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We study the problem of assigning a small subset of indivisible items to a
group of agents so that the subset is agreeable to all agents, meaning that all
agents value the subset as least as much as its complement. For an arbitrary
number of agents and items, we derive a tight worst-case bound on the num-
ber of items that may need to be included in such a set. We then present
polynomial-time algorithms that find an agreeable set whose size matches
the worst-case bound when there are two or three agents. We also show
that finding small agreeable sets is possible even when we only have access
to the agents’ preferences on single items. Furthermore, we investigate the
problem of efficiently computing an agreeable set whose size approximates
the size of the smallest agreeable set for any given instance. We consider two
well-known models for representing the preferences of the agents—the value
oracle model and additive utilities—and establish tight bounds on the ap-
proximation ratio that can be obtained by algorithms running in polynomial
time in each of these models.

1 Introduction

A typical resource allocation problem involves dividing a set of resources among inter-
ested agents. We are often concerned with the efficiency of the allocation, e.g., achieving
high social welfare or ensuring that no other allocation would make every agent better
off than the current allocation. Another important issue is the fairness of the allocation.
For example, we might want the resulting allocation to be envy-free, meaning that every
agent regards her bundle as the best among all bundles in the allocation [23, 55], or pro-
portional, meaning that every agent obtains at least her proportionally fair share [51].
A common feature of such problems is that one agent’s gain is another agent’s loss: The
setting inherently puts the agents in conflict with one another, and our task is to try

∗This paper unifies and expands earlier versions that appeared in Proceedings of the 25th International
Joint Conference on Artificial Intelligence [52] and Proceedings of the 26th International Joint Con-
ference on Artificial Intelligence [40]. In particular, Theorems 5, 10, and 11 are new to this version,
and Theorems 4, 6, and 7 improve corresponding results in the earlier versions. These additions lead
to asymptotically tight bounds in Sections 3.3 and 4.1.
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to resolve this conflict as best we can according to our objectives. Resource allocation
problems constitute a major area of study in artificial intelligence.

We study in this work a variant of the resource allocation problem where instead of
the agents being pitted against one another, they belong to one and the same group. We
will collectively allocate a subset of items to this group; our goal is to make this subset
“agreeable” to all agents. Agreeability can be thought of as a minimal desirability
condition: While an agent may be able to find other subsets of items that she personally
prefers, the current subset is still acceptable for her, and she can agree with its allocation
to the group. In other words, if the agreeability condition is not met for some agent,
then the agent will be unsatisfied and tempted to leave the group. We consider a notion
of agreeability based on the fairness notion of envy-freeness: a subset of items is said
to be agreeable to an agent if the agent likes it at least as much as the complement
set. Agreeability, or minor variants thereof, has been considered in the context of fair
division, where each group consists of a single agent [7, 13, 16]. For example, Brams
et al. [16] calls the property “worth at least 50 percent”. An appealing aspect of
agreeability is that it can be defined for arbitrary ordinal preferences, which constitutes
a considerably larger class of preferences than those represented by additive cardinal
utility functions [5, 15, 17, 39, 53]. Indeed, for most of this work we only assume that
the agents’ preferences are monotonic, meaning that an agent always values a set of
items at least as much as any of its subsets. Since in a large majority of resource
allocation settings agents can simply ignore items that yield negative value to them, the
monotonicity assumption is usually made without loss of generality.

As applications of our agreeability notion, one could imagine that the agents are going
together on a trip and agreeing on the set of items to put in a shared luggage, or choosing
a subset of items as prizes from a team competition that they won together. Without
further constraints, the problem described so far would be trivial, since we could simply
allocate the entire set of items to the agents. We therefore impose a constraint that the
allocated subset should be as small as possible. This constraint on size is reasonable in
a variety of settings, including in the two given examples. Indeed, in the first example
a luggage has limited space, and in the second example the organizers may want some
items to be left as prizes for the losing teams, perhaps so that the allocation seems fair
to an outsider. Similar cardinality constraints have been considered in the context of
fair division [11]. In the example of agents going together on a trip, a subset of items
that they take is agreeable if they like it no less than the complement subset of items
left at home. Put differently, based on the set of items chosen, every agent would rather
go on the trip than stay at home. Similarly, for agents taking items as prizes from a
team competition, if the competition is between two teams and a subset of items is not
agreeable to some agent in the winning team, we will have an undesirable situation where
the agent envies the losing team that takes the remaining items.

While our study is based on the framework of resource allocation, agreeability is also
relevant in other areas of social choice theory and artificial intelligence. In particular, one
could think of choosing an agreeable set of items as an election of a committee from a set
of candidates, where the committee size is unspecified but perhaps should be minimized.
The theory of committee elections provides a number of specific ways to instantiate the
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Full preferences Ordinal preferences

n = 2
⌊
m
2

⌋
+ 1 (Thm. 1)

⌊
m
2

⌋
+ 1 (Thm. 2)

n ≥ 3 min
(⌊

m+n
2

⌋
,m
)

(Thm. 1) m
2 + Θ(logm) for constant n (Thm. 4, 5)

Table 1: Summary of the upper bounds on the size of the smallest agreeable set, pre-
sented in Section 3.

notion of agreeability. For example, if one uses approval elections, where every agent
either approves or disapproves each candidate and approves a committee if it contains
at least one of her approved candidates, an agreeable committee according to our notion
corresponds to one where every agent has an approved candidate in the committee. In
general, the preferences of the agents for various committees can be quite complex, and
several variants of committee elections have been investigated in the literature [6, 50].
We see our work as a starting point that deals with a particularly simple and natural
agreeability notion, and our hope is that this work will lay a foundation for studying
different notions that may be appropriate for other applications.

1.1 Our Results

In this work, we initiate the study of agreeability in resource allocation. First, in Sec-
tion 3, we establish upper bounds on the size of the smallest agreeable set, both when
the algorithm has access to the agents’ full preferences and when the algorithm only has
access to the agents’ preferences on single items. In addition, we present algorithms that
compute agreeable sets whose size matches the worst-case bounds under both assump-
tions. Our results in this section are summarized in Table 1.

In Section 3.1, we derive a tight upper bound on the number of items that may need to
be included in an agreeable set, for any number of agents and items. Remarkably, even
though agents may have vastly differing and perhaps conflicting preferences, the number
of extra items that we might need to choose in order to accommodate all of them is
surprisingly small, i.e., half an item per additional agent (Theorem 1). Our result holds
under a very weak assumption that preferences are monotonic, meaning that an agent
cannot be worse off whenever an item is added to her set. Interestingly, to establish this
result we make use of Kneser’s conjecture, a combinatorial result whose proof by Lovász
[37] gave rise to the field of topological combinatorics.

In Section 3.2, we turn our attention to the question of whether we can efficiently
compute an agreeable set whose size matches the worst-case bound given in Section 3.1.
We answer the question in the affirmative for the cases of two and three agents. To this
end, we make the assumption that preferences are responsive, meaning that an agent
cannot be worse off when an item is added to her set or replaced by another item that she
weakly prefers to the original item. While responsiveness is stronger than monotonicity,
it is still a generalization of additivity, a very common assumption on preferences in
resource allocation problems. We present polynomial-time algorithms that compute an
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agreeable subset whose size matches the upper bound when there are two or three agents
(Theorems 2 and 3).

In Section 3.3, we assume that the algorithm only has access to the agents’ ordinal
preferences on single items rather than subsets of items. Models of this type offer the
advantage that the associated algorithms are often simple to implement and the agents
do not need to give away or even determine their entire preferences; such models have
therefore received widespread attention [7, 13, 31]. With only the ordinal preferences on
single items at its disposal, however, in most cases the algorithm cannot tell whether a
certain subset is agreeable to an agent or not. Nevertheless, by assuming that prefer-
ences are responsive, we can extend preferences on single items to partial preferences on
subsets. This allows us to deduce that certain subsets are always agreeable as long as
the full responsive preferences are consistent with the rankings over single items; we call
such subsets necessarily agreeable. Denoting by m the number of items, we show using
results from discrepancy theory that for any constant number of agents, there exists a
necessarily agreeable subset of size m/2 + O(logm), and such a subset can be found in
polynomial time (Theorem 4). Furthermore, we establish the tightness of this bound by
showing that even with three agents, there exist preferences for which every necessarily
agreeable subset has size m/2 + Ω(logm) (Theorem 5).

Next, in Section 4, we investigate the problem of computing an agreeable subset of
approximately optimal size for any given instance, as opposed to one whose size matches
the worst-case bound over all instances with the same number of agents and items. We
tackle the problem using two models for representing preferences that are well-studied in
the literature, and exhibit computationally efficient algorithms for finding an agreeable
set of approximately optimal size in each of them. Moreover, in both of the models we
show that our approximation ratios are asymptotically tight.

In Section 4.1, we consider general preferences using the value oracle model, where
the preferences of the agents are represented by utility functions and the algorithm
is allowed to query the utility of any agent for any subset of items. We exhibit an
efficient approximation algorithm with approximation ratio O(m/ logm) in this model
(Theorem 7). While this may not seem impressive, especially in light of the observation
that the trivial algorithm which always outputs the entire set of items already achieves
approximation ratio O(m), we show that our approximation ratio is in fact the best we
can hope for. In other words, there does not exist a polynomial time algorithm with
approximation ratio o(m/ logm), even when there is only a single agent (Theorem 8).

