Discovering Conditional Functional Dependencies to
Detect Data Inconsistencies

Peter Z. Yeh
Accenture Technology Labs
San Jose, CA 95113

peter.z.yeh@accenture.com

ABSTRACT

Poor quality data is a growing and costly problem that affecany
enterprises across all aspects of their business rangingdpera-
tional efficiency to revenue protection. In this paper, wespnt an
approach that efficiently and robustly discovers condéidanc-
tional dependencies for detecting inconsistencies inaladzhence
improves data quality. We evaluate our approach empiyicail
three real-world data sets, and show that our approach rpesfo
well on these sets across several dimensions such as precisi

Colin A. Puri
Accenture Technology Labs
San Jose, CA 95113

colin.puri@accenture.com

lic Housing which is also incorrect. The correct valueSsction 8
Housingbecause the recipient is a “for profit”.

Hence, many organizations often ignore this critical digien,
which leads to various problems such as inaccurate regafikey
metrics (e.g. who received grants, what types of grants) esed
to inform critical decisions.

Recently Conditional Functional Dependencies (CFDs) were
troduced for detecting inconsistencies in data [2], ancevediown
to be more effective than standard Functional Depende((E®s)

call, and runtime. We also compare our approach to an estab-[z] and association rules [4]. We can use CFDs to formulage th

lished solution and show that our approach outperforms sbis
lution across the same dimensions. Finally, we descritmgtsffo
deploy our approach as part of an enterprise tool being dpesl
at Accenture to accelerate data quality efforts such aslafding
and cleansing.

1. INTRODUCTION

following rules which can detect the inconsistencies inl&db

(Rept City— Rcpt District, (Lansing| 8))

(Rcpt Category, Agency> Program,
(For Profit, HUD || Section 8 Housing))

Each CFD is a rule of the forflX — Y,7,) whereX andY
are attributes from a relation of interest (e.g. TableX[)— Y is

Many organizations suffer from poor quality data — a problem a FD, andT, is a pattern tuple. This tuple consists of values from

that is getting worse because data is growing at astonighites
and few organizations have an effective data governanasepso
A 2002 study estimated that data quality problems cost WSi-b
nesses more than $600 billion annually [5]. These problemps.ct
all aspects of an organization ranging from operationatiefficy to
revenue protection.

Poor data quality can occur along several dimensions (em. ¢
formity, duplication, consistency, etc.), and consisiefi@. ensur-
ing that values across interdependent attributes areatpiseone
dimension that many organizations struggle with. The mead
detecting inconsistencies in data is labor-intensive. éxample,
Table 1 shows a sample of records (and attributes) for Ucb. fe
eral grants given to the state of Michigan as part of the emitio
recovery program. This sample contains several incomsiss,
which are not obvious. In row 1, thecpt Cityattribute (i.e. the
recipient’s city) has the value dfansing but theRcpt Districtat-
tribute (i.e. the recipient’s congressional district) hias value of
6, which is incorrect. The correct value is 8. Similarly, inwd the
Rcpt Categornyand Agencyattributes have values &br Profit and
HUD respectively, but th€rogramattribute has the value éfub-

Permission to copy without fee all or part of this materigianted provided
that the copies are not made or distributed for direct corimleadvantage,
the VLDB copyright notice and the title of the publicatiortéts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to postesvers
or to redistribute to lists, requires a fee and/or speciangsion from the
publisher, ACM.

VLDB ‘10, September 13-17, 2010, Singapore

Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0@/

attributes inX andY along with a wildcard (i.e._”) that can match
any arbitrary value.

Approaches have also been proposed for automatically \disco
ering CFDs from data [4, 6, 7]. These approaches, howevee ha
various limitations. Approaches such as [7] require FDsasits
which is not feasible in practice, as the FDs are not alwapd-av
able. Approaches such as [4, 6] do not have this limitatiar, b
they have difficulty scaling to relations with a large numbéat-
tributes (it is not uncommon for enterprises to have refstiavith
100 attributes) and are not robust to dirty data (these ajopes
will overlook many CFDs, and clean data sets are often nat-ava
able for discovering CFDs in practice).

