SPARQL Query Answering on a
Shared-nothing Architecture

Spyros Kotoulas

kot@few.vu.nl
Department of Computer Science
VU University Amsterdam

ABSTRACT

The amount of Semantic Web data is outgrowing the capac-
ity of Semantic Web stores. Similar to traditional databases,
scaling up RDF stores is faced with a design dilemma: in-
crease the number of nodes at the cost of increased com-
plexity or use sophisticated, and expensive, hardware that
can support large amounts of memory, high disk bandwidth
and low seek latency. In this paper, we propose a technique
to do distributed and join-less RDF query answering based
on query pattern-driven indexing. To this end, we first pro-
pose an extension of SPARQL to specify query patterns.
These patterns are used to build a query-specific indexes
using MapReduce, which are later queried using a NoSQL
store. We provide a preliminary evaluation of our results
using Hadoop and HBase, indicating that, for a predefined
query pattern, our system offers very high query throughput
and fast response times.

Categories and Subject Descriptors

E.1 [Data Structures|: Distributed data structures; C.2.4
[Distributed Systems]|: Distributed applications

General Terms

Algorithms, Design, Experimentation, Performance

Keywords
RDF, SPARQL, MapReduce

1. INTRODUCTION

The amount of data in the Semantic Web is growing with
a faster pace than the computational power of computers.
To cope with this disparity, we either need more efficient
single-machine algorithms for data management or scalable
distributed methods to tap on the computational resources
of more machines.

When designing an RDF store, one is often confronted
with a design dilemma: use centralized or clustered storage.

To copy without fee all or part of this material is permitted only for private
and academic purposes, given that the title of the publication, the authors
and its date of publication appear. Copying or use for commercial purposes,
or to republish, to post on servers or to redistribute to lists, is forbidden
unless an explicit permission is acquired from the copyright owners; the
authors of the material.

Workshop on Semantic Data Management (SemData@VLDB) 2010,
September 17, 2010, Singapore.

Copyright 2010: www.semdata.org.

Jacopo Urbani

j.urbani@few.vu.nl
Department of Computer Science
VU University Amsterdam

The former allows easier management but only scales by
using more powerful hardware, which is often infeasible or
prohibitively expensive. The latter allows adding additional
computational resources to increase performance at the cost
of higher complexity and, often, large query response times.

Typically, clustered stores split their indexes across the
nodes at loading time. When resolving queries, nodes may
need to exchange data. These data exchanges should be
minimized since they increase load and response time. Ide-
ally, only data that will be part of the answer should be
exchanged. This is a very difficult task in the Semantic
Web, because the semi-structured nature of the data makes
access patterns difficult to predict.

There is another problem that we must consider. In re-
lational databases, the information that is inserted in the
system is carefully selected. In Semantic Web stores, we
often encounter the situation that, while an entire dataset
is included in the knowledge base, only a small subset is
eventually used, for a given application.

In this work, we focus on clustered storage and we claim
that we should only index the part of the data that we
need, and index for specific access patterns. We propose
a technique to decrease the complexity by calculating query
pattern-driven indexes and this will enable us to exploit clus-
tered architectures without the need to combine data from
different nodes at query time.

There are several scenarios where the user is able to define
the queries in advance. For example, application developers
very often know the query patterns of their applications, or
they can be very easily extracted from the application source
code. Furthermore, analytical workloads typically have a
fixed set of query patterns. For instance, when analysing
social network data, the user may only be interested in re-
solving queries with the predicate “foaf:knows”. Finally,
such an approach could be combined with a standard store.
This approach would answer queries that match some popu-
lar query patterns, offloading the standard store that would
match the rest.

In section 2, we will introduce SPARQLY, an extension
of the SPARQL [10] query language to allow for defining
SPARQL query patterns. These query patterns serve as a
mapping between a subset of the unbound variables of the
query, called the pattern variables, and the result set of the
query.