In Section 4.2, we assume that the agents’ preferences are represented by additive
utility functions. Additivity provides a reasonable tradeoff between simplicity and
expressiveness; it is commonly assumed in the literature, especially in recent work
[5, 15, 17, 39, 53]. We show that under additive valuations, it is NP-hard to decide
whether there exists an agreeable set containing exactly half of the items, even where
there are only two agents (Theorem 9). On the other hand, using results on covering
integer programs, we demonstrate the existence of an O(log n)-approximation algorithm
for computing a minimum size agreeable set (Theorem 13). Moreover, we show that this
approximation factor is tight: For any constant δ > 0, it is NP-hard to approximate the
problem to within a factor of (1− δ) lnn (Theorem 12).
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1.2 Related Work

While resource allocation and fair division have been extensively studied in the artificial
intelligence literature [7, 11, 13, 14, 15, 18, 29, 33], the group aspect that we consider in
this work is relatively new. Skowron et al. [50] studied a similar setting where a group
of agents collectively decide on a common set of items. In their work, the number of
items that can be chosen is fixed and the agents strive to maximize their utility subject
to that constraint, whereas in our work the number of items is variable but should be
minimized, and an agreeability constraint is placed on the chosen set. A related problem
that has recently received attention is that of fairly allocating items to groups of agents;
the problem has been studied both in the context of indivisible items [39, 48, 53, 54] and
divisible items [46, 47]. Like in our work, the items there are treated as public goods
within each group—all members of a group derive full utility from the items allocated to
the group. Unlike our work, however, all of the works mentioned above assume that there
are multiple groups and the entire resource should be allocated to the groups. After the
publication of the earlier versions of our work [40, 52], Gourvès [25] studied agreeable
sets under the additional assumption that the sets must satisfy matroidal constraints.

In addition to the literature on resource allocation and fair division, another line of
work relevant to ours is that of combinatorial voting [1, 34, 56]. A typical example of
combinatorial voting is an election in which voters are asked to decide on a certain set
of issues, and their preferences on the outcomes of various issues are dependent. For
instance, a voter might be in favor of each proposed policy individually, but thinks that
too much money would be spent if all of the policies were to be implemented. Combi-
natorial voting can be framed in our resource allocation setting, with the items to be
allocated corresponding to the issues being voted upon. Several aspects of combinato-
rial voting have been studied, including the communication and computational cost of
different voting rules, implementation methods, and strategic behavior of the voters.

2 Preliminaries

We consider n agents, numbered 1, 2, . . . , n, who will be collectively allocated a subset
of the set S = {x1, x2, . . . , xm} of m indivisible items. Denote by S the set of all subsets
of S. Each agent i is endowed with a preference relation �i, a reflexive, complete, and
transitive ordering over S. Let �i denote the strict part and ∼i the indifference part of
the relation �i. For items x and y, we will sometimes abuse notation and write x � y
to mean {x} � {y}.

We assume in this paper that preferences are monotonic, i.e., an agent cannot be
worse off when an item is added to her set. Monotonicity is a natural assumption in a
wide range of situations. In particular, it implies free disposal of items—every item is
considered to be of nonnegative value to each agent.

Definition 1. A preference � on S is monotonic if T ∪ {x} � T for all T ⊆ S.

Note that if x ∈ T , then T ∪ {x} � T always holds, so we only need to check the
condition when x ∈ S\T .
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We are now ready to define the central notion of this paper.

Definition 2. A subset T ⊆ S is said to be agreeable to agent i if T �i S\T .

When the set of agents considered is clear from the context, we will sometimes refer
to a set that is agreeable to all agents simply as an agreeable set. Since preferences are
monotonic, the whole set S is agreeable to every agent, so an agreeable set always exists
for any number of agents.1 Agreeability to an agent also implies that the agent does not
strictly prefer any subset of the complement to the current set. That is, we have T �i U
for any U ⊆ S\T .

Another property of preferences that we will consider is responsiveness, which says that
an agent cannot be worse off whenever an item is added to her set or replaced by another
item that she weakly prefers to the original item. While stronger than monotonicity,
responsiveness is still a reasonable assumption in many settings.2

Definition 3. A preference � on S is responsive if it satisfies the following two condi-
tions:

• � is monotonic;

• (T\{y}) ∪ {x} � T for all T ⊆ S and x, y ∈ S such that x � y, x 6∈ T and y ∈ T .

If we have access to the complete preference of an agent, we can check whether a
subset is agreeable to the agent simply by comparing it to its complement. When we
only have access to the agent’s preference on single items, however, most of the time
we cannot tell whether a given subset is agreeable or not. Nevertheless, if we assume
that the agent’s preference is responsive, we can sometimes deduce that a certain subset
is agreeable only by looking at the agent’s preference on single items. The following
definition captures this intuition. In general, we use � to denote a preference on S and
�sing to denote a preference on the single items in S.

Definition 4. Fix a preference �sing on the single items in S. A subset T ⊆ S is said to
be necessarily agreeable with respect to �sing if T � S\T for any responsive preference
� on S consistent with �sing.

For the sake of brevity, we say that a subset of items is necessarily agreeable to an
agent if it is necessarily agreeable with respect to the preference on single items of the
agent.

We now make a connection to the model where every agent has a cardinal utility for
each subset of items. A utility function u is a function that maps any subset of items
to a nonnegative real number. Since each agent’s preference is reflexive, complete, and
transitive, there is a utility function ui : S → R≥0 for agent i such that for any T1, T2 ⊆ S,
we have T1 �i T2 if and only if ui(T1) ≥ ui(T2). Moreover, since we consider monotonic

1If preferences are not monotonic, an agreeable set might not exist, e.g., if there are two agents with
strict preferences, and one agent’s preference is exactly the opposite of the other agent’s preference.

2For a comprehensive treatment of properties concerning the ranking of sets of objects, we refer to a
survey by Barberà et al. [9].
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preferences, we have ui(T1) ≤ ui(T2) for any T1 ⊆ T2. We assume that ui(∅) = 0 for
all i. A utility function u is said to be additive if u(T1 ∪ T2) = u(T1) + u(T2) for any
disjoint subsets T1, T2, and subadditive if u(T1 ∪T2) ≤ u(T1) +u(T2) for any T1, T2. Any
monotonic additive function is also subadditive. Subadditive utility functions have been
extensively studied in the literature [10, 21].

When the preferences of the agents are given by subadditive utility functions, a subset
that an agent regards as agreeable also gives the agent a utility of at least half of the
agent’s utility for the whole set S. Indeed, for any agreeable subset T we have

f(S) = f(T ∪ (S\T )) ≤ f(T ) + f(S\T ) ≤ 2f(T ),

which implies that f(T ) ≥ f(S)/2. Hence an agreeable subset also gives a 2-approximation
of the welfare to an agent when the agent’s utility function is subadditive.

We end this section by giving a characterization of necessarily agreeable subsets, which
will be used multiple times in the paper. Similar statements have been shown by Aziz
et al. [7] and Brams et al. [16], although our treatment differs slightly in dealing with
ties.

Proposition 1. Fix a preference �sing on the single items in S with

x1 �sing x2 �sing · · · �sing xm.

Let T ⊆ S, and define Ik = {x1, x2, . . . , xk} for all k = 1, 2, . . . ,m.
If |Ik ∩T | ≥ k/2 for all k = 1, 2, . . . ,m, then T is necessarily agreeable with respect to
�sing. The converse also holds if the preference �sing is strict.

Proof. Assume first that |Ik ∩ T | ≥ k/2 for all k = 1, 2, . . . ,m. Since |Im ∩ T | ≥ m/2,
we have that |T | ≥ |S\T |. Let T ′ ⊆ T be the subset consisting of the |S\T | items of T
with the smallest indices.

Define a bijective function f : T ′ → S\T as follows: Given the item xk ∈ T with
the smallest index for which f(xk) is not yet defined, we define f(xk) to be the item
in S\T with the smallest index that has not occurred in the range of f so far. Since
|Ik ∩ T | ≥ k/2 for all k = 1, 2, . . . ,m, the function f maps each item xk to another item
xl with l > k. The definition of responsiveness implies that for any responsive preference
� on S consistent with �sing, it holds that T ′ � S\T . Since any responsive preference
is also monotonic, we have T � S\T , which implies that T is necessarily agreeable with
respect to �sing.

For the converse, assume that the preference �sing is strict, and that |Il ∩ T | < l/2
for some l = 1, 2, . . . ,m. Let ε > 0 be a small constant, and suppose that the preference
� is given by an additive utility function u such that:

• u(xi) = 1 + (l − i)ε for 1 ≤ i ≤ l;

• u(xi) = (m− i)ε for l < i ≤ m.

Since any preference that can be represented by an additive utility function is responsive,
� is responsive. Moreover, we have u(S\T ) > l/2, whereas u(T ) < l/2 when ε is small
enough. It follows that � is a responsive preference on S consistent with �sing such that
S\T � T . Hence T is not necessarily agreeable with respect to �sing.
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Finally, any logarithm written without a base in this paper is assumed to have base
2.