In this paper, we present a solution that addresses thega-lim
tions. Our solution can:

e Effectively prune the search space and hence can handle re-
lations with a large number of attributes (e.g. up to 100).

e Robustly handle dirty data during discovery and hence can
discover useful CFDs even when the data has a large per-
centage of inconsistencies (e.g. up to 50%).

e Determine when a rule becomes stable and hence can avoid
examining the entire data set and overfitting.

We evaluate our approach empirically on three real-worlg da
sets. We show that our approach performs well on these setssac
several dimensions such as precision, recall, and runtikigealso
compare our approach to an established solution and showuha
approach outperforms this solution across the same dioeEnsi
We conclude by describing efforts to deploy our approacheasyh

Table 1: A sample of records and attributes from U.S. Federagrants received by Michigan.

| Rcpt Category| Rcpt City | Rcpt District | Agency | Agency Code| Program CFDA No.
1| Government | Lansing 6 ED 9131:DOED | Pell 84.063
2 | Government | Lansing 8 FHA 6925:DOT Highway Planning| 20.205
3 | Government | Lansing 8 FHA 6925:DOT Highway Planning| 20.205
4 | For Profit Lansing 8 HUD 8630:HUD Public Housing 14.885
5 | Higher ED Ann Arbor | 15 ED 9131:DOED | Pell 84.063
6 | Higher ED Ann Arbor | 15 ED 9131:DOED | Work Study 84.033
7 | For Profit Detroit 13 HUD 8630:HUD Section 8 Housing 14.317
8 | For Profit Detroit 13 HUD 8630:HUD Section 8 Housing 14.317

an enterprise tool being developed at Accenture to acceldeda
quality efforts such as data profiling and cleansing.

2. APPROACH

Our approach — we call CFinder — discovers Conditional Func-

tional Dependencies (CFDs) from a relation of interestugiothe
following steps. CFinder first generates an initial set afdidate

computing the averagstrengthacross all edges (and hence how
strongly are the attributes related to each other) usingpileving
equation:

> (A,B)eB () Strength(A, B)
[E(c)|

whereFE(c) are all edges im, (A, B) is an edge between attributes

CFDs. CFinder then refines each CFD by removing extraneous A and B, and Strength(A, B) measures how strongly is re-

(or invalid) conditions, and stops refining a CFD when it brees
stable. Finally, CFinder filters weak (and subsumed) CFd, a
generalizes the remaining ones to increase their applityabi

2.1 Generate Candidate CFD

Given a relationR, CFinder generates candidate CFDs — i.e.
(X — Y,T,) — by first generating all attribute combinations of
size N + 1 from R whereN is the maximum number of attributes
(and hence conditions) allowed in the antecedent & pof a CFD.
CFinder imposes this restriction because CFDs with a langeer
of conditions in the antecedent have limited applicabitityprac-
tice.

CFinder then generates candidate CFDs from each comhinatio
For each attribute in a combination, CFinder turns thaiteite into
the consequent (i.&”) of a CFD and turns the remaining attributes
into the antecedent (i.eX).! CFinder then instantiates the pattern
tuple with respective values from these attributes whasguency
exceeds the minimum support threshold.

For example, given a minimum support of 20% and the following
attribute combination from Table 1:

(Agency, Agency Code, Program, CFDA No.)
some of the CFDs that CFinder will generate include:

(Agency Code, Program, CFDA Ne-» Agency,
(9131:DOED, Pell, 84.063 ED))

(Agency, Agency Code, Program CFDA No.,
(HUD, 8630:HUD, Pell|| 14.317))

However, the number of combinations (and hence candidabsTCF
can be extremely large, so CFinder prunes combinationsatieat
unlikely to produce useful CFDs based on two heuristics.

The first heuristic is useful CFDs are more likely to be geteata
from attributes that are strongly related (eAgencyand Agency
Codg. CFinder implements this heuristic by treating each cembi

lated toB. A good measure foStrength(A, B) is the mutual
dependence between these attributes, as high mutual depend
indicates a strong relationship betwedrand B. Hence, CFinder
definesStrength(A, B) as the mutual information shared between
AandB:

Z Z P(a, b)logM

acU(A) beU(B) (a) (b)

whereU (A) andU (B) are the unique values iA and B respec-
tively; and P is the relative frequency of a value (or value pair) in
an attribute (or attribute pair).

