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Abstract

Social choice theory concerns the design and analysis of methods for aggregating possibly conflicting

individual preferences to reach a collective decision in a satisfactory manner. The discipline dates

from Condorcet’s voting paradox in the 18th century, and its paradigm was significantly influenced

by Arrow’s seminal work in the 1950s. While classical social choice theory focuses on the existence

and non-existence of aggregation methods that satisfy certain axioms, over the past two decades

computer scientists have studied the discipline from a computational perspective, leading to an

active research area of computational social choice. This dissertation presents results of the classical

flavor as well as those applying complexity concepts and algorithmic techniques.

In the first part, we consider resource allocation settings. We depart from the usual framework

in which each recipient of a bundle of items is represented by a single preference, and assume

instead that each interested party consists of agents who may have different preferences on the

items. We study the problem of assigning a small subset of indivisible items to a group of agents

so that the subset is agreeable to all agents, and derive bounds on the size of such a set under

various informational and computational assumptions. We also investigate fairness guarantees in

the allocation of indivisible items among groups. While the problem is more challenging than in the

traditional setting with individual agents, we show that it is nevertheless possible to obtain positive

results using asymptotic analysis and approximation.

In the second part, we study decision making problems, where our goal is to choose the “best”

alternatives from a given set of alternatives. We demonstrate that the bipartisan set, a method for

selecting the best alternatives of a tournament proposed in the 1990s, is the unique method that

satisfies a number of desirable properties. In addition, we consider issues related to choosing winners

in sports competitions. We show that if tournament organizers have the freedom to determine

the bracket of a single-elimination tournament, they can often make their favorite player win the

tournament. We also tackle the problem of scheduling asynchronous round-robin tournaments, in

which all games take place at different times, and propose schedules that perform well with respect

to measures concerning the quality and fairness of the tournament.
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Chapter 1

Introduction

1.1 Motivation: Social Choice Theory

The high-level motivation of most of the work presented in this dissertation is from social choice

theory, so it seems appropriate that we begin our exposition there. Given a set of agents with

individual and possibly conflicting preferences, how can we combine the preferences to reach a

collective decision in a satisfactory manner? This is, of course, a very fundamental question that

has been studied for a long time in mathematics, economics, and political science. In the setting

usually considered in social choice theory, there is a set of agents, each of whom has a preference over

the alternatives in a given set. The type of alternatives can vary according to the application. For

example, in voting the alternatives are political candidates, in resource allocation the alternatives

are different ways to allocate the resources, and in coalition formation the alternatives are coalition

structures. Our goal is to aggregate the preferences of the agents to reach a collective decision,

whether that means selecting the winning political candidate, allocating the resources among the

agents, or deciding on the coalition structure.

Social choice theory dates from Condorcet’s voting paradox in the 18th century, when Marquis

de Condorcet made the simple yet at first sight perhaps surprising observation that when each

agent specifies a linear preference ranking over the alternatives, the majority relation between the

alternatives can contain a cycle [51]. Indeed, assume that there are three alternatives a, b, c, the first

agent prefers a to b to c, the second agent prefers b to c to a, and the third agent prefers c to a to

b. Then a majority (two out of three) of the agents prefer a to b. Likewise, a majority of the agents

prefer b to c, and a majority of the agents prefer c to a. Condorcet’s example shows that, somewhat

paradoxically, the agents’ linear preferences do not always admit a Condorcet winner, an alternative

that a majority of the agents prefer to any other alternative. In other words, the majority relation

between the alternatives does not necessarily suggest a clear winning alternative. While much of the

work in social choice theory in the 18th and 19th centuries focused on analyzing specific examples

1
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and methods, the paradigm was drastically shifted in the middle of the 20th century. The shift was

due to the seminal work of the Nobel laureate Kenneth Arrow in 1950, who established a sweeping

statement that applies to all possible aggregation methods, whether previously proposed or not, at

once. In particular, Arrow showed that when there are at least three alternatives, any aggregation

method that satisfies a short list of intuitively reasonable properties must be a dictatorship, meaning

that there is a “dictator” whose preference the aggregation rule always directly outputs without

taking into account the preferences of the remaining agents [9].