3 Worst-Case Bounds

In this section, we establish upper bounds on the size of the smallest agreeable set, both
when the algorithm has access to the agents’ full preferences and when the algorithm
only has access to the agents’ preferences on single items. In addition, we present
algorithms that compute agreeable sets whose size matches the worst-case bounds under
both assumptions.

3.1 General Worst-Case Bound

We commence our study of agreeable sets by deriving a tight worst-case bound on the
number of items that may need to be included in such a set, for any number of items
and any number of agents with arbitrary preferences on the items. Even with a single
agent, there already exists a preference for which we need to include at least half of
the items, e.g., a preference represented by an additive utility function that gives the
same positive utility to every item. In light of this, it may seem that there is little hope
of obtaining a small agreeable set when there are several agents, possibly with wildly
varying preferences. Nevertheless, we show that the number of extra items that we need
to include to accommodate the additional agents is surprisingly small even in the worst
case—this number is only half an item per additional agent.

Theorem 1. For any number of agents and items, there exists a subset T ⊆ S such that

|T | ≤ min

(⌊
m+ n

2

⌋
,m

)
and T is agreeable to all agents. Moreover, there exist preferences for which the bound
min

(⌊
m+n
2

⌋
,m
)

is tight.

Theorem 1 can be seen as a discrete version of consensus halving, where the goal is to
partition a divisible item such as cake or land into two parts that all agents think are
worth exactly the same. Interestingly, a consensus halving partition can be found for any
number of agents [2, 49]. It follows that we can find a part of the item that is at most
half of the item but that all agents think is worth at least half of the item (in particular,
we choose the smaller of the two parts in the consensus halving partition). When items
are indivisible, however, it may no longer be possible to choose a set containing at most
half of the items such that all agents believe this set is worth at least as much as its
complement. Indeed, if there is only one item and all agents value this item positively,
the item must be included in the set. Theorem 1 gives us a precise bound on how many
additional items need to be included in the worst case.

We first give a direct proof of Theorem 1 for the case of two agents; our proof for the
general case will rely on a combinatorial result.
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Direct proof of Theorem 1 when n = 2. Denote by �1 and �2 the preferences on S of the
two agents. We establish the existence of a set of size at most

⌊
m+2
2

⌋
that is agreeable

to both agents; the tightness of the bound follows in the same way as in our proof of
Theorem 1 for any number of agents.

Assume first that m = 2k+ 1 is odd. Suppose for contradiction that no subset of size
at most k + 1 is agreeable to both agents. Let T ⊆ S be such that |T | = k. We begin
by proving the following claim.

Claim: If T �1 S\T , then

(T ∪ {x})\{x′} �1 ((S\T )\{x}) ∪ {x′}

for any x ∈ S\T and x′ ∈ T .
Proof of Claim: Suppose that T �1 S\T , x ∈ S\T , and x′ ∈ T . It follows from

monotonicity that T ∪ {x} �1 (S\T )\{x}. Since no subset of size k + 1 is agreeable to
both agents, we have (S\T )\{x} �2 T ∪ {x}. By monotonicity again, we have

((S\T )\{x}) ∪ {x′} �2 (T ∪ {x})\{x′}.

Using again the assumption that no subset of size k + 1 is agreeable to both agents, it
follows that

(T ∪ {x})\{x′} �1 ((S\T )\{x}) ∪ {x′},

and our claim is proved. �
We now use our claim to obtain the desired contradiction. Assume without loss of gen-

erality that {x1, x2, . . . , xk} �1 {xk+1, xk+2, . . . , x2k+1}. Applying our claim repeatedly
to move items between the two sets, we find that

{xk+1, x2, . . . , xk} �1 {x1, xk+2, . . . , x2k+1},

{xk+1, xk+2, x3, . . . , xk} �1 {x1, x2, xk+3, . . . , x2k+1},

and so on, until finally

{xk+1, xk+2, . . . , x2k} �1 {x1, x2, . . . , xk, x2k+1}.

By monotonicity, we have {xk+1, xk+2, . . . , x2k+1} �1 {x1, x2, . . . , xk}, which contradicts
our assumption that {x1, x2, . . . , xk} �1 {xk+1, xk+2, . . . , x2k+1}.

Assume now that m = 2k is even. Let S′ be the set of all items in S except x1. We
know from the case where m is odd that there exists a subset T ⊆ S′ of size at most
k such that T �1 S

′\T and T �2 S
′\T . Since preferences are monotonic, we have that

T ∪ {x1} �1 S
′\T and T ∪ {x1} �2 S

′\T . This means that the set T ∪ {x1} of size at
most k + 1 is our desired subset, completing the proof.

Note that this proof also yields a polynomial-time algorithm to compute an agreeable
set of size at most

⌊
m+2
2

⌋
that is agreeable to both agents. Assume that m = 2k + 1

is odd; the case where m is even can be handled similarly. Let T ⊆ S be an arbitrary
subset of size k. If S\T �1 T and S\T �2 T , we are done. Otherwise, assume without
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loss of generality that T �1 S\T , and choose arbitrarily x ∈ S\T and x′ ∈ T . As
in the proof of the claim, if T ∪ {x} �2 (S\T )\{x}, or if (S\T )\{x} �2 T ∪ {x} and
((S\T )\{x}) ∪ {x′} �1 (T ∪ {x})\{x′}, we are done. Hence we may assume as in the
conclusion of the claim that (T ∪ {x})\{x′} �1 ((S\T )\{x}) ∪ {x′}. This means that
we can find an agreeable subset by moving elements repeatedly between the two sets as
in the continuation of the proof. Since we need to move elements at most k times, our
algorithm runs in polynomial time.

We now move on to the general case. As alluded to earlier, our proof of the theorem
relies on the following combinatorial result, which is best known as Kneser’s conjecture.
Recall that the chromatic number of a graph is defined as the smallest number of colors
needed to color the vertices of the graph so that no two adjacent vertices share the same
color.

Lemma 1 (Kneser’s conjecture). Let G be the undirected graph with all k-element subsets
of the set {1, 2, . . . , n} as vertices such that there exists an edge between two vertices if
and only if the corresponding sets are disjoint. The chromatic number of G is given by

χ(G) =

{
n− 2k + 2 if n ≥ 2k;

1 otherwise.

The statement of the lemma is due to Kneser [30], who proposed it as a conjecture in
the problem column of a German mathematics magazine in 1955. In spite of the simple
statement, it was not until 1978 that the conjecture was first resolved by Lovász [37]
using topological methods. The proof was later simplified by Bárány [8] and Greene [26],
before Matoušek [41] gave the first purely combinatorial proof in 2004. Lovász’s proof
of the conjecture, which makes use of the Borsuk-Ulam theorem, marked the first time
that methods from algebraic topology were used to solve a combinatorial problem, and
gave rise to the field of topological combinatorics.

With Lemma 1 in hand, we are ready to establish our theorem.

Proof of Theorem 1. Let k =
⌊
m+n
2

⌋
. If k ≥ m, the set S of all items has size m =

min(k,m) and is agreeable to all agents since preferences are monotonic. Assume from
now on that k < m, and consider the undirected graph G with all (m−k)-element subsets
of {x1, x2, . . . , xm} as vertices and with edges connecting vertices whose corresponding
sets are disjoint. For example, if n = 2 and m = 5 (so k = 3 and m− k = 2), the graph
G corresponds to the well-known Petersen graph and is shown in Figure 1.

If all agents weakly prefer S\T to T for some (m − k)-element subset T ⊆ S, then
S\T is our desired agreeable subset of size k. Suppose for contradiction that for any
(m − k)-element subset T ⊆ S, there exists an agent who strictly prefers T to S\T .
We color the vertices of G with n colors in the following way: For each vertex v of G
corresponding to a set T , color it with the color corresponding to an agent who strictly
prefers T to S\T . If there is more than one such agent, choose one arbitrarily.

Since k =
⌊
m+n
2

⌋
≥ m

2 , we have m ≥ 2(m− k). By Lemma 1, the chromatic number
of G is

m− 2(m− k) + 2 = 2k −m+ 2 ≥ 2

(
m+ n− 1

2

)
−m+ 2 = n+ 1.
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{1, 2}

{3, 5}

{3, 4}{4, 5}

{2, 5}{1, 3}

{1, 5}{2, 3}

{1, 4} {2, 4}

Figure 1: The graph G in the proof of Theorem 1 when n = 2 and m = 5, also known as
the Petersen graph. A vertex with a label {i, j} corresponds to the set {xi, xj}.

Since we colored G with n colors, there exist two adjacent vertices sharing the same color.
Let T1 and T2 be the sets corresponding to these vertices. This means that T1 �i S\T1
and T2 �i S\T2 for some agent i. Since T1 and T2 are disjoint, we have T1 ⊆ S\T2 and
T2 ⊆ S\T1. Monotonicity now implies that

S\T1 �i T2 �i S\T2 �i T1 �i S\T1,

a contradiction. This means that we can always find a subset of size k that is agreeable
to all agents.

Finally, we show that there exist monotonic preferences for which the bound min (k,m)
is tight. In fact, we can even choose preferences that are represented by additive utility
functions. We consider two cases.