In section 3, we will present a method for building the in-
dexes based on the query patterns. This method constructs
only the indexes required for each SPARQLY query pattern
using the MapReduce[6] parallel programming paradigm.

To this end, we have adapted some standard database tech-
niques to MapReduce/RDF and developed some new ones.
Furthermore, we will show how we query these indexes.

In section 4 we will present an implementation of our
methods using the Hadoop MapReduce framework and the
HBase NoSQL database. Our results indicate that our ap-
proach has good performance on large datasets, where it is
able to answer specific queries in a few milliseconds.

2. SPARQL”

In this section, we will define an extension to SPARQL
for query patterns. We explain the details of this extension
with an example. Consider an application that needs to
retrieve the names and email addresses of all professors that
work for a university in a given country. The corresponding
SPARQL query® would be:

SELECT ?name ?email where { ?x a profes-
sor. 7x worksfor 7y. 7y locatedin 7country. 7x
email 7email. ?x name ?name. }

The application will repeatedly post the query above re-
placing “?country” with the country it is interested in and
retrieve the corresponding values of (?name, ?email).

SPARQLT aims at capturing such usage patterns by rewrit-

ing the query as a function

?country — (Tname, Temail)

In SPARQL? we define such a function using the DEFINFE
construct and execute it using the GET construct. Looking
at our example, the mapping function is defined as:

DEFINE professorsOfCountry(?country) AS
SELECT ?name 7email where { ?x a professor.
?7x worksfor ?7y. 7y locatedin 7country. ?x email
?email. ?7x name 7name. }

Using this definition, an RDF store prepares to handle
requests on the given function. Once this operation is com-
pleted, we use the GET construct to execute this query for
specific countries. For example, in order to retrieve the pro-
fessors from the Netherlands we would launch the query:

GET professorsOfCountry(Netherlands)

In the appendix A, we formally define the SPARQLY
grammar by extending the EBNF notation.

3. SPARQL” ON A SHARED-NOTHING
ARCHITECTURE

To optimally support the querying model presented in the
previous section, for each SPARQLT DEFINE query, we
can maintain a pattern index, i.e. an index from the pattern
variables to the other unbounded variables. In fact, these
are the only indexes we need to answer SPARQLY GET
queries.

Typically, RDF stores maintain a set of triple indexes over
the entire input. These indexes consist of permutations
of the triple terms (Subject-Predicate-Object, Predicate-
Object-Subject etc). In our approach, we do not maintain

for brevity, we will omit namespaces for the rest of this
paper

DEFINE | GET

DEFINE
Query
_—

S —
GET Query

MapReduce

Figure 1: Overview of the approach

full triple indexes, so that we avoid loading costs. Instead,
whenever we process a SPARQLT DEFINE query, we usu-
ally read the entire input and construct only the indexes
that we need for that query.

Calculating these indexes implies resolving the embedded
SPARQL query within the SPARQLY DEFINE queries.
We consider the following in the resolution of these queries:

e The embedded queries will always be more expensive
to resolve and will produce more bindings than the
corresponding standard SPARQL queries, since they
have less bound variables.

e We are interested in the time to retrieve all results.

Thus time-to-first result is not relevant, neither is stream-

ing of results. The performance goal is to maximize
result throughput.

e We are focusing in answering queries over vast amounts
of data rather than the response time of individual
SPARQLT DEFINE queries. Query response time is
more relevant for SPARQLT GET queries, which we
will discuss in section 3.2

Considering the above, we will use the MapReduce [6]
paradigm to construct pattern indexes. In Appendix B, we
are providing a short introduction to MapReduce, which is
essential for comprehending section 3.1.

In Figure 1, we give an overview of our approach. For
DEFINE queries, we extract the embedded query and we
execute it using MapReduce. We index the results on the
pattern variables and store the name of the query in a sep-
arate table. The indexes are loaded in a NoSQL database.
For SPARQL? GET queries, we retrieve a reference to the
index using the query name, and we query it using the pat-
tern variables. Since the variables are used as keys for the
index, we do not need to perform any joins to retrieve the
results.