Since Arrow’s work, social choice theorists mainly focused on proving the existence and non-

existence of aggregation methods satisfying certain properties, often referred to as “axioms”. While

it is clear that an aggregation rule should not be used if it has a number of undesirable properties,

the computational cost of implementing the rule is another crucial consideration. Indeed, a rule

that satisfies all of the required axioms and yet takes an exorbitant amount of time to implement

would be of limited practical use. This concern was taken up by computer scientists, who over the

past two decades have studied the discipline from a computational perspective, leading to an active

research area of computational social choice. Work in this area often uses techniques from theoretical

computer science, particularly algorithms and complexity theory, to investigate the computational

aspects of aggregation problems. This dissertation presents results of the classical flavor as well

as those applying complexity concepts and algorithmic techniques. For detailed surveys of social

choice theory and computational social choice, we refer to excellent books by Arrow et al. [10, 11]

and Brandt et al. [38].

1.2 Overview of the Dissertation

We now present a bird’s-eye view of this dissertation. We begin in Chapter 2 (Preliminaries) by

introducing concepts and definitions that are used across multiple chapters of the dissertation. In

particular, we provide the basic setting and notions of fair division and give a brief introduction to

tournaments and tournament solutions. We also state a number of probabilistic bounds that we use

in our analyses.

The rest of the dissertation is divided into two parts, as we outline below.

1.2.1 Part I: Resource Allocation

In the first part of the dissertation, we focus on resource allocation problems. These problems

are extremely commonplace in our daily lives, from allocating school supplies to children and course

slots in universities to students, to allocating machine processing time to users and kidneys to kidney

transplant patients. Indeed, one of the fundamental problems in economics is how to allocate scarce

resources in the best possible way. As the 2012 Nobel laureate in Economics Alvin Roth said in

his Nobel lecture, “understanding who gets what, and how and why, is still very much a work in
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progress” [124].

While there is a vast literature on resource allocation, the literature almost always assumes

that each interested party consists of a single agent, or a group of agents represented by a single

preference. However, this assumption is too restrictive for many practical situations. For instance,

if we divide items among families, it could be that different members of a family have different

values for the items—perhaps the father has high value for a television, while the daughter finds

it outdated and consequently has little value for it. Another example is a university that needs to

divide its resources among competing groups of agents, in this case departments. The agents in

each group have different and possibly misaligned interests—the professors who perform theoretical

research may prefer more whiteboards and open space in the department building, whereas those

who engage in experimental work are more likely to prefer laboratories. These situations cannot be

modeled by traditional resource allocation settings in which each recipient of a bundle of items is

represented by a single preference. Part I of this dissertation investigates group resource allocation

settings, where agents share the same set of items even though they have varying preferences.1

Before we investigate a model where we allocate resources among several groups of agents, we

first consider in Chapter 3 (Computing a Small Agreeable Set of Indivisible Items) a

model in which there is only a single group of agents. In particular, all of the agents belong to

the same group, and they are collectively allocated the same subset of indivisible items. The items

are treated as public goods within the group, meaning that every agent derives full utility from all

items in the subset. Our goal is to make this subset “agreeable” to all agents, where one can think

of agreeability as a minimal desirability condition: An agent might be able to find other subsets of

items that she personally prefers to the allocated set, but the allocated set is still acceptable for

her, and she can agree with its allocation to the group. The definition of agreeability that we use is

that every agent likes the allocated set of items at least as much as the complement set. Without

further constraints, the problem described so far would be trivial. Indeed, since only one group is

present, there is nothing stopping us from allocating the whole set of items to the group, which

clearly everyone would find agreeable. We therefore impose a constraint on the size of the allocated

subset: we want this subset to be as small as possible.