• n ≥ m. Then min(k,m) = m. For i = 1, 2, . . . , n, let the preference of agent i be
given by an additive utility function u such that u(xmin(i,m)) = 1 and u(xj) = 0
for all j 6= min(i,m). Then any subset that is agreeable to agent i must contain
item xmin(i,m). Hence a subset that is agreeable to all agents must contain all m
items.

• n < m. Then min(k,m) = k. For i = 1, 2, . . . , n − 1, let the preference of agent i
be given by an additive utility function u such that u(xi) = 1 and u(xj) = 0 for
all j 6= i. Let the preference of agent n be given by an additive utility function u
such that u(xj) = 1 for j ∈ {n, n+ 1, . . . ,m} and u(xj) = 0 otherwise.

For i = 1, 2, . . . , n − 1, any subset that is agreeable to agent i must contain item
xi. Also, any subset that is agreeable to agent n must contain at least half of the
items xn, xn+1, . . . , xm. Hence a subset that is agreeable to all agents must have
size at least n− 1 +

⌈
m−n+1

2

⌉
=
⌈
m+n−1

2

⌉
=
⌊
m+n
2

⌋
= k, as desired.

11



This completes the proof.

3.2 Matching the Worst-Case Bound

Theorem 1 gives us a tight worst-case bound on the size of the smallest agreeable set
for any number of agents and items. However, its proof does not yield a method for
obtaining a set of that size. Since the number of sets that we have to consider is
exponential in the number of items, brute-force search is infeasible even for moderate
numbers of items. Our goal in this section is to show that when there are two or three
agents with responsive preferences, it is in fact possible to compute an agreeable set
whose size matches the worst-case bound in polynomial time. This implies that we can
compute such a set even when the number of items is large.

An important issue when we discuss algorithms is how we represent the agents’ pref-
erences. Since preferences on subsets, unlike preferences on single items, might not have
a succinct representation, it is not possible to design algorithms that run in time poly-
nomial in the number of items if the algorithm is required to read the entire preference.
To circumvent this problem, we assume in this section that preferences are responsive;
this allows us to extend preferences on single items to partial preferences on subsets.
Our algorithm for two agents will only make use of the preferences on single items and
compute a necessarily agreeable subset.3 On the other hand, our algorithm for three
agents will also query the agents’ preferences on subsets through a preference oracle in
addition to utilizing the preferences on single items.

We first handle the case of two agents.

Theorem 2. Assume that there are two agents with preferences �sing1 and �sing2 on the
single items in S. There exists a subset T ⊆ S such that |T | ≤

⌊
m+2
2

⌋
and T is necessarily

agreeable with respect to both �sing1 and �sing2 . Also, there exists a polynomial-time
algorithm that computes such a subset T .

Moreover, there exist preferences on the single items in S for which the bound
⌊
m+2
2

⌋
is tight.

Proof. Assume first that m = 2k+ 1 is odd, and suppose without loss of generality that
x1 �sing1 x2 �sing1 · · · �sing1 x2k+1. We choose our set T of

⌊
m+2
2

⌋
= k + 1 items as

follows:

1. Choose x1.

2. Between each of the k pairs of items (x2, x3), (x4, x5), . . . , (x2k, x2k+1), choose the
item that is preferred according to �sing2 . If �sing2 is indifferent between any pair
of items, choose an arbitrary item from that pair.

For any j = 1, 2, . . . ,m, our set T contains at least j/2 of the j items x1, x2, . . . , xj ;

by Proposition 1, T is necessarily agreeable with respect to �sing1 . Moreover, since

3If we do not assume responsiveness, there still exists a polynomial-time algorithm for two agents that
discovers the agents’ preferences on subsets through a preference oracle; this algorithm is described
in the direct proof of Theorem 1 for two agents.
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we choose the item that is preferred according to �sing2 from each of the sets {x2, x3},
{x4, x5}, . . . , {x2k, x2k+1} along with x1, Proposition 1 implies that T is also necessarily
agreeable with respect to �sing2 . Hence T is necessarily agreeable with respect to both

�sing1 and �sing2 .
Assume now that m = 2k is even. Let S′ = S\{x1}. We apply the algorithm from

the case where m is odd to choose a set T ⊆ S′ of size k that is necessarily agreeable
with respect to both �sing1 and �sing2 when the universe considered is S′. It follows that
T ∪ {x1} is a subset of size

⌊
m+2
2

⌋
= k + 1 that is necessarily agreeable with respect to

both �sing1 and �sing2 when the universe considered is S.
Next, we show that there exist preferences on single items for which the bound

⌊
m+2
2

⌋
is tight. If m = 2k + 1 is odd and the preference �sing1 is strict, then by Proposition 1,

any subset that is necessarily agreeable with respect to �sing1 alone must already contain
at least

⌊
m+2
2

⌋
= k + 1 items.

Finally, suppose that m = 2k is even, and let �sing1 and �sing2 be such that x1 �sing1

x2 �sing1 · · · �sing1 x2k and x2k �sing2 x2k−1 �sing2 · · · �sing2 x1. By Proposition 1, any

subset T ⊆ S that is necessarily agreeable with respect to �sing1 alone must contain
at least k items, one of which is x1. If T contains exactly k items, then it contains
exactly k− 1 items among x2, x3, . . . , x2k. Proposition 1 implies that such a set T is not
necessarily agreeable with respect to �sing2 . Hence any subset T ⊆ S that is necessarily

agreeable with respect to both �sing1 and �sing2 must contain at least
⌊
m+2
2

⌋
= k + 1

items, as desired.

At a high level, the algorithm in Theorem 2 bears a resemblance to the “Trump rule”,
which was proposed by Pruhs and Woeginger [44] for fair division of indivisible items
between two agents. Like our algorithm, the Trump rule takes as input the preferences
on single items of the two agents. Using our terminology, the rule is guaranteed to
produce an allocation with the property that each agent views her bundle as necessarily
agreeable, whenever such an allocation exists. The difference between the Trump rule
and our algorithm is that the Trump rule produces a partition of the items into two
subsets with each agent taking one subset, whereas our algorithm produces a single
subset that both agents share.

Observe that in the case of two agents, the upper bound for the size of the smallest
necessarily agreeable set (Theorem 2) coincides with the bound for the size of the smallest
agreeable set (Theorem 1). This is somewhat surprising because the definition of a
necessarily agreeable set only involves preferences on single items, and yet the worst-case
bound remains unchanged even if we have access to the full preferences. The following
example shows that the same statement ceases to hold when there are three agents.

Example 1. Let m = 6, and assume that the preferences on single items of the three
agents are as follows:

1. x1 �sing1 x4 �sing1 x5 �sing1 x6 �sing1 x2 �sing1 x3;

2. x2 �sing2 x5 �sing2 x6 �sing2 x4 �sing2 x3 �sing2 x1;

13



3. x3 �sing3 x6 �sing3 x4 �sing3 x5 �sing3 x1 �sing3 x2.

In Example 1, any subset that is necessarily agreeable to all three agents must contain
x1, x2, x3, since each of them is ranked first by some agent. Moreover, choosing only one
of x4, x5, x6 does not yield a necessarily agreeable set for the agent who ranks that item
fourth. Hence a necessarily agreeable set must contain at least five items. On the other
hand, if we have access to the agents’ full preferences, Theorem 1 implies that we can
find a set of size

⌊
6+3
2

⌋
= 4 that is agreeable to all agents.

Therefore, to compute an agreeable set whose size matches the worst-case bound when
there are three agents, it is not sufficient to consider preferences on single items only.
Nevertheless, if the algorithm has access to the agents’ full preferences, it is possible
to find such a subset in polynomial time. To access the preferences, the algorithm is
allowed to make a polynomial number of queries to a preference oracle. In each query,
the algorithm can specify an agent and two subsets of items to the preference oracle,
and the oracle reveals the preference of that agent between the two subsets.

Theorem 3. Assume that there are three agents with responsive preferences �1, �2,
and �3 on S. There exists a polynomial-time algorithm that computes a subset T ⊆ S
such that |T | ≤

⌊
m+3
2

⌋
and T is agreeable to all three agents.

Proof. Assume first thatm = 2k is even. Our goal is to find a subset of size
⌊
m+3
2

⌋
= k+1

that is agreeable to all three agents. Suppose without loss of generality that x2k−1 is the
most preferred item according to �1, x2k is the most preferred item other than x2k−1
according to �2, and among the remaining 2k − 2 items, the preference �1 ranks them
as x1 �1 x2 �1 · · · �1 x2k−2.

LetA = {x1, x2, . . . , x2k−2}, and consider the pairs (x1, x2), (x3, x4), . . . , (x2k−3, x2k−2).
Let B be a set of k − 1 items containing an item from each pair that is not preferred
to the other item in the pair according to �2. If �2 is indifferent between any pair of
items, we choose arbitrarily. Responsiveness implies that A\B �2 B.

As long as A\B �2 B, we remove an element from B that was also originally in B,
and insert the other item in its pair into B. We must eventually reach a point where
B �2 A\B, at the latest after k − 1 moves. We consider two cases.

