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We present four simple lemmas concerning the existence of cycles in graphs, and
show how the lemmas can be applied to solve problems that appeared in mathematical
competitions. Despite their simplicity, these tools can be used to tackle surprisingly
varied problems.

We begin with some basics of graph theory. A graph G consists of a set of vertices
V and a set of edges E. The graph is said to be finite if both V and E are finite.

In a directed graph, each edge is directed from a vertex v to a vertex w, where
possibly v = w. We allow multiple edges to be directed between the same pair of
vertices. A directed cycle is a sequence of vertices v1, v2, . . . , vn, for some n ≥ 1,
such that there is a directed edge vi → vi+1 for all i = 1, 2, . . . , n − 1 and a directed
edge vn → v1. (If n = 1, we require a directed edge v1 → v1.) The out-degree of a
vertex is the number of edges directed from that vertex, and the in-degree of a vertex
is the number of edges directed into that vertex.

Similarly, in an undirected graph, each edge connects two vertices v and w, where
possibly v = w. We allow multiple edges to connect the same pair of vertices. An
undirected cycle is a sequence of vertices v1, v2, . . . , vn, for some n ≥ 1, such that
there is an undirected edge between vi and vi+1 for all i = 1, 2, . . . , n − 1 and an
undirected edge between vn and v1. (If n = 1, we require an undirected edge between
v1 and itself.) The degree of a vertex is the number of edges adjacent to that vertex.
(An edge between a vertex and itself is counted twice in the degree of that vertex.)

We are now ready to state the lemmas. First, we consider directed graphs.

Lemma 1. Let G be a finite directed graph. If every vertex of G has out-degree at
least 1, then G has a directed cycle.

Proof. Suppose that every vertex of G has out-degree at least 1. Let v1 be an arbitrary
vertex of G. Given vertex vi , define vi+1 as any vertex for which there exists an edge
vi → vi+1. Since the graph is finite, there exist two indices j < k such that vj = vk.
Then the path vj → vj+1 → · · · → vk forms a directed cycle. �

Lemma 2. Let G be a finite directed graph. If every vertex of G has out-degree 1 and
in-degree 1, then G is a disjoint union of directed cycles.

Proof. Suppose that every vertex of G has out-degree 1 and in-degree 1. Let v1 be
an arbitrary vertex of G. Given vertex vi , define vi+1 as the vertex for which there
exists an edge vi → vi+1. Since the graph is finite, there exist two indices j < k such
that vj = vk. Consider the first vertex vk such that there exists some j < k for which
vj = vk. If j > 1, then vj has in-degree at least 2, contradicting the assumption. Hence
j = 1, and the path v1 → v2 → · · · → vk−1 → v1 forms a directed cycle. We can
remove it and apply mathematical induction on the remaining graph, which consists of
strictly fewer vertices. �

We also have equivalent results on undirected graphs. The proofs are similar and
are left as exercises for the reader.

Math. Mag. 93 (2020) 284–287. doi:10.1080/0025570X.2020.1790966 c© Mathematical Association of America
MSC: 05C38

mailto:warut.suksompong@cs.ox.ac.uk


VOL. 93, NO. 4, OCTOBER 2020 285

Lemma 3. Let G be a finite undirected graph. If every vertex of G has degree at least
2, then G has an undirected cycle.

Lemma 4. Let G be a finite undirected graph. If every vertex of G has degree 2, then
G is a disjoint union of undirected cycles.

The key in applying these lemmas is to identify the appropriate graph G for each
problem. We illustrate this through some problems given in mathematical competi-
tions.

Our first problem involves a simple fact from matching theory, an extremely rich
subject on its own (see Roth and Sotomayor [1], for example). In the language of
matching theory, it states that in a “one-sided matching,” for every assignment in the
“core” of the game, at least one person receives his or her top choice. The problem
appeared in the Turkish Mathematical Olympiad in 1998, and is closely related to the
Top Trading Cycle Algorithm [2].

Problem 1. There are n people who need to be assigned to n houses. Each per-
son ranks the houses in some order, with no ties. After the assignment is made, it is
observed that every other assignment would assign at least one person to a house that
the person ranks lower than the house in the given assignment. Prove that at least one
person receives his or her top choice in the given assignment.

Proof. Assume that the ith person has been assigned to the ith house. Construct a
directed graph G with vertices 1, 2, . . . , n. For each person i, add an edge from i to
i’s favorite house. Every vertex of G has out-degree 1, so by Lemma 1, G contains
a directed cycle. If the cycle consists of a single vertex, we have found a person who
receives his or her top choice in the given assignment. Otherwise, we can let the people
in the cycle trade their houses along the cycle, making all of them happier and thus
contradicting the condition of the problem. �

Our next problem appeared in the Iranian Mathematical Olympiad in 1998.

Problem 2. An n × n table is filled with the numbers −1, 0, 1 in such a way that every
row and column of the table contains exactly one −1 and one 1. (An example is shown
below.) Prove that one can permute the rows and columns so that in the resulting table
each number is the negative of the number in the same position in the original table.