When there is one agent, we may already need to include half of the items in an agreeable set

in the case that the agent values all items equally. What happens if there are more agents? At first

sight, it might seem that if the agents have very different preferences from one another, the size of

the smallest agreeable set would increase by a nontrivial amount. However, and quite surprisingly,

this size increases by only about half an item per additional agent, even in the worst case; there is

also an example of agents’ preferences for which this bound is exactly attained. We therefore have

1Despite the applicability of group resource allocation, the only previous works we are aware of that deal with
group settings are recent works by Segal-Halevi and Nitzan [133, 134], which study the allocation of divisible resources
such as cake or land. In contrast, in this dissertation we focus exclusively on the allocation of indivisible resources
such as houses and cars.
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a tight worst-case bound on the minimum size of an agreeable set for any number of agents and

items. Nevertheless, in many instances we can find an agreeable set that is much smaller than this

worst-case bound. For example, if there is a particular item that all agents prefer to the rest of the

items combined, then it suffices to only allocate this item. This yields an agreeable set that is much

smaller than the worst-case bound, which is already half of the items even for a single agent. With

this observation in mind, we address the question of how well we can approximate the size of the

smallest agreeable set for any given instance in time polynomial in the input size. We show that for

arbitrary preferences, we cannot do much better in the worst case than the trivial algorithm that

always outputs the whole set of items. On the other hand, if we impose an additional structure of

the preferences, it becomes possible to obtain a significantly better approximation.

In the remaining chapters of Part I, we consider allocating items to multiple groups of agents.

The objective that we are interested in is fairness: we want all agents to feel that they receive a fair

share of the resources. There is a rich and beautiful theory of fair division that goes back several

decades and has been studied in mathematics, economics, and more recently in computer science.2

A fair division problem that has received a fair amount of attention in popular literature is cake

cutting. The aim of cake cutting is to fairly divide a cake, which is a metaphor for any divisible

resource, between two or more agents. In fact, fair division has several more applications beyond

cake cutting. Some of these applications, including sharing apartment rent, splitting taxi fare, and

distributing household tasks, are implemented on the website Spliddit (www.spliddit.org), which

has attracted tens of thousands of users since its launch in 2014 [72].

To reason about fairness, we must define what it means for an allocation of resources to be fair.

Several notions of fairness have been proposed. One of the oldest and most important notions is

envy-freeness, which means that each agent values her set of items at least as much as any other

agent’s set of items. In other words, no agent should envy another agent. Clearly this requirement

cannot always be satisfied: if there are one item and two agents who both value the item positively,

then no matter what we do, the agent who does not get the item will envy the other agent. So the

notion is often relaxed to envy-freeness up to one good (EF1), which means that if an agent envies

another agent, then there must be some item in the second agent’s bundle such that if we remove

it from the bundle, the first agent no longer envies the second agent. EF1 can always be satisfied

for any number of agents with arbitrary monotonic valuations [101]. Another fairness notion is

called maximin share fairness, which means that each agent receives at least her maximin share.

The maximin share of an agent is defined as the maximum utility that the agent can guarantee by

dividing the items into n parts and obtaining the worst part, where n denotes the number of agents.

Maximin share fairness can always be satisfied for two agents but not for three or more agents.

However, when agents have additive valuations, there always exists an allocation that gives every

agent a constant fraction of her maximin share [120].