• We have not performed any move. By definition of B, we have that B �2 A\B and
A\B �2 B, and therefore A\B ∼2 B. Since preferences are monotonic, it follows
that (A\B) ∪ {x2k} �2 B and B ∪ {x2k} �2 A\B.

• We have performed at least one move. Suppose without loss of generality that in
our last move, we inserted x2i−1 into and removed x2i from B. Let C = (A\(B ∪
{x2i})) ∪ {x2i−1} and D = (B\{x2i−1}) ∪ {x2i}, i.e., C and D are the sets A\B
and B before the last move, respectively. We have that C �2 D and B �2 A\B,
and it follows from monotonicity that C ∪{x2k} �2 D and B∪{x2k} �2 A\B. We
claim that at least one of D ∪ {x2k} �2 C and (A\B) ∪ {x2k} �2 B holds.

Assume for contradiction that C �2 D ∪ {x2k} and B �2 (A\B)∪ {x2k}. Respon-
siveness implies that

C �2 D ∪ {x2k} �2 B �2 (A\B) ∪ {x2k} �2 C,
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a contradiction. Hence at least one of D ∪ {x2k} �2 C and (A\B) ∪ {x2k} �2 B
holds, as claimed.

In both cases, we can find in polynomial time a subset E ⊆ A of size k− 1 containing
an item from each of the pairs (x1, x2), (x3, x4), . . . , (x2k−3, x2k−2) such that E∪{x2k} �2

A\E and (A\E) ∪ {x2k} �2 E.
We now choose our agreeable set of size k + 1 as follows:

1. Choose both x2k−1 and x2k.

2. Choose either E or A\E according to which set agent 3 prefers. (If agent 3 is
indifferent between the two sets, choose one of them arbitrarily.)

We claim that our chosen set T is agreeable to all three agents. We prove the claim
separately for each of the agents.

• For any j = 1, 2, . . . ,m, the set T contains at least j/2 of the j most preferred
items according to �1. Since �1 is responsive, Proposition 1 implies that T is
necessarily agreeable to agent 1.

• Since E ∪ {x2k} �2 A\E and A\E ∪ {x2k} �2 E, and T contains either E or A\E
along with both x2k−1 and x2k, T is agreeable to agent 2.

• Since we choose the set E or A\E that agent 3 prefers and we include both of the
remaining items x2k−1 and x2k, T is agreeable to agent 3.

Hence T is agreeable to all three agents, as claimed. This concludes the analysis of the
case where m is even.

Finally, assume that m = 2k + 1 is odd. Our goal is to find a subset of size
⌊
m+3
2

⌋
=

k + 2 that is agreeable to all three agents. Let S′ = S\{x1}. We apply the algorithm
from the case where m is even to choose a set T ⊆ S′ of size k + 1 that is agreeable to
all three agents when the universe considered is S′. It follows that T ∪ {x1} is a subset
of size k + 2 that is agreeable to all three agents when the universe considered is S.

3.3 Computing Small Necessarily Agreeable Sets

In this section, we consider a model in which the algorithm only has access to each
agent’s ranking over the items. We will therefore be interested in computing a small
subset that is necessarily agreeable to every agent. While the algorithm has significantly
less information at its disposal than before, as we will see, it is still possible to find small
subsets that are necessarily agreeable to all agents.

If the algorithm had access to the agents’ preferences over all subsets of items, The-
orem 1 implies that it could always find a subset of size

⌊
m+n
2

⌋
that is agreeable to all

agents. For two agents, the algorithm in Theorem 2 only uses the agents’ rankings to
compute a subset of this size that is necessarily agreeable to both agents. As Example 1
shows, however, a necessarily agreeable subset of this size might not exist even when
there are three agents. Indeed, it is not clear how much extra “penalty” we have to pay
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for the information restriction that we are imposing. For example, it could be that with
three agents, there already exist preferences on single items for which any necessarily
agreeable subset contains at least cm items for some constant c > 1/2. We show in the
next theorem that this is in fact not the case—there always exists a necessarily agreeable
subset of size m/2 + O(logm) as long as the number of agents is constant. Moreover,
such a set can be computed in polynomial time.

Theorem 4. For any constant number of agents, there exists a subset of S of size
m/2 +O(logm) that is necessarily agreeable to all agents. Moreover, such a subset can
be computed in polynomial time.

To prove this theorem, we will use the following result from discrepancy theory due
to Bohus [12].

Lemma 2 ([12]). Let σ1, σ2, . . . , σn be permutations of the set M = {1, 2, . . . ,m}. There
exists a function f : M → {−1, 1} such that for any 1 ≤ p ≤ q ≤ m and any 1 ≤ j ≤ n,∣∣∣∣∣∣

q∑
i=p

f(σj(i))

∣∣∣∣∣∣ ≤ 8n logm.

Moreover, such a function can be computed in polynomial time.

Proof of Theorem 4. Suppose that agent j ranks the single items as xσj(1) �
sing
j xσj(2) �

sing
j

· · · �singj xσj(m). By Lemma 2, we can efficiently compute a function f : S → {−1, 1}
such that ∣∣∣∣∣

q∑
i=1

f(xσj(i))

∣∣∣∣∣ ≤ 8n logm

for any q = 1, 2, . . . ,m and any j = 1, 2, . . . , n.
We construct our agreeable subset as follows. We include in our subset all items xi

such that f(xi) = 1, as well as the d4n logme most preferred items of each agent that
are not yet included. (If some agent has fewer than d4n logme items that are not yet
included, we simply include all of that agent’s items.) For i = 1, 2, . . . ,m, let Xi be an
indicator variable such that Xi = 1 if item xi is included in the set and Xi = −1 if not.
For any agent j and any i = 1, 2, . . . ,m, we have

Xσj(1) + · · ·+Xσj(i) ≥ min{i,−8n logm+ 2 · d4n logme} ≥ 0.

By Proposition 1, this implies that the chosen set is necessarily agreeable to all agents.
Moreover, our subset includes at most

m

2
+ (n+ 1) · d4n logme =

m

2
+O(logm)

items, as desired.
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Next, we address the tightness of the bound in Theorem 4. Bohus’s result is known
to be asymptotically tight for constant n: Newman et al. [43] constructed, for every
m that is a power of three, an example of three permutations whose discrepancy is
Ω(logm). While upper bounds on the discrepancy of permutations can be easily turned
into upper bounds on the size of necessarily agreeable sets as seen above, lower bounds
are somewhat more delicate. Nevertheless, Newman et al.’s examples satisfy stronger
conditions than merely having a large discrepancy. One of these conditions, which we
state in the following lemma, will be sufficient for proving a lower bound on the size of
necessarily agreeable sets. The lemma is a restatement of Corollary 2 in the work of
Newman et al. [43].

Lemma 3 ([43]). Given any positive integer k, let m = 3k and M = {1, 2, . . . ,m}. There
exist three permutations σ1, σ2, σ3 of M such that for any function f : M → {−1, 1}, if
∆ :=

∑
i∈M f(i) ≥ 1, then there exist 1 ≤ q ≤ m and 1 ≤ j ≤ 3 such that

q∑
i=1

f(σj(i)) ≤
−k + 2∆− 2

3
.

We now show that the bound in Theorem 4 is tight even when there are three agents.
Recall that if there are two agents, it is possible to compute a subset of size

⌊
m+2
2

⌋
that

is necessarily agreeable to both agents (Theorem 2).

Theorem 5. Suppose that m = 3k for some positive integer k. There exist preferences
on single items of three agents such that every necessarily agreeable subset of items has
size at least m/2 + Ω(logm).

Proof. Let σ1, σ2, σ3 be the permutations of S from Lemma 3, where we use the set
S = {x1, x2, . . . , xm} instead of the set M = {1, 2, . . . ,m}. For each j = 1, 2, 3, let the
preference on single items of agent j be xσj(1) �

sing
j xσj(2) �

sing
j · · · �singj xσj(m).

Consider any subset T ⊆ S of size at most m/2 +k/4. We will show that T cannot be
necessarily agreeable to all three agents, which immediately implies the theorem since
k = log3m. To see that this is the case, let fT : S → {−1, 1} denote the indicator
function of T , i.e., fT (xi) = 1 if xi ∈ T and fT (xi) = −1 if xi /∈ T . Since T is of size
at most m/2 + k/4, we have ∆T :=

∑m
i=1 f(xi) = |T | − |S \ T | ≤ k/2. If ∆T < 0, then

T is trivially not necessarily agreeable, so we may assume that ∆T ≥ 0. Since m is odd
and ∆T is an integer, we also have ∆T ≥ 1. By Lemma 3, there exists 1 ≤ q ≤ m and
1 ≤ j ≤ 3 such that

q∑
i=1

fT (σj(xi)) ≤
−k + 2∆T − 2

3
≤ −k + k − 2

3
< 0.

By Proposition 1, T is not necessarily agreeable to agent j, as desired.