In the next subsections, we will describe how we deal with
SPARQL” DEFINE and GET queries.

3.1 SPARQL” DEFINE

Resolving a SPARQL” DEFINE query implies resolving
the embedded SPARQL query which will typically be an
expensive query.

Querying Semantic Web data with MapReduce and with-
out a-priori constructed indexes differs from querying in tra-
ditional stores in the following;:

e Load-balancing: Clustered databases typically share
data across nodes, and they aim at placing data that
is used together on the same node. This decreases re-
sponse time, since less data needs to be accessed over
the network. In contrast, MapReduce focuses mainly
at dividing computation equally across nodes, aim-
ing at maximising parallelisation rather than response
time. MapReduce achieves this by dynamically parti-
tioning the data.

e Setting up MapReduce jobs is an expensive operation,
in terms of coordination effort. Thus, it incurs high
latency.

e Without a-priori indexing, selectivity estimation is dif-
ficult, since accurately calculating expression cardinal-
ity is impossible without a-priori data processing.

e Passing information between running Map or Reduce
tasks in the same job is not allowed by the paradigm.
Therefore, the query plan can only be modified be-

tween different jobs. This is practical because SPARQL?

DEFINE queries are expensive, and the overhead of
starting new jobs is high.

e Semantic Web triples are small in size, typically con-
taining three of four terms and occupying dozens of
bytes, if dictionary encoding [12] is used, and hun-
dreds of bytes otherwise. Furthermore, table scans are
scheduled across all processors. Thus, scanning the
entire input is relatively fast.

Based on the above observations, we are proposing the
following for the resolution of MapReduce SPARQLT DE-
FINE queries:

3.1.1 Tuple-at-a-time vs operator-at-a-time

Typical RDF stores perform tuple-at-a-time evaluation.
In MapReduce, it is only possible to partition data once per
job. Thus, tuple-at-a-time evaluation would pose significant
limitations on the supported queries. Thus, within jobs, we
process one tuple at a time, while each job implements sev-
eral operations. Jobs are run in sequence, so our method
uses a mix of tuple-at-a-time and operation-at-a-time pro-
cessing.

3.1.2 Selectivity estimation

Since, in a MapReduce architecture, full table scans are
relatively cheap, we use an accurate selectivity estimation
algorithm, performing a full table scan. During this scan,
we calculate the cardinality of each statement pattern in
the query. Furthermore, for statement patterns with few
bindings, we also store the bindings.

3.1.3 Joins during the Map phase

Typically, joins are performed in the Reduce phase. This
gives rise to load balancing problems, since making equally-
sized partitions for the Reduce phase is not trivial. Further-
more, it incurs significant overhead, since in a MapReduce
job, we can only have a single Reduce function.

Neither of the above is true for Maps. Thus, if one side
of the join is small enough to fit in main memory, we per-
form a Grace hash-join[8]. This implies all nodes loading the
small side in memory and iterating through the large side
in parallel. The advantage of this approach is that we do

not need to re-partition our data, eliminating load balancing
problems and the need for an additional job.

If all sides of a join are large, then we resort to a hybrid
of hash join and sort-merge join. First the input tuples are
partitioned among nodes using a hash function. Then, each
partition is sorted locally at each node and a sort-merge join
is performed. Note that for larger joins, the load balancing
problem is dissipated by the fact that we have more bindings
per join variable.

3.1.4 Recycling

Since we are not maintaining traditional indexes, and disk
storage in a MapReduce cluster is cheap, our method uses
intermediate result recycling[7]. Intermediate results are not
indexed, but stored in parallel as a collection of local files.
In [7], it was shown that this method improves performance
for systems doing operator-at-a-time processing.

3.1.5 Index construction

As the last step of SPARQLT DEFINE query evaluation,
we are constructing indexes mapping template variables to
the results of the query. To this end, we are tapping on the
massive sorting functionality of MapReduce frameworks to
construct indexes in a scalable manner.