CFinder prunes combinations with low strength, and setséhe
fault strength threshold to 0.5. For example, Figure 1 (&mws
the fully connected graph for the following attribute commttion
from Table 1.

c1: (Rept Category, Rept City, Agency, Agency Code)

The edge labels indicate the strengths between thesaigsitSince
the average strength (i.e. 1.13) is greater than 0.5, CFinde
keep this combination.

The second heuristic is many combinations are variants ef on
another and can be pruned. These variants often result idishe
covery of the same CFDs because CFinder refines CFDs by re-
moving extraneous (or invalid) conditions from the antesgdsee
Section 2.2).

CFinder implements this heuristic by first sorting — in deske
ing order based on strength — combinations that remain afigly-
ing the first heuristic. CFinder then traverse this list iscinding
order, and for each combinatienit finds all preceding combina-
tions C’ that have minimal difference with CFinder defines this
difference as the number of attributescithat are not inc” where
c eC’, and sets the default difference to 1 — i&. will contain alll
combinations that differ from by one attribute.

SinceC’ contains more promising combinations (and hence CFDs)

nationc as a fully connected graph with attributes as nodes and by thanc, CFinder should prune if it has significant overlap with

!Generating candidate CFDs with only one attribute in the-con
sequent (i.e.minimal CFDs) does not limit the generality of our
approach because CFDs with multiple attributes in the

can be decomposed intoinimal CFDs, which can be considered
individually [2].

C'. Because each combination can be treated as a fully comhecte
graph, the overlap betweenand any combination i€ is their
maximum common subgraph. If the non-overlapping edges in
(i.e. edges not found i) are weak, then it is unlikely that this
combination will produce any new, useful CFDs. CFinder aegst

Agency Agency
Code
Ropt Ropt Rcpt
Category City Category Program
1.16
0.81
o 1.22 1.5 C3
1.22
1.22
Agency Rept Agency Agency

District Code

Figure 1: Top: The fully connected graph for ¢;. Bottom: Two
combinations that rank higher than ¢;, and have high overlap
with ¢;. Bold edges indicate overlaps.

this notion formally as:

> (ar By () Strength(A', B')
Z(AB)EE(C) Strength(A, B)

whereE(c) are all edges im and E’ (c) are edges ir that overlap
with combinations inC’. If this value exceeds the prune threshold
Hp, then the combination is pruned.

For example, Figure 1 (bottom) shows two additional combina
tions from Table 1 whose strengths rank higher thanlf Hp is
0.85, then CFinder will prune; because it has high overlap (shown
in bold) with ¢z andcs, and the non-overlapping edgednis weak.

CFinder generates candidate CFDs from the remaining combi-
nations — starting with the strongest one — and refines thE&isC
in the order they are generated (see Section 2.2).

2.2 Refine CFD

CFinder refines each candidate CFD by comparing it with gscor
from the relation of interest. For each record, CFinder mieitges
whether the record is consistent, inconsistent, or ireglevo the
CFD.

1. Arecord is consistent with a CFD (and hence supports it) if
all values in the pattern tupl&, of the CFD match the re-
spective values in the record. If so, then CFinder increment
the consistent record couRlc by 1.

. A record is inconsistent with a CFD if all values), —
that correspond to the antecedent of the CFD — match the
respective values in the record, but values that correspond
the consequent do not. If so, then CFinder increments the
inconsistent record coui®; by 1.

. Otherwise, the record is irrelevant to the CFD, and CRinde
increments the irrelevant record couii by 1.

CFinder uses these counts to check whether the CFD is too spe
cific (and hence needs to be refined) and whether inconsiegenc
encountered for the CFD are real errors in the data or anesjali

which can be ignored. CFinder performs these checks — once ev

ery M records — using the minimum support threshéld — i.e.

RCRTCRV > Hgs — and the maximum inconsistency threshéld —

H R

l.e. RI+IRC S.HI' N
If a CFD fails to meet the minimum support threshéfd, then

CFinder refines the CFD by removing extraneous (or invalad-c

ditions from its antecedent. However, the difference betwthe

observed support (|.em) and thg expected support (IH.S)

may be due to a “sampling” effect with the records examined.

This effect can cause the CFD to be over-refined and become too

promiscuous. Hence, CFinder needs to determine the sigmific

of this difference, and it uses tt#&? test, which is instantiated as:

(Rc — Hs(Rc + Rv))* | (Rv — (1 — Hs)(Rc + Rv))*
Hs(Rc + Rv) (1—-Hs)(Rc + Rv)

CFinder will refine a CFD only if the difference is significant.e.
the resultingt’? value exceeds the critical? value at the specified
confidence level, which CFinder defaults to 99%.