Theorems 4 and 5 show that the bound m/2+O(logm) for the size of the smallest nec-
essarily agreeable set is asymptotically tight. We next present a randomized algorithm
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that, despite its simplicity, computes a necessarily agreeable subset of size m/2+O(
√
m)

in polynomial time. The algorithm works by first choosing whether to include each item
independently with 50% probability, and then including the O(

√
m) most preferred items

of each agent that were excluded in the first step.
For the analysis of the algorithm, we will require two probabilistic results. The first

result, the Chernoff bound, is a fundamental result that gives an upper bound on the
probability that a sum of independent random variables is far away from its expected
value. For simplicity, we only state the bound for the case of symmetric ±1 random
variables, which suffices for our usage. This version can be found, for example, as
Theorem A.1.1 in Alon and Spencer’s book [4].

Lemma 4 (Chernoff bound). Let X1, X2, . . . , Xr be i.i.d. random variables such that
Pr[Xi = 1] = Pr[Xi = −1] = 1/2, and let X := X1 + · · ·+Xr. For any a ≥ 0, we have

Pr[|X| ≥ a] ≤ exp
(
−a2/2r

)
,

The second result, Lévy’s inequality, yields a bound on the maximum of partial sums
of independent random variables [35]. Once again, we state the inequality only for
symmetric ±1 random variables.

Lemma 5 (Lévy’s inequality). Let X1, X2, . . . , Xr be i.i.d. random variables such that
Pr[Xi = 1] = Pr[Xi = −1] = 1/2, and let Yi := X1 + · · ·+Xi for i = 1, 2, . . . , r. For any
real number x, we have

Pr

[
max
1≤i≤r

|Yi| ≥ x
]
≤ 2 Pr[|Yr| ≥ x].

We now present the algorithm and its analysis.

Theorem 6. Assume that the number of agents is constant. Let ε ∈ (0, 1), and let
c > 0 be a constant such that e−c

2/2 ≤ ε/(2n). Consider the following randomized
polynomial-time algorithm:

1. For each item, either include it in our set or not with probability 1/2, independently
of the remaining items.

2. Include the bc
√
mc most preferred items of each agent that were excluded in Step 1.

With probability at least 1 − ε, the algorithm computes a subset of size m/2 + O(
√
m)

that is necessarily agreeable to all agents.

Proof. Let X1, X2, . . . , Xm be independent random variables such that Xi = 1 if item xi
is included in our subset in the first step, and Xi = −1 if not. By the definition of the
algorithm, each Xi is 1 or −1 with probability 1/2, independently of the other Xi’s.

For j = 1, 2, . . . ,m, suppose that agent j ranks the single items as xσj(1) �
sing
j

xσj(2) �
sing
j · · · �singj xσj(m). Let Y j

i := Xσj(1) + · · ·+Xσj(i) for i = 1, 2, . . . , n. Applying
Lemma 4 with a = c

√
m yields

Pr
[
|Y j
m| ≥ c

√
m
]
≤ e−c2/2.
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Using Lemma 5 with the random variables Xσj(i) for i = 1, 2, . . . , n, it follows that

Pr

[
max
1≤i≤m

∣∣∣Y j
i

∣∣∣ ≥ c√m] ≤ 2e−c
2/2.

Using the union bound over all agents j, we have

Pr

[
max
1≤i≤m

∣∣∣Y j
i

∣∣∣ ≥ c√m for some j ∈ {1, 2, . . . ,m}
]
≤ 2ne−c

2/2 ≤ ε.

Hence, with probability at least 1− ε, Y j
i ∈ [−bc

√
mc, bc

√
mc] for all i = 1, . . . , n and

j = 1, . . . ,m. Now, since in Step 2 we include the bc
√
mc most preferred items of each

agent that were excluded in Step 1, if we update the random variables to reflect these
changes, we have Y j

i ≥ 0 for all i, j. By Proposition 1, the set that the algorithm returns
is necessarily agreeable to all agents. Since we include at most m/2 + c

√
m items in

Step 1 and c
√
m items for each agent in Step 2, the set contains at most

m

2
+ (n+ 1) · c

√
m =

m

2
+O(

√
m)

items, as desired.

4 Efficient Approximation

While our results in Sections 3 provide insights on small agreeable sets and how to
compute them efficiently, an important issue is still left unaddressed by these results.
In many instances, the minimum size of an agreeable set is much smaller than the
worst-case bound over all instances with that number of agents and items. Indeed, an
extreme example is when there is a single item that every agent likes more than all of
the remaining items combined. In this case, it suffices to select that item alone. This
results in a much smaller set than the worst-case bound, which is at least half of the
items for any number of agents.

In this section, we investigate the problem of computing an agreeable subset of optimal
size for any given instance, as opposed to one whose size matches the worst-case bound
over all instances with the same number of agents and items. We show that finding
an optimal agreeable set is computationally hard, and therefore focus on finding an ap-
proximate solution. We do so using two well-known models for representing preferences,
namely the value oracle model and additive valuations. For each of these models, we
present polynomial-time algorithms for computing an agreeable set of approximately op-
timal size. Moreover, we show that the approximation ratios obtained by our algorithms
are asymptotically tight for both models.

4.1 General Preferences

We begin with a model in which agents can have arbitrary preferences on subsets of
items. Recall that our results so far do not yield any guarantee on the approximation
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ratio beyond the obvious O(m) upper bound for arbitrary preferences over subsets of
items. The goal of this section is to explore the approximation ratios that we can achieve
in this general setting.

Before we move on to our results, let us be more precise about the model that we work
with. First, we work with the agents’ utility functions u1, u2, . . . , un instead of directly
with the preferences themselves. Since the number of subsets of S is exponentially
large, the utility functions take exponential space to write down. For this reason, it is
undesirable to include them as part of the input. Instead, we work with the value oracle
model [22], in which the algorithm can query the value of ui(T ) for any subset T ⊆ S and
any i = 1, 2, . . . , n. We also note that we do not assume responsiveness of the agents’
preferences in this section.

Our first result is a simple polynomial-time approximation algorithm with approxi-
mation ratio O(m/ logm). Even though this approximation guarantee is only Ω(logm)
better than the obvious O(m) bound, we will see later that this is already the best we
can hope for in polynomial time.

Theorem 7. There exists a polynomial-time O(m/ logm)-approximation algorithm for
computing a minimum size agreeable set in the value oracle model.

Proof. We start by partitioning the set S of items into dlogme parts S1, . . . , Sdlogme,
where each part is of size at most dm/ logme. For each set A ⊆ {1, 2, . . . , dlogme}, we
check whether the set

⋃
i∈A Si is agreeable or not by comparing each agent’s value for the

set to that for its complement. We then output the smallest agreeable set that we find.
Since the number of possible sets A is linear in m, the running time of our algorithm is
polynomial in m and n.

To prove the approximation guarantee of the algorithm, let S∗ be a smallest agreeable
set. Suppose that |S∗| = k. By monotonicity, the union of all sets Si containing elements
of S∗ is also agreeable, and it is one of the sets that we check. Moreover, this union has
size at most k · dm/ logme, implying that our algorithm indeed has approximation ratio
O(m/ logm).

Even though our algorithm is very simple, we show next that its approximation guar-
antee is in fact the best one can hope for, even when there is a single agent.

Theorem 8. For every constant c > 0, there exists m0 such that for every m >
m0, there is no (possibly randomized and adaptive) algorithm that makes at most mc/8

queries to the value oracle and always outputs an agreeable set with expected size at most
m/(c logm) times the optimum, even when there is only one agent.

In other words, the above theorem implies that there is no polynomial time algorithm
with approximation ratio o(m/ logm). We note here that our lower bound is information-
theoretic and is not based on any computational complexity assumptions. Moreover, it
rules out any algorithm that makes a polynomial number of queries, not only those that
run in polynomial time.
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Proof of Theorem 8. Let g : S → R≥0 be a function such that

g(T ) =

{
1 if |T | ≥ m/2;

0 otherwise.

Moreover, for each subset T ∗ ⊆ S, let fT ∗ : S → R≥0 denote the function

fT ∗(T ) =

{
1 if |T | ≥ m/2 or T ∗ ⊆ T ;

0 otherwise.

That is, fT ∗ is g together with a planted solution T ∗.
Consider any algorithm A that makes at most mc/8 queries. Assume for the moment

that A is deterministic. Let us examine a run of A when the agent’s utility function is
g. Suppose that A’s queries to g are on the sets T1, T2, . . . , Tbmc/8c ⊆ S.

Let T ∗ be a subset of S of size bc logm/4c chosen uniformly at random. Consider
the queries that A makes when the agent’s utility function is fT ∗ ; suppose that the
queries made are on the sets T ′1, T

′
2, . . . , T

′
bmc/8c ⊆ S. For each j = 1, 2, . . . , bmc/8c, if

Ti = T ′i and g(Ti) = fT ∗(T
′
i ) for all i = 1, 2, . . . , j − 1, then A goes through the same

computation route for both g and fT ∗ , and hence Tj = T ′j . Moreover, when both runs
share the same computational route so far and Tj = T ′j , we can bound the probability
that g(Tj) 6= fT ∗(T

′
j) as follows. First, if |Tj | ≥ m/2, then g(Tj) is always equal to

fT ∗(T
′
j). Otherwise, we have

Pr[g(Tj) 6= fT ∗(T
′
j)] = Pr[g(Tj) 6= fT ∗(Tj)] = Pr[T ∗ ⊆ Tj ].