Proof. Consider a directed graph G whose vertices correspond to the rows of the table.
For each column, add an edge to G pointing from the row in which the column has a
1 to the row in which the column has a −1. For example, for this table:

⎛
⎜⎝

0 −1 0 1
−1 1 0 0
0 0 1 −1
1 0 −1 0

⎞
⎟⎠

the graph G consists of the edges 4 → 2 → 1 → 3 → 4. Every vertex of G has out-
degree 1 and in-degree 1, so by Lemma 2, G is a disjoint union of directed cycles.
Consider any directed cycle

s1 → s2 → · · · → sk → s1

in G, and assume that row si has a 1 in column ti . (For the cycle 4 → 2 → 1 → 3 → 4
in the above table, we have t1 = 1, t2 = 2, t3 = 4, and t4 = 3.) We switch rows s2
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and sk, rows s3 and sk−1, . . . , and rows s�k/2� and s�k/2�+2. Note that this has the effect
of reversing the cycle. We then switch columns t1 and tk, columns t2 and tk−1, . . . , and
columns t�k/2� and t�k/2�+1. It can be verified that after this procedure, all 1’s in these
rows and columns are replaced by −1’s, and vice versa. Hence, after we perform the
procedure on all cycles in G, we obtain the desired table. �

Our next problem appeared in the Russian Mathematical Olympiad in 2005.

Problem 3. A conference has 100 participants from 50 countries, two from each coun-
try. The participants sit at a round table. Prove that one may partition them into two
groups in such a way that no two participants from the same country are in the same
group, and no three consecutive participants in the circle are in the same group.

Proof. Number the participants in the round table 1, 2, . . . , 100 in the order in which
they are seated, and pair them up as {1, 2}, {3, 4}, . . . , {99, 100}. Construct an undi-
rected graph G with the vertices corresponding to the participants. For each participant,
add an edge to her pair and an edge to the other participant from the same country.
Every vertex of G has degree 2, so by Lemma 4, G is a disjoint union of undirected
cycles. Since the edges in a cycle necessarily alternate between the “pair” type and the
“same country” type, each cycle must be of even length. Hence, we can partition the
participants in each cycle into two groups so that no two participants in the same group
are connected by an edge. It follows that no two participants from the same country are
in the same group, and no three consecutive participants in the circle are in the same
group. �

Our next problem appeared in the Peru Team Selection Test for the International
Mathematical Olympiad in 2006.

Problem 4. A table with 2n rows and n columns is filled with 1 and −1 in such a
way that the rows of the table constitute all possible sequences of length n that can
be formed with 1 and −1. An arbitrary subset of numbers is then replaced by 0s. (An
example is shown below.) Prove that one can choose a nonempty subset of rows of the
table so that within the chosen rows, the sum of the numbers in each column is 0.

⎛
⎜⎝

1 −1
−1 0
1 1
0 −1

⎞
⎟⎠

Proof. We refer to a row in the table before modification as an original row, and one
after modification as a modified row. We define a binary row to be a row with n entries
consisting of 0 and 1. Let

f : {0, 1}n → {−1, 1}n

be a function such that for each binary row b, f (b) is the original row for which the
entry of f (b) is 1 if the corresponding entry of b is 0, and the entry of f (b) is −1 if the
corresponding entry of b is 1. (For example, f (0, 0) = (1, 1) and f (1, 0) = (−1, 1).)
Let

g : {0, 1}n → {−1, 0, 1}n

be such that g(b) is the modified row that coincides with f (b) before we made any
change to the table, but possibly has had some entries replaced by 0. (So in the above
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table, g(0, 0) = (1, 1) and g(1, 0) = (−1, 0).) One can check that b + g(b) is again a
binary row, where addition is done entrywise. Construct a directed graph G with the
vertices corresponding to all 2n binary rows. For each binary row b, add an edge to the
binary row b + g(b). Every vertex of G has out-degree 1, so by Lemma 1, G contains
a directed cycle b1, b2, . . . , bk. Hence

b1 + g(b1) + g(b2) + · · · + g(bk) = b1,

which implies that g(b1), g(b2), . . . , g(bk) form a desired subset of rows. �
Our final problem appeared on the shortlist of the International Mathematical

Olympiad in 2017.

Problem 5. Determine all integers n ≥ 2 with the following property: for any integers
a1, a2, . . . , an whose sum is not divisible by n, there exists an index 1 ≤ i ≤ n such
that none of the numbers

ai, ai + ai+1, . . . , ai + ai+1 + · · · + ai+n−1

is divisible by n. (We let ai = ai−n when i > n.)

Proof. First, if n is composite, say n = ab for integers a, b ≥ 2, then we can take

(a1, a2, . . . , an−1, an) = (a, a, . . . , a, 0)

to show that the property does not hold.
Next, let n be a prime number, and assume for the sake of contradiction that the

property does not hold. Construct a directed graph G with vertices 1, 2, . . . , n. For
each ai , there exists 1 ≤ j ≤ n − 1 such that

ai + ai+1 + · · · + ai+j−1

is divisible by n. Add a directed edge from i to i + j in G, where we take the vertex
indices modulo n. Every vertex of G has out-degree 1, so by Lemma 1, G contains a
directed cycle v1, v2, . . . , vk. This means that the sum

(av1 + av1+1 + · · · + av2−1) + (av2+av2+1 + · · · + av3−1)

+ · · · + (avk
+ avk+1 + · · · + av1−1)

is divisible by n. This sum contains each ai an equal number of times, and this number
can be at most n − 1. Hence, we have that r(a1 + a2 + · · · + an) is divisible by n for
some 1 ≤ r ≤ n − 1. However, this is impossible since n is prime and neither r nor
a1 + a2 + · · · + an is divisible by n. �
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Summary. We show how certain basic results about cycles in directed and undirected graphs can be used to
solve some clever problems that appeared in major mathematics competitions.
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