2See the survey by Thomson [155] and the references therein for an introduction to the subject.
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Given the fact that an envy-free allocation does not always exist, one positive result that we

could still hope to show is that such an allocation exists “most of the time”. This is precisely

what Dickerson et al. [54] did—they studied the asymptotic existence and non-existence of envy-free

allocations in the traditional setting with one agent per group. As an example, assume that agents

have additive utilities, and each agent’s utility is drawn uniformly and independently at random

from the interval (0, 1). If the number of items (m) is less than the number of agents (n), then any

allocation leaves some agent with no item, so no allocation can be envy-free. Dickerson et al. showed

that even if m is slightly larger than n, an envy-free allocation is still unlikely to exist. However,

as soon as m is larger than n by a logarithmic factor, there exists an envy-free allocation with

high probability. In Chapter 4 (Asymptotic Existence of Fair Divisions for Groups), we

generalize these results to the group setting, assuming that all groups contain the same number of

agents. If the number of items is less than the total number of agents, the probability that an envy-

free allocation exists is bounded away from 1. As we mentioned earlier, this regime is not interesting

in the setting with one agent per group since no envy-free allocation can exist. In contrast, in the

group setting, envy-free allocations can exist as long as the number of items is at least the number

of groups. Likewise, we show that when the number of items exceeds the total number of agents by

at least a logarithmic factor, an envy-free allocation exists with high probability. Our results are

robust in the sense that they hold no matter whether the agents are distributed into several groups

of small size or few groups of large size.

Our results in Chapter 4 circumvent the potential non-existence of fair allocations by using

asymptotic analysis. Another way to obtain positive results is to use approximation. If we only

allocate items between two agents, it is known that a simple “cut-and-choose” algorithm gives both

agents their maximin share: We let the first agent partition the items into two bundles that are

as equal as possible in her view, and let the second agent choose the bundle that she prefers. One

might wonder whether this guarantee still holds if we have two groups of agents. That is, with two

groups of agents, can we still give every agent her maximin share, or at least a fraction thereof? In

Chapter 5 (Approximate Maximin Shares for Groups of Agents), we provide a complete

answer to this question. It turns out that the answer depends on the number of agents in the two

groups. Specifically, suppose that the two groups consist of n1 and n2 agents, where we assume

without loss of generality that n1 ≥ n2. We show that if n2 = 1, or if (n1, n2) = (2, 2) or (3, 2), then

we can give a fraction of the maximin share to every agent. Crucially, this fraction depends only

on the number of agents and not on the number of items. In other words, the guarantee does not

worsen as we increase the number of items. In all of the remaining cases, there exists an instance in

which all agents have positive maximin share, but any allocation leaves some agent with no utility.

This implies that there is no hope of obtaining any positive approximation in these cases.

In light of the results in Chapters 4 and 5, which hold either asymptotically or for certain numbers

of agents, a natural question is whether there is any hope of obtaining worst-case guarantees that



CHAPTER 1. INTRODUCTION 6

hold for any number of agents. Chapter 6 (Democratic Fair Allocation of Indivisible Goods)

answers this question in the affirmative. For two groups with any number of agents, we establish the

existence of an allocation that is EF1 for at least half of the agents in each group; the bound 1/2 is

also tight. Now, one might be tempted to think that if we relax EF1 to, say, EF2 or EF3, where we

define these notions analogously to EF1 but with two or three goods allowed to be removed,3 then

we would be able to satisfy a larger fraction of the agents. This is, however, not true: the bound 1/2

remains tight for EFc for any constant c. Nevertheless, we would still like to satisfy more than half

of the agents; ideally we want to give all agents some nontrivial guarantee. It turns out that this

is also possible, provided that we allow the fairness notion to depend on the number of agents. In

particular, for two groups of agents with additive valuations, there always exists an allocation that

is envy-free up to n− 1 goods for all agents, where n denotes the total number of agents in the two

groups. Like the guarantees in Chapter 5, this guarantee does not depend on the number of items;

it does not get worse as we have more items to allocate.