CFinder selects the tof most promising conditions to remove
from the antecedent of the CFD. Since the goal is to imprope su
port, CFinder should remove conditions whose value ocare-i
quently with the consequent’s value and whose attributehigts
uncertainty (i.e. many different unique value pairs) witle ton-
sequent’s attribute because these conditions cause mamylseto
be irrelevant. CFinder implements this notion formally as:

(1 = P(T,(A), Tp(B))) Entropy(A, B)

where A and B are attributes of the condition and consequent re-

spectively;T, () is the value of an attribute in the pattern tupfe;

is the relative frequency of the value pdis(A) and7},(B) across

all records examined so far; adthtropy(A, B) is the joint en-

tropy betweem and B across all records examined so far.
CFinder selectds conditions with the highest scores based on

the equation above, and for each condition CFinder remdwes t

condition from the antecedent of the original CFD to gereat

new CFD. For example, let's assume CFinder needs to refine the

following CFD by selecting the top two conditions, and thearels

in Table 1 are the ones examined so far.

(Agency Code, Program, CFDA Ne-» Agency,
(9131:DOED, Pell, 84.033 ED))

CFinder will selectCFDA No. and Program— whose scores are
1.97 and 1.69 respectivelpAgency Codéas the lowest score of
0.98) — and remove them from the original CFD to generate the
following new CFDs.

(Agency Code, Program> Agency,
(9131:DOED, Pell| ED))

(Agency Code, CFDA No-» Agency,
(9131:DOED, 84.033 ED))

For each new CFD, CFinder records the CFD to prevent it from
being generated again; and recompulgs, R;, and Ry for the
CFD. If no conditions remain in the antecedent, then the C&D i
discarded.

Similarly, if a CFD exceeds the maximum inconsistency thwes
old H;, then CFinder determines whether the difference between
the observed inconsistency (i.%) and the expected incon-

sistency (i.e.H;) is significant using thet’? test, which is instan-
tiated as:
(Rr — Hi(Rc + Rp))?
Hr(Rc + Rr)

(Rc — (1= Hi)(Re + Ri))?
(1 - Hr)(Rc + Rr)

If the difference is significant, then CFinder penalizes@d by
addingR; to Ry and then resetting; to 0. This penalty increases
the likelihood that the CFD will fail to meet the minimum supp
threshold, which will cause the CFD to be refined and evelytual
discarded (if the inconsistencies persist).

CFinder repeats the above process until all records have bee

examined or the CFD becomes stable (see Section 2.3).

2.3 Determine Stable CFD

Examining all records to discover CFDs is computationaily e
pensive and can result in CFDs that overfit the data. CFindler a

dresses these two issues by determining whether a CFD i stab

(Rcpt Category, Agency> Program,
(Government, EDO) Pell))

(Rcpt Category, Agency> Program,
(Higher ED, ED|| Pell))

CFinder can generalize them into:
(Rept Category, Agency- Program, (, ED || Pell))

CFinder repeats this final step until there are no more CFBSs th
can be generalized.

and hence does not need to be refined further. A CFD is stable if 3, EVALUATION

both the support for the CFD and the certainty of the valuas th
make up the attributes referenced in the CFD are constamteove
given period of time.

CFinder captures this notion by first computing a stabildyre
St for the CFD using the following equation:

Rc
—_ Entropy(A
ot R ASXZUY py(A)

where R¢c and Ry are consistent and irrelevant record counts for
the CFD respectively (see Section 2 X)1Y are all attributes ref-
erenced in the CFD; anlintropy(A) is the entropy oA across all
records examined so far. CFinder computes this score orarg ev

We evaluated the following claims to show that our approach
(i.e. CFinder) can efficiently and robustly discover CFDat tban
effectively detect inconsistencies in data.

e Claim 1: CFinder can robustly discover useful CFDs even
when the data has a large percentage of inconsistencies.

e Claim 2: CFinder can efficiently discover CFDs by effec-
tively pruning the space of candidate CFDs.

e Claim 3: CFinder can further improve efficiency and prevent
overfitting by determining when a CFD becomes stable.