If |Tj | < |T ∗|, this probability is 0. Else, since Tj is independent of T ∗, we can bound
the probability as

Pr[T ∗ ⊆ Tj ] =

( |Tj |
bc logm/4c

)(
m

bc logm/4c
)

=

(
|Tj |
m

)(
|Tj | − 1

m− 1

)
. . .

(
|Tj | − bc logm/4c+ 1

m− bc logm/4c+ 1

)
≤
(
|Tj |
m

)bc logm/4c
≤ 2−bc logm/4c

≤ 2m−c/4.

By the union bound, the probability that the two sequences of queries are not identical
is at most (2m−c/4) ·mc/8 = 2m−c/8, which is less than 1/2 when m is sufficiently large.
Furthermore, observe that when the two sequences are identical, A must output an
agreeable subset with respect to the utility function g; any such set is of size at least
m/2. Thus, the expected size of the output of A when given the utility function fT ∗ is
more than m/2 · (1/2) = m/4. However, the optimal agreeable set for fT ∗ has size only
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bc logm/4c. As a result, the expected size of the output of A is more than m/(c logm)
times the optimum, as desired.

Finally, note that if A is randomized, we can use the above argument on each choice
of randomness and average over all the choices, which gives a similar conclusion.

We remark that the same result holds even if we require the utility function of the
agent to be subadditive or submodular.4 To obtain the proof for a subadditive utility
function, for any T 6= ∅ such that g(T ) = 0, we set instead g(T ) = 1/2; we perform an
analogous modification to fT ∗ . Subadditivity holds for g since

g(A ∪B) ≤ 1 = 1/2 + 1/2 ≤ g(A) + g(B)

for any A,B 6= ∅, and similarly for fT ∗ . The rest of the proof then proceeds as before.
On the other hand, more work is required to adapt the proof to submodular functions.

In particular, we let k = bc logm/4c and define g as follows:

g(T ) =


1 if |T | ≥ m/2;

1− 1
2|T |−k(k+1)

if k ≤ |T | < m/2;
|T |
k+1 otherwise.

Likewise, for any T such that originally fT ∗(T ) = 0, we modify the value of fT ∗(T ) to be
the same as g(T ). One can check that g and fT ∗ are submodular, and the proof again
proceeds as before.

4.2 Additive Utilities

In this section, we assume that the agents’ preferences are represented by additive utility
functions. Each agent i has some nonnegative utility ui(xj) for item xj , and ui(T ) =∑

x∈T ui(x) for any subset of items T ⊆ S.
Clearly, the problem of deciding whether there exists an agreeable set of a certain size

is in NP. The following theorem shows that it is NP-complete, even when there are two
agents. Note that if there is only one agent, it is easy to find an optimal agreeable set
by repeatedly choosing an item that yields the highest utility to the agent among the
remaining items until the set of chosen items is agreeable.

For the hardness proof, we will reduce from the following problem called Balanced
2-Partition: Given a multiset A of non-negative integers, decide whether there exists
a subset B ⊆ A such that |B| = |A \B| = |A|/2 and

∑
a∈B a =

∑
a∈A\B a =

∑
a∈A a/2.

Like the well-known 2-Partition problem where the cardinality constraint is not in-
cluded, Balanced 2-Partition is NP-hard, as shown in the following lemma.

Lemma 6. Balanced 2-Partition is NP-hard.

4A function f : S → R≥0 is said to be submodular if f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B) for any
A ⊆ B ⊆ S and x ∈ S\B. Any submodular function is also subadditive.
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Proof. We reduce from 2-Partition, a problem in which a multisetB of positive integers
is given and the goal is to decide whether there exists a multiset T ⊆ B such that∑

b∈T b =
∑

b∈B\T b. 2-Partition is known to be NP-complete (see, e.g., [24]).
Given a 2-Partition instance, we create a Balanced 2-Partition instance as fol-

lows. Let A be the multiset containing all elements of B and |B| additional zeros.
Clearly, the reduction runs in polynomial time. We show that B is a YES instance of
2-Partition if and only if A is a YES instance of Balanced 2-Partition.

(YES Case) Suppose that B is a YES instance of 2-Partition, i.e., there exists T ⊆ B
such that

∑
b∈T b =

∑
b∈B\T b. Let S ⊆ A be the multiset containing all elements of

T and |B| − |T | additional zeros. Clearly, |S| = |B| = |A|/2 and
∑

a∈S a =
∑

b∈T b =∑
b∈B b/2 =

∑
a∈A a/2, meaning that A is a YES instance of Balanced 2-Partition

as desired.
(NO Case) We prove the contrapositive; suppose that A is a YES instance of Bal-

anced 2-Partition. This means that there exists S ⊆ A of size |A|/2 = |B| such that∑
a∈S a =

∑
a∈A\S a. Let T be the subset of B containing all elements of B whose corre-

sponding elements are included in S. Clearly, we have
∑

b∈T b =
∑

a∈S a =
∑

a∈A\S a =∑
b∈B\T b. Hence B is a YES instance of 2-Partition.

Theorem 9. For two agents with additive utility functions, it is NP-hard to decide
whether there is an agreeable set of size exactly m/2.

Proof. The reduction from Balanced 2-Partition proceeds as follows. Let a1, . . . , a|A|
be the elements of A. The set S contains |A| items x1, . . . , x|A|, each associated with an
element of A. The utility functions are then defined by u1(xi) = ai and u2(xi) = M−ai,
where M =

∑
a∈A a. We show next that this reduction is indeed a valid reduction.

(YES Case) Suppose that there exists B ⊆ A such that |B| = |A|/2 and
∑

a∈B a =∑
a∈A a/2. Let T be the set of all items corresponding to the elements of B. It is obvious

that T has size |A|/2 = m/2 and that T is agreeable.
(NO Case) We prove the contrapositive; suppose that there is an agreeable subset

T ⊆ S of size m/2. Let B ⊆ A be the set of elements corresponding to the items in
T . Since T is agreeable,

∑
x∈T ui(x) ≥

∑
x∈S\T ui(x) for i = 1, 2. When i = 1, this

implies that
∑

a∈B a ≥
∑

a∈A a/2. When i = 2, using the fact that |T | = m/2, we have∑
a∈B a ≤

∑
a∈A a/2. It follows that

∑
a∈B a =

∑
a∈A a/2. Since |B| = m/2 = |A|/2,

this concludes the proof.

Theorem 9 shows that the problem is weakly NP-hard even when there are two agents.
Nevertheless, when the number of agents is constant, the following theorem shows that
there exists a pseudo-polynomial time dynamic programming algorithm for computing
an optimal agreeable set. In particular, the problem is not strongly NP-hard for any
constant number of agents.

Theorem 10. For any constant number of agents with additive utility functions, there
exists a pseudo-polynomial time algorithm that computes an agreeable set of minimum
size.
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Proof. The algorithm uses dynamic programming. Assume that the utilities of agent
i for the items are nonnegative integers with sum σi. We construct a table Σ of size
(m+ 1)(σ1 + 1) . . . (σn + 1), where for each 0 ≤ m′ ≤ m and each tuple (y1, . . . , yn) with
0 ≤ yi ≤ σi, the entry Σ(m′, y1, . . . , yn) of the table corresponds to the minimum number
of items from among the items x1, x2, . . . , xm′ that we need to include so that agent i has
utility exactly yi for all i (if this is achievable). Initially we have Σ(0, 0, . . . , 0) = 0 and
Σ(m′, y1, . . . , yn) =∞ otherwise. We then iterate through the values of m′ in increasing
order. For each m′ ≥ 1, we update the entries of the table as follows:

• If ui(xm′) ≤ yi for all i and

1 + Σ
(
m′ − 1, y1 − u1(xm′) . . . , yn − un(xm′)

)
< Σ(m′ − 1, y1, . . . , yn),

let Σ(m′, y1, . . . , yn) = 1 + Σ (m′ − 1, y1 − u1(xm′) . . . , yn − un(xm′)).

• Else, let Σ(m′, y1, . . . , yn) = Σ(m′ − 1, y1, . . . , yn).

Finally, we look up the entries Σ(m, y1, . . . , yn) such that yi ≥ σi/2 for all i and return
the minimum value over all such entries. The algorithm runs in time O(mσ1 . . . σn).
Note that if we also want to return an agreeable set (rather than just the size), we can
also keep track of the sets of items along with the values in our table.

While there is a pseudo-polynomial time algorithm for the problem when the number
of agents is constant, we show next that if the number of agents is not constant, the
problem becomes strongly NP-hard. In other words, there is no pseudo-polynomial time
algorithm for this variant unless P=NP.

Theorem 11. When the number of agents is not constant, it is strongly NP-hard to
decide whether there is an agreeable set of size exactly (m+ 1)/2.