This is accomplished by a job that groups tuples according
to template variables, performs a global sort and writes the
results to files. After that a suitable partitioning of the
data is calculated, this task is highly parallelisable. The
sorted files are written to the local disk and accessed by the
SPARQLY GET method, described in the following section.

3.2 SPARQL” GET

The indexes created during the SPARQL” DEFINE query
resolution are queried using a NoSQL store.

For each SPARQL” DEFINE, a new table is created in
the NoSQL database. We use the bindings of the pattern
variables as key and the results as values. In case that we
have a large number of results for a given variable, it is more
efficient if we store a pointer to a file in the Distributed File
System, instead of the values themselves. This implies an
additional lookup for queries, but this cost is amortised over
the number of retrieved results and the reduced size of the
table.

Lacking any joins, SPARQL” GET queries are very fast to
evaluate: a single lookup is enough to retrieve all results for
a given query. Furthermore, clustered NoSQL implementa-
tions, assure high fault tolerance, horizontal scalability and
no single point of failure [4].

4. PRELIMINARY EVALUATION

We have performed a preliminary study to analyze the
benefits of our approach. More thorough evaluation and
comparison to existing approaches is deferred to future work.

This section is organized as follows: in subsection 4.1, we
describe the testbed and the implementation details of our
prototype. We continue reporting the performance of the
DEFINE query in subsection 4.2. At last, we report the
performance of the GET query in subsection 4.3.

4.1 Implementation and Testbed

We have implemented a prototype which implements our
methods. We have used Sesame [3] for query parsing and

basic query planning, the Hadoop framework for MapRe-
duce and the HBase NoSQL database for answering GET
queries.

As a preprocessing step, we compress our input data using
the method described in [12] and, optionally, materialize the
closure under the OWL ter horst semantics using previous
work in WebPIE [11].

For the DEFINE queries, we do the following: Firstly,
we extract and index the name and template variables of
the query and extract the embedded SPARQL query. We
use Sesame to parse the SPARQL query and launch our se-
lectivity estimation algorithm. The results of the selectivity
estimation are passed back to Sesame, which creates a static
query plan. This query plan is executed in the MapReduce
framework, and is dynamically adjusted to cater for recy-
cling and bindings already calculated during the selectivity
estimation step. Finally, indexes are created for the query
plans. Currently, we use a very simple index construction
mechanism that uses a single node, but that can be easily
extended by carefully partitioning data. The index is loaded
by HBase.

For GET queries, we first retrieve the query index, using
the name of the query as a key. Then, we post a query con-
sisting of the template variables on HBase on the retrieved
index and retrieve the results.

The performance of our prototype was evaluated using the
DAS3 cluster? of the Vrije Universiteit Amsterdam. We set
up an Hadoop and HBase cluster using 32 data nodes, with
4 cores, a single SATA drive and 4GB of memory each.

We have used the LUBM benchmark for our evaluation.
We chose query number 8, since it is one of the most chal-
lenging queries in the dataset and used the University as a
parameter. We have generated the LUBM(8000) dataset,
consisting of 1 billion triples. Dictionary encoding took
46 minutes and materializing the closure took 37 minutes,
yielding a total of 1.52 billion triples. We created a vari-
ant of query number 8 of the standard LUBM query set as
a DEFINE query and executed it against the 1.52 billion
triples. The query is reported below:

DEFINE getStudentsOfUniversity(?P) AS
SELECT
{?X type Student

?Y type Department .

?X memberOf 7Y .

?Y subOrganizationOf 7P .

}

For GET queries, we have extracted the URIs for all uni-
versities and evaluated by posting queries for the students
of random universities. Note that, for our prototype, we do
not perform dictionary decoding, of the results.

In the following two subsections we describe the perfor-
mance obtained from first launching a DEFINE query and
later a sequence of GET queries.

4.2 Performance of the DEFINE query

For this task, our prototype produced four MapReduce
jobs in a sequence. In Table 1, we report the execution time
for each job.