M records — when it checks the minimum support and maximum 3.1~ Data Sets

inconsistency thresholds (see Section 2.2 also).

CFinder then computes the standard deviafdns: for the past
L stability scores; and marks the CFD as stablg/ifs; is constant
according to the equatioﬁ% < Hs: whereAvgs: is the aver-
age of the pask stability scores andis; is the stability threshold.

For example, if the certainty of the values for the attrilsuitea
CFD fluctuates or a condition is removed from a CFD, then the en
tropy component of the stability scof& will change significantly,
which will prevent the CFD from becoming stable. Similaifthe
support for a CFD fluctuates, thett will fluctuate as well, which
will prevent the CFD from becoming stable.

2.4 Filter and Generalize CFD

CFinder uses the measures of support [1] and convictiono[3] t

filter weak CFDs — i.e. CFDs that do not meet (or exceed) the

thresholds specified for these measures. Support measoies h

We used three real-world data sets for our evaluation. The fir
data set — we caRecovery M- contains U.S. federal grants given
to the state of Michigan as part of the economic recoveryairng
Each record has information about the recipient, the gy, tetc.
This data set has 41 attributes and 2,916 records.

The second data set — we delanifest— contains manifest infor-
mation from a large U.S. shipping and logistics organizati®ach
record has information about the item being shipped, théesethe
recipient, etc. This data set has 102 attributes and 21d@&#ads.

The last data set —we c&@ps— contains operational information
from the same shipping and logistics organization. Eacbrreleas
information about which facility processed an item for iy,
when an item was processed, etc. This data set has 12 afribut
and 51,067 records.

In each case, ensuring data consistency is important ireptev
ing inaccurate reporting (and hence poor decisions), revéoss,

much evidence there is for a CFD, and can be defined using theand operational inefficiency.

consistent and irrelevant record counts (see Section Z@jvic-

tion measures how much the antecedent and consequent of a CF33-2 EXperiment Setup and Results

deviate from independence while considering directiapall his To evaluate Claim 1, we measured the precision and recaitof i
measure has been shown to be effective for filtering weak CFDs consistencies detected using the CFDs discovered by QFiode
[4]. Given space limitations, we refer the reader to [1, 3faf] all three data sets. To obtain these measures, we first rapdom
additional details on these measures. troduced inconsistencies into each data set at rates of 20%,

In addition to these measures, CFinder applies an addifiittea 30%, 40%, and 50% — e.g. if the inconsistency rate is 30%, then
to remove subsumed CFDs. ACFD — i, : (X1 — Y1,Tp1) — there is a 30% chance that a value in a data set will be randa@mnly
subsumes another CFD —i.B; : (X2 — Y2,Tp2) — if Y1 equals placed with a different value from the same attribute in gt We
Y2, X1 C Xo, andT,1 C Tpe. If these conditions are met, then then performed a 10-fold cross-validation for each datasetch
CFinder removes the subsumed CFD (ife.) because it has less inconsistency rate. We defined precision as the number efitru
applicability. consistencies (i.e. inconsistencies that were randontigdnced)

CFinder then generalizes the remaining CFDs to furthe eame detected by CFinder over all inconsistencies detected;recall
their applicability. A CFDF; can be generalized if there exists an- as the number of true inconsistencies detected by CFindgradv
other CFDF; such that 1)F} and F»> have the same antecedents inconsistencies introduced.
and consequents (i.€X; equalsX; andY; equalsYz) and 2) the To evaluate Claim 2, we measured the runtime (in seconds) of
pattern tuples of} and F differ by a single value. If these con- CFinder in discovering CFDs and the number of attribute domb
ditions are met, then CFinder generalizésand F into a single tions (and hence candidate CFDs) pruned by CFinder. Wermttai
CFD by replacing the differing value in their pattern tupleith a both measures from all 10-fold cross-validation runs pemnfd in
wildcard (i.e. _"). For example, given the following CFDs: evaluating Claim 1.

Table 2: The average precision, recall, and runtime from 10fold cross-validations performed for all evaluated approzhes and data
sets at inconsistency rates from 10% to 50%? and T indicate cases where CFinder performed significantly bettethan CFD-TANE
and CFinder-NoStable respectively § < 0.01 for the 2-tail pairwise t-test, df = 9).