Proof. We reduce from 3SAT. Given a 3SAT formula φ with m′ clauses C1, C2, . . . , Cm′

on n′ variables y1, y2, . . . , yn′ , let there be n = m′ + n′ agents, where we abuse notation
and call the agents C1, C2, . . . , Cm′ , y1, y2, . . . , yn′ , and m = 2n′ + 1 items, where 2n′

items correspond to all the literals y1,¬y1, y2,¬y2, . . . , yn′ ,¬yn′ and the remaining item
is called a. We assume without loss of generality that each clause of φ has at least two
variables—it is obvious that every 3SAT formula can be transformed into this form in
polynomial time. The utility functions of the agents are defined by

uCi(b) =

{
1 if b = a or the literal b is present in Ci;

0 otherwise;

and

uyi(b) =

{
1 if b = a, b = yi, or b = ¬yi;
0 otherwise.
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We show next that this is a valid reduction. First, note that all of the integer param-
eters are polynomial in the size of the input. Hence, we are left to show that YES and
NO instances of 3SAT map to YES and NO instances of our problem respectively.

(YES Case) Suppose that there exists an assignment that satisfies φ. For each yi, let bi
be the literal of yi that is true according to this assignment. Let T = {a, b1, b2, . . . , bn′}.
Since each clause Cj is satisfied by the assignment, we have

∑n′

i=1 uCj (bi) ≥ 1. It follows
that

∑
x∈T uCj (x) ≥ 2, and therefore T �Cj S \ T . Moreover, for each variable yi, we

have
∑

x∈T uyi(x) = 2, which also implies that T �yi S\T . As a result, T is an agreeable
set of size n′ + 1 = (m+ 1)/2 as desired.

(NO Case) We prove the contrapositive; suppose that there exists an agreeable set
T ⊆ S of size (m + 1)/2 = n′ + 1. We assume without loss of generality that a ∈ T ;
indeed, since the utility of any agent for a is at least as much as the utility of the agent
for any other item, if a /∈ T we can replace an arbitrary item in T by a and maintain
the agreeability of T .

Since T �yi S \ T , at least one literal corresponding to yi is included in T . Moreover,
since the size of T is n′+ 1 and a ∈ T , exactly one literal of each yi is in T ; let bi be this
literal. Consider the assignment to the variables such that all the bi’s are set to true.
Since T �Cj S \ T for every Cj and Cj contains at least two literals, at least one literal
in Cj is set to true by this assignment. Hence the assignment satisfies the formula φ.

Given that computing an agreeable set of minimum size is NP-hard, it is natural to
attempt to find an approximation algorithm for the problem. When the utilities are
additive, this turns out to be closely related to approximating the classical problem Set
Cover. In Set Cover, we are given a ground set U and a collection C of subsets of U .
The goal is to select a minimum number of subsets whose union is the entire set U .

Set Cover was one of the first problems shown to be NP-hard in Karp’s seminal
paper [28]. Since then, its approximability has been intensively studied and is now
well understood. A simple greedy algorithm yields a (ln |U |+ 1)-approximation for the
problem [27, 36]. On the other hand, a long line of work in hardness of approximation [3,
20, 38, 42, 45] culminates in Dinur and Steurer’s work [19], in which the NP-hardness of
approximating Set Cover within a factor of (1−ε) ln |U | was proved for every constant
ε > 0.

The first connection we will make between Set Cover and approximating minimum
size agreeable set is on the negative side—we show that any inapproximability result for
Set Cover can be translated to that for approximating minimum size agreeable set as
well. To do so, we first state Dinur and Steurer’s result more precisely.

Lemma 7 ([19]). For every constant ε > 0, there is a polynomial time reduction from
any 3SAT formula φ to a Set Cover instance (U, C) and a function f(U) which is
polynomial in |U | such that

• (Completeness) if φ is satisfiable, the optimum of (U, C) is at most f(U);

• (Soundness) if φ is unsatisfiable, the optimum of (U, C) is at least ((1−ε) ln |U |)f(U).
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We are now ready to prove the hardness of approximating minimum size agreeable
set.

Theorem 12. For any constant δ > 0, it is NP-hard to approximate minimum size
agreeable set to within a factor (1− δ) lnn of the optimum.

Proof. Let ε = δ/2. Given a 3SAT formula φ, we first use Dinur and Steurer’s reduction
to produce a Set Cover instance (U, C). Let there be |U | agents, each of whom is
associated with a distinct element of U ; it is convenient to think of the set of agents as
simply U . As for the items, let there be one item for each subset C ∈ C and additionally
let there be one special item called t. In other words, S = C ∪ {t}.

The utility function of each agent a ∈ U is then defined by

ua(s) =


|{C ∈ C | a ∈ C}| − 1 if s = t;

1 if s ∈ C and a ∈ s;
0 otherwise.

We show next that this reduction indeed gives the desired inapproximability result.
(Completeness) If φ is satisfiable, then there are f(U) subsets from C that together

cover U . We can take T to contain all of these subsets and the special item t. Clearly,
T has size f(U) + 1 and is agreeable.

(Soundness) If φ is unsatisfiable, then any set cover of (S, C) contains at least ((1 −
ε) ln |U |)f(U) subsets. Consider any agreeable set T . For each a ∈ U , from our definition
of ua(t), the set T must include at least one subset that contains a. In other words, T \{t}
is a set cover of (S, C). Hence, |T | ≥ ((1− ε) ln |U |)f(U).

The two parts together imply that it is NP-hard to approximate minimum size agree-
able set to within a factor ((1−ε) ln |U |)f(U)

f(U)+1 of the optimum. This ratio is at least (1−δ) lnn

when f(U) ≥ 2/δ, which can be assumed without loss of generality (since otherwise we
can solve the Set Cover instance in time |U |O(f(U)) = |U |O(1), implying that P =
NP).

Unlike the above inapproximability result, it is unclear how algorithms for Set Cover
can be used to approximate minimum size agreeable set. Fortunately, our problem is
in fact a special case of a generalization of Set Cover called Covering Integer
Program (CIP), which can be written as follows:

minimize cTx

subject to Ax ≥ 1,

0 ≤ x ≤ u,
x ∈ Zm,

where c, u ∈ Rm and A ∈ Rn×m are given as input.
The problem of finding a minimum size agreeable set can be formulated in this form

by setting c, u and A as follows:

cs = 1 ∀s ∈ S
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us = 1 ∀s ∈ S

Ai,s =
2ui(s)∑
s′∈S ui(s

′)
∀i = 1, 2, . . . , n, ∀s ∈ S

Similarly to Set Cover, the approximability of CIP is well studied. In particular,
the problem is known to be approximable to within a factor O(log n) of the optimum
in polynomial time [32]. This immediately implies an O(log n)-approximation algorithm
for finding a minimum size agreeable set as well.

Theorem 13. For agents with additive utility functions, there exists a polynomial-time
O(log n)-approximation algorithm for computing a minimum size agreeable set.

5 Discussion

In this paper, we introduce the notion of agreeability, which captures an agent’s accep-
tance of the set of items allocated to her group, and present a number of fundamental
results on the notion. For any number of agents and items, we derive a tight upper
bound on the number of items that may need to be included in an agreeable subset.
We also present polynomial-time algorithms for computing an agreeable set whose size
matches the upper bound or approximates the optimal size for a given instance using
well-known models for representing preferences.

Our work suggests a number of possible future directions. With polynomial-time
algorithms for computing an agreeable set whose size matches the upper bound for two
and three agents in hand, a natural question is whether we can similarly obtain efficient
algorithms when there are more agents. The algorithm for three agents is already quite
involved, so one might suspect that the problem is intractable for larger numbers of
agents. If that were to be the case, it would be useful to have a confirmation by means
of a hardness result, even for some fixed large number of agents. Since the problem is a
search problem for which we know that a solution always exists, it cannot be NP-hard,
but could potentially be hard with respect to a subclass of TFNP such as PPAD or PLS.
One could also investigate the complexity of deciding the existence of agreeable subsets
of certain sizes for which there is no guarantee of existence, as we do in Theorems 9
and 11.

Another avenue for future work is to extend the notion of agreeability to more general
settings. For instance, a motivating example that we give is that the group of agents
receive some items as prizes from a team competition that they won against another
group. One could consider a generalization where there are more than two competing
groups. However, in this case there are several reasonable ways of defining agreeability,
since we do not know how the remaining items are distributed among the remaining
groups. One possibility is to require that each agent in the group finds the set of items
to be worth at least 1/k of the whole set, where k is the number of groups. An alternative
definition is to impose the condition that for each agent in the group, there is a way to
partition the remaining items among the other k − 1 groups so that the agent does not
envy any of the other groups. While both definitions reduce to our notion of agreeability
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in the case of two groups and additive utilities, the equivalence ceases to hold when there
are at least three groups or if utilities are not additive. As such, the results that we can
obtain are likely to depend on the definition that we use.

An interesting related question that goes beyond our setting is the following: When
is it possible to obtain a fair allocation between two or more groups of agents, where,
like in our work, agents in the same group share the same set of items? As mentioned
in the introduction, this question has been a subject of recent attention, but much work
remains to be done. For example, in the traditional fair division setting with one agent
per group, the undercut procedure [16] is an elegant method for computing an envy-free
allocation whenever one exists. Whether we can come up with a similar procedure for
the group setting is an appealing direction that we leave for future research.
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erences: computing envy-free allocations of indivisible goods. In Proceedings of the
19th European Conference on Artificial Intelligence, pages 387–392, 2010.
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[34] Jérôme Lang. Logical preference representation and combinatorial vote. Annals of
Mathematics and Articial Intelligence, 42(1):37–71, 2004.
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