1.2.2 Part II: Decision Making

In the second part of the dissertation, we turn our attention to decision making problems, where

our goal is to choose the “best” alternatives from a given set of alternatives. We focus in particular

on settings where there is a dominance relation between the alternatives, meaning that for any

two distinct alternatives, one dominates the other. In graph theory, this structure is known as a

tournament.4 A tournament could arise, for example, from a sports competition in which every pair

of players play each other once and there is no tie. A common interpretation in social choice theory

is that the tournament represents the majority relation of the agents’ preferences. For instance, the

preferences in Condorcet’s voting paradox mentioned in Section 1.1 give rise to a tournament in

which a dominates b, b dominates c, and c dominates a. If there are an odd number of agents, the

majority relation consists of no ties and therefore constitutes a tournament.

Given a tournament, how should we determine the “best” alternatives, or the “winners” of

the tournament? The first method that probably comes to many people’s minds, which is also

the method often used in sports competitions, is to select the alternatives with the highest out-

degree, that is, the alternatives that dominate the highest number of other alternatives. This

set of alternatives is known in social choice theory as the Copeland set. The Copeland set is an

example of a tournament solution, i.e., a method for choosing the winners of a given tournament.

We provide several insights that improve our understanding of tournament solutions in Chapter 7

(On the Structure of Stable Tournament Solutions). A common way to evaluate tournament

solutions is to specify a set of properties that we desire, and verify whether each tournament solution

satisfies the properties. Four properties that have been considered in the literature are monotonicity,

3See Section 2.1 for formal definitions.
4Not to be confused with formats for organizing sports competitions such as single-elimination tournaments or

round-robin tournaments, which we also study in Chapters 8 and 9 respectively.
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composition consistency, stability, and regularity.5 Monotonicity means that if an alternative is

chosen, it should remain chosen when it dominates one more alternative and everything else is

unchanged. Composition consistency means that the tournament solution should choose the best

alternatives from the best components. Stability says that a set is chosen from two different sets of

alternatives exactly when it is chosen from the union of these sets. Finally, regularity states that if

all alternatives have equal out-degree, all of them should be chosen.

One tournament solution that we investigate in detail in Chapter 7 is the bipartisan set, proposed

in 1993 by Laffond et al. [93] and elegantly defined via the support of the unique mixed maximin

strategies of the zero-sum game given by the tournament’s skew-adjacency matrix. It is known that

the bipartisan set satisfies all of the four properties mentioned in the preceding paragraph, so one

could naturally ask whether it is the only tournament solution that satisfies these properties. The

answer is negative: the trivial tournament solution, which always selects all alternatives regardless

of the tournament, also fulfills the four properties. However, the purpose of tournament solutions is

to distinguish the best alternatives from the rest of the alternatives; always selecting all alternatives

clearly defeats this purpose. We show that among all tournament solutions that fulfill the four

properties, the bipartisan set is the unique most discriminating one in the sense that it selects on

average the least number of alternatives, where the average is taken over all labeled tournaments of

any fixed size. Our statement applies at once to all possible tournament solutions, whether previously

considered or not, very much in the spirit of Arrow’s seminal result discussed in Section 1.1.

We end the dissertation with two chapters on issues related to choosing winners in sports compe-

titions. A very popular format for organizing sports competitions is a single-elimination tournament,

also known as a knockout tournament. It is used, for example, in the NCAA championships as well

as in most tennis, badminton, and snooker competitions. As much as we love single-elimination

tournaments, it is also clear that the winner of these tournaments can depend significantly on the

bracket. To put it differently, if the tournament organizers have a favorite player who they want to

be the winner of the tournament, they could potentially choose a bracket to help this player win. The

tournament fixing problem, which we study in Chapter 8 (Who Can Win a Single-Elimination

Tournament?), formalizes this intuition. Given a set of players, the underlying tournament rela-

tion between players (if a pair of players were to meet, who would win?), and the favorite player of

the tournament organizers, the tournament fixing problem asks whether there exists a bracket for a

balanced single-elimination tournament that makes this player win the tournament. Such a bracket

does not always exist; this is obviously the case if the player is not capable of beating any other

player in the tournament. Nevertheless, following the manner in which we circumvent the potential

non-existence of envy-free allocations in Chapter 4, it could still be true that a manipulation by the

tournament organizers is possible “most of the time”.