CFinder CFD-TANE CFinder-NoStable

Precision (%)] Recall (%)] Time (s) | Precision (%)] Recall (%)] Time (s) | Precision (%)] Recall (%) | Time (s)
Recovery Ml
0.1 0.7712* 0.5060" 2428.1*7 | 0.2840 0.3494 17273.5| 0.7744 0.5056 2781.0
0.2 | 0.8062* 0.5047* 2186.3*T | 0.5771 0.2227 17098.0 | 0.8147 0.5013 2503.8
0.3 0.7878" 0.5599" 1966.8" 0.6866 0.1497 17291.7| 0.7911 0.5560 1988.4
0.4 | 0.8447* 0.5089* 1374.0"T | 0.6423 0.0625 17411.1| 0.8423 0.5075 1362.0
0.5| 0.8691 0.4007* 781.3*7 | 0.8469 0.0145 17240.1| 0.8704 0.3980 883.0
Manifest
0.1| 0.8406 0.65487 4791.47 | N/A N/A N/A 0.9391 0.4625 5487.5
0.2 | 0.8536 0.6587 6170.37 | N/A N/A N/A 0.8957 0.4347 6338.3
0.3 0.8778 0.66127 | 6105.87 | N/A N/A N/A 0.9136 0.5646 6733.3
0.4 | 0.9077 0.68617 7106.47 | N/A N/A N/A 0.9305 0.4905 7529.9
0.5 | 0.9209 0.63237 | 8312.57 | N/A N/A N/A 0.9543 0.3241 8883.5
Ops
0.1 0.9202* 0.4019*T [4226.0*T | 0.0764 0.1771 5581.2 | 0.9268 0.3283 5299.2
0.2 | 0.7378" 0.3585*" | 3727.0*T | 0.0833 0.0662 5424.6 | 0.9156 0.2285 4628.9
0.3 0.7014* 0.3586*T | 3386.7*T | 0.0773 0.0482 5379.5 | 0.7338 0.2125 4316.0
0.4 0.7322" 0.3676*" | 3457.5*T | 0.2230 0.0812 5685.8 | 0.7062 0.1546 4070.2
0.5 0.7928* 0.3747*T | 3021.8*T | 0.2698 0.0769 5234.3 | 0.9107 0.1658 3520.6

For both evaluations, we compared CFinder with an estadalish
solution for discovering CFDs [4], which we’ll call CFD-TAR
CFD-TANE is a TANE-based [8] solution that performs a bréadt
first search of an attribute lattice for CFDs — i.e. CFDs withIN
attributes are derived from sets of N attributes. CFD-TANEba
produces approximate CFDs to handle inconsistencies atereal
during discovery.

To evaluate Claim 3, we created a variant of CFinder — we call

CFinder-NoStable — which does not determine whether a CFD is
stable and hence examines the entire data set. We used tke sam

methodology described above to obtain the measures ofspraci
recall, and runtime for this variant.

We ran all evaluations using a dual-core 2.4 gigahertz AMD
Opteron processor with 4GB of memory on a Linux Ubuntu op-
erating system. We set the minimum suppfig for both CFinder
and CFD-TANE to 0.02, 0.03, and 0.05 for the Manifest, Opsl, an
Recovery MI data sets respectively. We set the minimum ©anvi
tion to 5.0. We set the size of attribute combinations gerdray
CFinder to 4; and to ensure a fair comparison with CFD-TANE,
we bounded its search depth at level 4 inclusive. Hence, dypth
proaches discovered CFDs over the same search space.

Table 3: The Recovery MI, Manifest, and Ops data sets have
a total of 101,270; 4,249,575; and 495 attribute combinatits
of size 4 respectively. This table reports the average numbef
attribute combinations pruned by CFinder for these data ses
across all inconsistency rates.