Job 1 performed the selectivity estimation and extracted
the patterns which are small enough to fit in the main mem-

’http://www.cs.vu.nl/das3

Job Runtime (in sec.)

job 1: selectivity estimation 61
job 2: first join job 36
job 3: second join job 89
job 4: HBase upload 305

Table 1: Execution time of the DEFINE query

1100

1000

900

800

700
600

500 /
400 /
300 }

200

GET Queries per second

100

0
0 8 16 24 32 40 48 56 64 72 80 8 96 104 112 120 128

Number of clients

Figure 2: Total number of GET queries per second

ory. The ordering of the patterns according to their increas-
ing selectivity was: (?X type Student), (?X member0f 7Y),
(?Y type Department), (?Y subOrganizationOf 7P). The
bindings for the last two patterns were small enough to fit
in memory, thus they were extracted.

Job 2 loaded the extracted bindings, (?Y type Department)

and (7Y subOrganizationOf ?7P), and joined them with the
input during the Map phase. In the Reduce phase, the re-
sults were joined with (?7X member0f ?7Y).

Job 3 performed a hybrid join with (?X type Student),
since both sets were too large to fit in memory.

Job 4 grouped the tuples according to 7P and uploaded
the bindings to HBase. The poor performance is attributed
to the fact that we did not create suitable partitions for the
data. Also, we used the HBase APIs to create the index
while we could generate it using MapReduce and then load
it on HBase. The second approach would give about an
order of magnitude better loading time, compared to our
current implementation®.

4.3 Performance of the GET query

After we have generated the index, we can efficiently query
the knowledge base with the GET query. This query will
receive in input the university and it will return all the stu-
dents for that university.

A single query took on average 3.83 milliseconds to be
executed. We decided to stress the system by launching
queries simultaneously from different nodes. The purpose of
this stress test was to evaluate the scalability of our method
as the number of queries per second increases. We started by
launching the queries from a single client and we increased
the amount of clients up to 128. Queries were posted from

3see http://hbase.apache.org/docs/current/api/org/

apache/hadoop/hbase/mapreduce/package-summary.
html#bulk

several nodes and we have assigned a CPU core to each
client.

We report the results in Figure 2. From the table, we see
how the throughput of the system increases until it can serve
about 1100 queries per second (i.e. 1ms per query) and then
it stabilizes regardless the number of clients. Again, the
performance could be dramatically increased if we would
tune the framework on our needs. For example, our index
is spread in 8 different regions, which were served by only 5
nodes, effectively using only 5 of the 32 available nodes. If
we further distribute the table we could reach even higher
throughput.

5. RELATED WORK

This work is related to RDF stores, MapReduce process-
ing and view materialization in SQL databases.

HadoopDB [1] is a hybrid MapReduce/database imple-
mentation, focused on the processing of SQL queries. Data
is maintained by traditional databases in the data nodes.
For every SQL query received by the system, a MapReduce
query plan is generated. The input for the corresponding
MapReduce job is retrieved from the SQL databases main-
tained by the data nodes. In contrast, our approach does
not build indexes at the loading time and does not perform
joins at runtime.

Relational views[5] is mature concept in the field of SQL
databases, providing functionality to define a virtual table.
Furthermore, SQLServer, DB2 and Oracle [2] also materi-
alize these tables. Our work captures SPARQL data usage
patterns at a greater detail, since we can embed any kind
of query in our DEFINE queries and we specify the key on
which the results of this query should be indexed. On the
other hand, SQL views have the advantage that they use
the same model of normal SQL tables.

RDF stores typically employ tuple-at-a-time processing
and avoid materialisation of intermediate results. Further-
more, they rely on doing joins at run-time. Our prelimi-
nary results indicate that our approach vastly outperforms
these stores in terms of throughput and response time of the
SPARQL? GET queries, since the latter require no joins.
Nevertheless, our system is at a disadvantage when process-
ing arbitrary SPARQL queries. Furthermore, updating data
in our system is expected to be an expensive operation.

