543 0.3241 8883.5
Ops
0.1 0.9202∗ 0.4019∗+ 4226.0∗+ 0.0764 0.1771 5581.2 0.9268 0.3283 5299.2
0.2 0.7378∗ 0.3585∗+ 3727.0∗+ 0.0833 0.0662 5424.6 0.9156 0.2285 4628.9
0.3 0.7014∗ 0.3586∗+ 3386.7∗+ 0.0773 0.0482 5379.5 0.7338 0.2125 4316.0
0.4 0.7322∗ 0.3676∗+ 3457.5∗+ 0.2230 0.0812 5685.8 0.7062 0.1546 4070.2
0.5 0.7928∗ 0.3747∗+ 3021.8∗+ 0.2698 0.0769 5234.3 0.9107 0.1658 3520.6

For both evaluations, we compared CFinder with an established
solution for discovering CFDs [4], which we’ll call CFD-TANE.
CFD-TANE is a TANE-based [8] solution that performs a breadth-
first search of an attribute lattice for CFDs – i.e. CFDs with N+1
attributes are derived from sets of N attributes. CFD-TANE also
produces approximate CFDs to handle inconsistencies encountered
during discovery.

To evaluate Claim 3, we created a variant of CFinder – we call
CFinder-NoStable – which does not determine whether a CFD is
stable and hence examines the entire data set. We used the same
methodology described above to obtain the measures of precision,
recall, and runtime for this variant.

We ran all evaluations using a dual-core 2.4 gigahertz AMD
Opteron processor with 4GB of memory on a Linux Ubuntu op-
erating system. We set the minimum supportHS for both CFinder
and CFD-TANE to 0.02, 0.03, and 0.05 for the Manifest, Ops, and
Recovery MI data sets respectively. We set the minimum convic-
tion to 5.0. We set the size of attribute combinations generated by
CFinder to 4; and to ensure a fair comparison with CFD-TANE,
we bounded its search depth at level 4 inclusive. Hence, bothap-
proaches discovered CFDs over the same search space.

We set parameters specific to CFinder as follows. The prune
candidate thresholdHP was set to 0.85; and the maximum incon-
sistency thresholdHI was set to 0.025, 0.05, 0.1, 0.15, and 0.2
for inconsistency rates of 10%, 20%, 30%, 40%, and 50% respec-
tively. Minimum support and maximum inconsistency checks were
performed once every 200, 1,000, and 2,000 records for Recovery
MI, Manifest, and Ops respectively. We had CFinder select the top
2 conditions when a CFD needs to be refined. Finally, the stabil-
ity thresholdHSt was set to 0.025 over the last 10 stability scores
St. Applicable parameters for CFinder-NoStable were the sameas
CFinder.

Tables 2 and 3 show the results for all three evaluations. CFinder
performed significantly better than CFD-TANE on recall across all

Table 3: The Recovery MI, Manifest, and Ops data sets have
a total of 101,270; 4,249,575; and 495 attribute combinations
of size 4 respectively. This table reports the average number of
attribute combinations pruned by CFinder for these data sets
across all inconsistency rates.

Recovery MI Manifest Ops
0.1 99,906 4,249,486 490
0.2 100,154 4,249,489 490
0.3 100,336 4,249,490 490
0.4 100,430 4,249,493 490
0.5 100,480 4,249,478 490

data sets and inconsistency rates; and significantly betteron pre-
cision in most cases. Moreover, the recall of CFinder remained
relatively stable, even as the inconsistency rate increased. CFinder
performed well because it can robustly handle inconsistencies dur-
ing discovery, which CFD-TANE could not. CFD-TANE either
overlooked many useful CFDs or discovered ones that were too
promiscuous. These results support our first claim that CFinder
can robustly discover useful CFDs even when the data has a large
percentage of inconsistencies.

CFinder performed significantly better than CFD-TANE on run-
time for the Recovery MI and Ops data sets at all inconsistency
rates. We did not report results for CFD-TANE on the Manifest
data set because it could not handle the large number of attributes
(i.e. 102 attributes). CFinder performed well because it can effec-
tively prune the search space – e.g. in the best case CFinder pruned
over 99.99% of all possible attribute combinations and hence can-
didate CFDs (see Table 3). These results support our second claim
that CFinder can efficiently discover CFDs by effectively pruning
the space of candidate CFDs.

Figure 2: Browser displaying data quality rules discoveredfrom a user-specified dataset. The left panel groups relatedrules into
folders. The top right panel shows all rules within a selected folder. The bottom right panel shows the details for a selected rule.