To establish such a statement, we need to specify the distribution over the underlying tournament

5See Sections 2.2 and 7.2 for formal definitions.
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relations that we consider. A model that has been previously studied is the Condorcet Random model.

In this model, there exists a linear order of players from strongest to weakest. Most of the time

stronger players win against weaker players, but there is an upset probability p with which a weaker

player beats a stronger player. It is known from previous work that if p ∈ Ω
(√

log n/n
)

, where n

denotes the number of players, then with high probability, every player is a single-elimination winner

under some bracket.6 On the other hand, if p ∈ o (log n/n), it is unlikely that the weakest player

can win the tournament. The reason is that in this regime, the weakest player beats in expectation

less than log n players, but one needs to beat at least log n players to have any chance of winning

a single-elimination tournament, since the tournament consists of log n rounds. This leaves a gap

between o (log n/n) and Ω
(√

log n/n
)

. We close this gap by showing that Θ (log n/n) is in fact the

point at which the transition occurs. In particular, if p ∈ Ω (log n/n), where Ω(·) hides a sufficiently

large constant, then with high probability, every player can win a single-elimination tournament

under some bracket. Furthermore, we prove results on significantly larger classes of distributions

over the underlying tournament relations.

Finally, in Chapter 9 (Scheduling Asynchronous Round-Robin Tournaments), we con-

sider another very popular format for organizing sports competitions, namely a round-robin tour-

nament. In its simplest form, every pair of players play each other once. We study a variant of

round-robin tournaments that we call an asynchronous round-robin tournament. In contrast to

usual round-robin tournaments, in which games involving disjoint sets of players can take place in

parallel, all games in an asynchronous round-robin tournament are played at different times. There

are several reasons why one might want to organize such a tournament. For example, this format

allows spectators to follow all the games live, and it can be carried out with only one venue. We

propose schedules for asynchronous round-robin tournaments that perform well with respect to three

measures concerning the fairness and quality of the tournament. The three measures that we strive

to optimize are the guaranteed rest time (the minimum amount of time that the schedule allows

players to take a rest between games), the games-played difference index (the maximum difference

between the number of games played by any two players at any point in the schedule), and the

rest difference index (the maximum difference between the rest time of the two players before any

game). Interestingly, we show that the schedules that perform well depend on whether the number

of players is odd or even.

1.3 Prerequisites

Chapter 3 and small parts of some other chapters require basic knowledge of complexity theory and

asymptotic (“big O”) notation; we refer to the seminal book by Cormen et al. [52] for an introduction

6It is important to note the quantifiers here. We are not saying that with high probability, there exists a bracket
that makes every player win—this is not possible since for every bracket there can be only one winner. Rather, we
are saying that with high probability, for every player, there exists a bracket that makes the player win.
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to these topics. Apart from that, most of the dissertation should be accessible to anyone familiar

with mathematical proofs. In particular, we do not assume prior knowledge of economics on the

part of the reader—all revelant economic concepts are introduced in the dissertation—nor do we

assume familiarity with other topics in computer science or mathematics.

1.4 Bibliographic Notes

The material presented in this dissertation is based on joint works with Felix Brandt, Markus Brill,

Michael P. Kim, Pasin Manurangsi, Hans Georg Seedig, Erel Segal-Halevi, and Virginia Vassilevska

Williams. Specifically, Chapter 3 is based on my own work [148] and joint work with Pasin Manu-

rangsi [106, 107], Chapter 4 is based on joint work with Pasin Manurangsi [105], Chapter 5 is based

on my own work [153], Chapter 6 is based on joint work with Erel Segal-Halevi [135], Chapter 7

is based on joint work with Felix Brandt, Markus Brill, and Hans Georg Seedig [35], Chapter 8 is

based on joint work with Michael P. Kim and Virginia Vassilevska Williams [84], and Chapter 9 is

based on my own work [150].