The work reported in [13] demonstrates a method to re-
duce a dataset to an interesting subset using a supercom-
puter. It is focused on extracting a relatively small portion
of the input, which can be queried using a conventional RDF
store (with the associated limitations). In comparison, our
architecture is not limited by the size of the indexed data
(since the indexes created in our NoSQL store can be very
large) but it is limited by the access patterns to this data.

6. FUTURE WORK AND CONCLUSION

We intend to perform a thorough evaluation of our system
using larger datasets and more queries. Our results should
be compared with those of standard RDF stores. Moreover,
we expect that our method will also be useful for answering
standard SPARQL queries. Nevertheless, we expect to get
good performance only for very expensive queries, since the
overhead of the platform is very high. Furthermore, research
should be carried out in update mechanisms for indexes. To
this end, techniques for materialised SQL views can be used.

In this paper, we have presented a method for RDF data
management based on a shared-nothing architecture. In-
stead of maintaining indexes over the entire dataset, only
the indexes required for given query patterns are generated.
We have implemented a first prototype and we tested the
performance on a sample query. Our preliminary evalua-
tion shows that the system can reach high throughput but,
though this approach is promising, further work is necessary
for a complete evaluation.

This work was supported by the EU-IST project LarKC
(FP7-215535).

7. REFERENCES

[1] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi,

A. Rasin, and A. Silberschatz. Hadoopdb: An
architectural hybrid of mapreduce and dbms
technologies for analytical workloads. PVLDB,
2(1):922-933, 2009.

[2] R. G. Bello, K. Dias, A. Downing, J. J. Feenan, Jr.,
J. L. Finnerty, W. D. Norcott, H. Sun, A. Witkowski,
and M. Ziauddin. Materialized views in oracle. In
VLDB ’98: Proceedings of the 24rd International
Conference on Very Large Data Bases, pages 659—664,
San Francisco, CA, USA, 1998. Morgan Kaufmann
Publishers Inc.

[3] J. Broekstra, A. Kampman, and F. van Harmelen.
Sesame: A generic architecture for storing and
querying RDF and RDF schema. In Proceedings of the
International Semantic Web Conference (ISWC),
pages 54—68, 2002.

[4] F. Chang, J. Dean, S. Ghemawat, W. Hsieh,

D. Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. Gruber. Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):4, 2008.

[5] E. F. Codd. Recent investigations in relational data
base systems. In IFIP Congress, pages 1017-1021,
1974.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In Proceedings of the
USENIX Symposium on Operating Systems Design €
Implementation (OSDI), pages 137-147, 2004.

[7] M. G. Ivanova, M. L. Kersten, N. J. Nes, and R. A.
Gongalves. An architecture for recycling intermediates
in a column-store. In SIGMOD °09: Proceedings of the
85th SIGMOD international conference on
Management of data, pages 309-320, New York, NY,
USA, 2009. ACM.

[8] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka.
Application of hash to data base machine and its
architecture. New Generation Comput., 1(1):63-74,
1983.

[9] E. Maler, J. Paoli, C. M. Sperberg-McQueen,

F. Yergeau, and T. Bray. Extensible markup language
(XML) 1.0 (third edition). first edition of a
recommendation, W3C, Feb. 2004.
http://www.w3.org/TR/2004/REC-xml-20040204.

[10] E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF. W3C recommendation, W3C, Jan.
2008. http://www.w3.org/TR/2008 /REC-rdf-sparql-
query-20080115/.

[11] J. Urbani, S. Kotoulas, J. Maassen, F. van Harmelen,
and H. E. Bal. Owl reasoning with webpie:
Calculating the closure of 100 billion triples. In
L. Aroyo, G. Antoniou, E. Hyvonen, A. ten Teije,

H. Stuckenschmidt, L. Cabral, and T. Tudorache,
editors, ESWC (1), volume 6088 of Lecture Notes in
Computer Science, pages 213-227. Springer, 2010.