Recovery MI | Manifest | Ops
0.1 99,906 4,249,486| 490
0.2 | 100,154 4,249,489 490
0.3 | 100,336 4,249,490(490
0.4 | 100,430 4,249,493| 490
0.5 100,480 4,249,478| 490

data sets and inconsistency rates; and significantly bettgre-
cision in most cases. Moreover, the recall of CFinder reesin
relatively stable, even as the inconsistency rate incteaSEinder
performed well because it can robustly handle inconsigtsratur-
ing discovery, which CFD-TANE could not. CFD-TANE either

We set parameters specific to CFinder as follows. The prune overlooked many useful CFDs or discovered ones that were too

candidate threshold# » was set to 0.85; and the maximum incon-
sistency threshold?; was set to 0.025, 0.05, 0.1, 0.15, and 0.2

promiscuous. These results support our first claim that @¥in
can robustly discover useful CFDs even when the data hagea lar

for inconsistency rates of 10%, 20%, 30%, 40%, and 50% respec percentage of inconsistencies.

tively. Minimum support and maximum inconsistency checksav
performed once every 200, 1,000, and 2,000 records for Regov
MI, Manifest, and Ops respectively. We had CFinder selextdip
2 conditions when a CFD needs to be refined. Finally, the Istabi
ity thresholdHs; was set to 0.025 over the last 10 stability scores
St. Applicable parameters for CFinder-NoStable were the sagne
CFinder.

Tables 2 and 3 show the results for all three evaluationsndzfi
performed significantly better than CFD-TANE on recall asrall

CFinder performed significantly better than CFD-TANE on-run
time for the Recovery MI and Ops data sets at all inconsistenc
rates. We did not report results for CFD-TANE on the Manifest
data set because it could not handle the large number dfatis
(i.e. 102 attributes). CFinder performed well becauseriteféec-
tively prune the search space — e.g. in the best case CFindergp
over 99.99% of all possible attribute combinations and beran-
didate CFDs (see Table 3). These results support our setaind ¢
that CFinder can efficiently discover CFDs by effectivelyming
the space of candidate CFDs.

) Accenture - Data Quality Rules Accelerator - Mozilla Firefox

Eile

Edit

History Bookmarks Tools Help

|8 Most Visited ’ Getting Started |5 | Latest Headlines

=1 "Recipient County Name" DQ Rule Group No. 2 - o
TR A P tielarolp T {2 "CFDA Program Number” Rule No. 23

=t "Recipient State Name” DQ Rule Group Mo. 3 = s
i "CFDA Program Number" Rule No. 24

=7 "Congressional Diztrict” DQ Rule Group No. 4
=f "Recipient Congressional District” DO Rule Gr
=r"Recipient Category” DQ Rule Group No. &

=7 "Recipient Type” DQ Rule Group No. 7

=7 "Recipient Country Code™ DO Rule Group Ho Page 1 i1 ;‘1
=t "Major Agency” DQ Rule Group No. 9

= =Agency Code” DO Rule Group No. 10 Rule Details

“f “Agency Name” D0 Rule Group No. 11

+ard ID Modification” DQ Rule Grod

ication I Mumber” DQ Rule Group

Rule

Projects 3 "CFDA Program Number™ DQ Rul
iz Recovery MI |=] Rule Detail Pane|| &) Add Rule &) Remov
=7 "Recipient City Name® DQ Rule Group No. 1 Rule Name

"CFDA Program Number” Rule No. 24

=
accenture

sRule -2 Edit Rule \J View Conngctions [0 View Conflicts @‘ Export Rides =

Confiicts

Status

Coverage Connections

c40

169

Dizplaying rules 1 - 20f2

“I"CFDA Program Humber" DQ Rule Group
IF "Agency Code" = "8630: HUD - Federal

THEN
"CFDA Program Number” = 14.195

=7 “CFD& Program Titls” DQ Rule Group No. 15

= “A=sistance Category™ DO Rule Group No. 18

Comment

Housing Commissioner”

Done

Thig rule validates that the value of the "CFDA Program Number" atiribute is equal fo 14 185

Figure 2: Browser displaying data quality rules discoveredfrom a user-specified dataset. The left panel groups relatedules into
folders. The top right panel shows all rules within a selecte folder. The bottom right panel shows the details for a selged rule.

The precision of CFinder and CFinder-NoStable was compara-
ble. CFinder-NoStable did have significantly better priecisn
some cases, but its recall was significantly lower in mosesgire-
sults show that CFinder-NoStable overfit the data to prodifes
with higher precision but lower recall. Moreover, the romsi of
CFinder was significantly lower than CFinder-NoStable ineyal

because it does not need to examine the entire data set. We at-

tributed these results to the only difference between thesep-
proaches — CFinder determines when a CFD is stable, CFinder-
NoStable does not. These results support our last clainCtfiatder

can further improve efficiency and prevent overfitting byedetin-

ing when a CFD becomes stable.