The precision of CFinder and CFinder-NoStable was compara-
ble. CFinder-NoStable did have significantly better precision in
some cases, but its recall was significantly lower in most. These re-
sults show that CFinder-NoStable overfit the data to produceCFDs
with higher precision but lower recall. Moreover, the runtime of
CFinder was significantly lower than CFinder-NoStable in general
because it does not need to examine the entire data set. We at-
tributed these results to the only difference between thesetwo ap-
proaches – CFinder determines when a CFD is stable, CFinder-
NoStable does not. These results support our last claim thatCFinder
can further improve efficiency and prevent overfitting by determin-
ing when a CFD becomes stable.

4. DEPLOYMENT EFFORTS
Accenture – a global technology consulting and outsourcingcom-

pany – performs a wide range of large-scale enterprise projects for
its client from master data management to business intelligence.
An important factor in the success of these projects is ensuring
good quality data through efforts such as data profiling and cleans-
ing. These efforts, however, are expensive and time consuming.
In particular, Accenture client teams currently spend a significant
amount of time manually identifying industry (and client) relevant
rules that are required to profile and cleanse the data. The process
of identifying these rules typically involves interviewing relevant
subject matter experts on the client side.

To address this problem, Accenture is developing a tool – called
the Data Quality Rules Accelerator – that can automaticallydis-
cover relevant data quality rules; and our approach has beenimple-
mented as part of this tool to discover CFDs, which can detectand
correct data inconsistencies.

The intended users of this tool are Accenture client teams per-
forming data profiling and cleansing; and they interact withthis
tool through a web-based interface. The typical sequence ofinter-
actions is described below:

1. The user selects a data file – in CSV format – to discover
data quality rules from (in particular CFDs). The user also
has the option of connecting directly to a database through
an ODBC connection to select a relation for discovery.

2. The user sets parameters such as the minimum support, the
maximum inconsistency, etc. These parameters along with
the selected data are then sent to a backend server on which
our approach is implemented. Discovered rules are sent back
to the user and displayed in a rules browser (see Figure 2).

3. The user then reviews the discovered rules with subject mat-
ter experts on the client side to accept those that should be de-
ployed and to reject those that are extraneous. The user can
also edit these rules or add additional ones through a rules
editor.

4. The user deploys accepted rules by exporting them – through
the tool’s export feature – to either SQL statements or a com-
mercial solution for data profiling and cleansing such as In-
formatica Data Quality.

The Data Quality Rules Accelerator (and hence our approach)is
currently being piloted with select Accenture client teamsperform-
ing data profiling and cleansing – several of the data sets used in
our evaluations are from these pilots. The goal of these pilots is
to evaluate the technical feasibility and business value ofthis tool

in real-world situations. Initial results (and feedbacks)from these
pilots indicate that this tool can reduce the overall effortrequired to
profile and cleanse the data. Upon successful completion of these
pilots, this tool will be made available to all Accenture client teams,
and will be incorporated as part of Accenture’s delivery methodol-
ogy for data quality.

5. CONCLUSION
In this paper, we presented an approach that can efficiently and

robustly discover effective Conditional Functional Dependencies
(CFDs) for detecting inconsistencies in data, and hence canaddress
the growing problem of poor quality data faced by many organiza-
tions. We evaluated our approach on three real-world data sets and
showed that our approach performed well on these sets acrosssev-
eral dimensions such as precision, recall, and runtime. We also
compared our approach to an established solution and showedthat
our approach outperformed this solution across the same dimen-
sions. Finally, we described efforts to deploy our approachas part
of an enterprise tool being developed at Accenture to accelerate
data quality efforts such as data profiling and cleansing.

6. ACKNOWLEDGMENT
The authors would like to thank the reviewers for their helpful

feedback and suggestions for improving the paper. The authors
would also like to thank Scott Kurth, Sanjay Mathur, Mark Wag-
man, and Ajay Easo from Accenture Technology Labs for their
contributions to this work.

7. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules in large databases. InVLDB, 1994.
[2] P. Bohannon, W. Fan, F. Geerts, X. Jia, and

A. Kementsietsidis. Conditional functional dependenciesfor
data cleaning. InICDE, 2007.

[3] S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset
counting and implication rules for market basket data. In
SIGMOD, 1997.

[4] F. Chiang and R. Miller. Discovering data quality rules.In
VLDB, 2008.

[5] W. Eckerson. Data quality and the bottom line. Technical
report, TDWI Report Series, 2002.

[6] W. Fan, F. Geerts, L. Lakshmanan, and M. Xiong. Discovering
conditional functional dependencies. InICDE, 2009.

[7] L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yu. On
generating near-optimal tableaux for conditional functional
dependencies. InVLDB, 2008.

[8] Y. Huhtala, J. Kinen, P. Porkka, and H. Toivonen. Efficient
discovery of functional and approximate dependencies using
partitions. InICDE, 1998.