[12] J. Urbani, J. Maassen, and H. Bal. Massive semantic
web data compression with mapreduce. In Proceedings
of the MapReduce workshop at HPDC, 2010.

[13] G. T. Williams, J. Weaver, M. Atre, and J. A.
Hendler. Scalable reduction of large datasets to
interesting subsets. In 8th International Semantic Web
Conference (Billion Triples Challenge), 2009.

APPENDIX
A. SPARQL” GRAMMAR

In this appendix we formalize the SPARQL? grammar us-
ing the EBNF notation defined in the W3C recommendation
for XML [9]. We do not define the grammar from scratch
but we extend the SPARQL grammar [10] with the following
constructs:

DefineQuery ::= ’DEFINE’ (IRIref+)
’AS’ Query
GetQuery ::= ’GET’ FunctionCall

B. MAPREDUCE

MapReduce is a parallel programming paradigm for par-
allel and distributed processing of batch jobs. Each job con-
sists of two phases: a map and a reduce. The mapping phase
partitions the input data by associating each element with
a key. The reduce phase processes each partition indepen-
dently. All data is processed based on key/value pairs: the
map function processes a key/value pair and produces a set
of new key/value pairs; the reduce merges all intermediate
values with the same key into final results.

B.1 MapReduce example: term count

We illustrate the use of MapReduce through an example
application that counts the occurrences of each term in a
collection of triples. As shown in Algorithm 1, the map
function partitions these triples based on each term. Thus,
it emits intermediate key/value pairs, using the triple terms
(s,p,0) as keys and blank, irrelevant, value. The framework
will group all the intermediate pairs with the same key, and
invoke the reduce function with the corresponding list of
values. The reduce function will sum the number of values
into an aggregate term count (one value was emitted for
each term occurrence) and return the result as output.

This job could be executed as shown in Figure 3. The in-
put data is split in several blocks. Each computation node
operates on one or more blocks, and performs the map func-
tion on that block. All intermediate values with the same
key are sent to one node, where the reduce is applied.

B.2 Characteristics of MapReduce

This simple example illustrates some important elements
of the MapReduce programming model:

e since the map operates on single pieces of data without
dependencies, partitions can be created arbitrarily and

Algorithm 1 Counting term occurrences in RDF NTriples
files

map (key, value):
// key: line number
// value: triple
// emit a blank value, since
// only amount of terms matters
emit (value.subject , blank);
emit (value.predicate , blank);
emit (value.object , blank);

reduce (key, iterator values):

// key: triple term (URI or literal)
// values: list of irrelevant values
// for each term
int count=0;
for (value in values)

count++; // count number of values,

// equalling occurrences

emit (key, count);

ouTPUT
<C.2>»C 2

\

o, ¥
N AN
Map <F > Reduce

Figure 3: MapReduce processing

can be scheduled in parallel across many nodes. In this
example, the input triples can be split across nodes ar-
bitrarily, since the computations on these triples (emit-
ting the key /value pairs), are independent of each other.

e the reduce operates on an iterator of values because
the set of values is typically far too large to fit in mem-
ory. This means that the reducer can only partially
use correlations between these items while processing:
it receives them as a stream instead of a set. In this
example, operating on the stream is trivial, since the
reducer simply increments the counter for each item.

e the reduce operates on all pieces of data that share some
key. By assigning proper keys to data items during the
map, the data is partitioned for the reduce phase. A
skewed partitioning (i.e. skewed key distribution) will
lead to imbalances in the load of the compute nodes.
If term x is relatively popular the node performing the
reduce for term x will be slower than others. To use
MapReduce efficiently, we must find balanced parti-
tions of the data.

e since the data resides on local nodes, and the physi-
cal location of data is known, the platform performs
locality-aware scheduling: if possible, map and reduce
are scheduled on the machine holding the relevant data,
moving computation instead of data. Remote data can
be accessed through a Distributed File System(DFS)
maintained by the framework.