4. DEPLOYMENT EFFORTS

Accenture — a global technology consulting and outsourcing-
pany — performs a wide range of large-scale enterprise ggofer
its client from master data management to business irteltig.
An important factor in the success of these projects is @émgur
good quality data through efforts such as data profiling deans-
ing. These efforts, however, are expensive and time comgumi
In particular, Accenture client teams currently spend aifizant
amount of time manually identifying industry (and clierg)avant
rules that are required to profile and cleanse the data. Tdoegs
of identifying these rules typically involves intervievgmrelevant
subject matter experts on the client side.

To address this problem, Accenture is developing a tool ledal
the Data Quality Rules Accelerator — that can automaticaiky
cover relevant data quality rules; and our approach hasibgae-
mented as part of this tool to discover CFDs, which can detedt
correct data inconsistencies.

The intended users of this tool are Accenture client teams pe
forming data profiling and cleansing; and they interact tis
tool through a web-based interface. The typical sequenaatet
actions is described below:

1. The user selects a data file — in CSV format — to discover
data quality rules from (in particular CFDs). The user also
has the option of connecting directly to a database through
an ODBC connection to select a relation for discovery.

. The user sets parameters such as the minimum support, the
maximum inconsistency, etc. These parameters along with
the selected data are then sent to a backend server on which
our approach is implemented. Discovered rules are sent back
to the user and displayed in a rules browser (see Figure 2).

. The user then reviews the discovered rules with subjett ma
ter experts on the client side to accept those that should-be d
ployed and to reject those that are extraneous. The user can
also edit these rules or add additional ones through a rules
editor.

. The user deploys accepted rules by exporting them — throug
the tool’'s export feature — to either SQL statements or a com-
mercial solution for data profiling and cleansing such as In-
formatica Data Quality.

The Data Quality Rules Accelerator (and hence our apprdach)
currently being piloted with select Accenture client tegragform-
ing data profiling and cleansing — several of the data setd imse
our evaluations are from these pilots. The goal of thesdgito
to evaluate the technical feasibility and business valuaisftool

in real-world situations. Initial results (and feedbacke)m these
pilots indicate that this tool can reduce the overall effeduired to
profile and cleanse the data. Upon successful completioneskt
pilots, this tool will be made available to all Accentureetit teams,
and will be incorporated as part of Accenture’s delivery moeipl-
ogy for data quality.

5. CONCLUSION

In this paper, we presented an approach that can efficiendly a
robustly discover effective Conditional Functional Degencies
(CFDs) for detecting inconsistencies in data, and henceddress
the growing problem of poor quality data faced by many organi
tions. We evaluated our approach on three real-world déscesel
showed that our approach performed well on these sets a#oss
eral dimensions such as precision, recall, and runtime. M& a
compared our approach to an established solution and shinared
our approach outperformed this solution across the samerdim
sions. Finally, we described efforts to deploy our approasipart
of an enterprise tool being developed at Accenture to actele
data quality efforts such as data profiling and cleansing.

6. ACKNOWLEDGMENT

The authors would like to thank the reviewers for their hellpf
feedback and suggestions for improving the paper. The mitho
would also like to thank Scott Kurth, Sanjay Mathur, Mark \Wag
man, and Ajay Easo from Accenture Technology Labs for their
contributions to this work.

7. REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databasesvLiDB, 1994.

[2] P. Bohannon, W. Fan, F. Geerts, X. Jia, and
A. Kementsietsidis. Conditional functional dependenéigs
data cleaning. IMCDE, 2007.

[3] S.Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic itehs
counting and implication rules for market basket data. In
SIGMOD, 1997.

[4] F. Chiang and R. Miller. Discovering data quality rulés.
VLDB, 2008.

[5] W. Eckerson. Data quality and the bottom line. Technical
report, TDWI Report Series, 2002.

[6] W. Fan, F. Geerts, L. Lakshmanan, and M. Xiong. Discawgri
conditional functional dependencies.|®DE, 2009.

[7] L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yu. On
generating near-optimal tableaux for conditional funcdio
dependencies. IMLDB, 2008.

[8] Y. Huhtala, J. Kinen, P. Porkka, and H. Toivonen. Effi¢gien
discovery of functional and approximate dependenciesgusin
partitions. INICDE, 1998.