1.4.1 Excluded Works

In addition to the material presented in this dissertation, I have worked on a number of other

topics during my PhD studies.7 While most of these works are closely related to the theme of this

dissertation, they are not part of the dissertation. These works include (but are not limited to):

• Fair division8

– Asymptotic existence of fair allocations [108, 149]

– Fair division under contiguity constraints [151]

– Query complexity of fair division [119]

– Truthfulness in the allocation of divisible resources [18]

• Algorithmic mechanism design

– Black-box transformations in algorithmic mechanism design [152]

– Pricing cloud resources [83]

– Pricing multi-unit markets [60]

7During my undergraduate and master’s studies, I have also worked on topics in combinatorics [53, 145] and parallel
algorithms [99, 146, 154].

8Unlike the works on fair division presented in Chapters 4–6 of this dissertation which consider group settings,
the following works consider traditional resource allocation settings in which resources are allocated among individual
agents.
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• Tournament solutions

– Choosing from large random tournaments [127]

• Voting theory

– Efficiency and strategyproofness in randomized voting [30]

• Coalition formation

– Stability in hedonic games [147]

• Noncooperative games

– Equilibrium concepts in two-player zero-sum games [36]



Chapter 2

Preliminaries

This chapter introduces some definitions, notation, and tools that we will use across multiple chap-

ters. Preliminaries specific to a single chapter are presented in the chapter itself.

2.1 Fair Division

In this section, we introduce the basic definitions and notation for the fair division setting, which

we will study in Chapters 4–6.

In the fair division setting for groups, there is a set A of agents. The agents are partitioned into

k groups A1, A2, . . . , Ak with n1, n2, . . . , nk agents, respectively. The jth agent of the ith group is

denoted by aij . There is a set G = {g1, g2, . . . , gm} of goods. A bundle is a subset of G. Each

agent aij has a nonnegative utility uij(G
′) for each bundle G′ ⊆ G; for a good g, we sometimes

write uij(g) instead of uij({g}). For any agent aij , denote by uij,max := maxl=1,2,...,m uij(gl) the

maximum utility of the agent for any single good. Denote by uij = (uij(g1), uij(g2), . . . , uij(gm))

the utility vector of agent aij for single goods.

A utility function u is said to be

• monotonic if u(G′′) ≤ u(G′) for any bundles G′′ ⊆ G′ ⊆ G;

• additive if u(G′) =
∑
g∈G′ u(g) for any bundle G′ ⊆ G;

• binary if it is additive and u(g) ∈ {0, 1} for any good g ∈ G.

Every binary utility function is additive, and every additive utility function is monotonic. We assume

that agents always have monotonic utility functions; this is a reasonable assumption since agents

can always ignore goods that give them negative value.

We will allocate a bundle Gi ⊆ G to each group Ai, where (G1, G2, . . . , Gk) forms a partition of

G, i.e.,
⋃k
i=1Gi = G and Gi ∩Gj = ∅ for any i 6= j. The goods are treated as public goods within

11
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each group, meaning that for every group i, the utility of each agent aij is uij(Gi). We refer to a

setting with agents partitioned into groups, goods, and utility functions as an instance.

We now define the fairness notions considered in this dissertation. We begin by defining what it

means for an allocation to be fair for an individual agent. We start with envy-freeness, a classical

and important fairness notion [69, 157].

Definition 2.1.1. Given an agent aij and an integer c ≥ 0, an allocation is called envy-free up to

c goods (EFc) for aij if for every i′ 6= i there is a set Hi′ ⊆ Gi′ with |Hi′ | ≤ c such that

uij(Gi) ≥ uij(Gi′\Hi′).

In other words, one can remove the envy of aij toward group i′ by removing at most c goods from

the group’s bundle.

An EF0 allocation is also known as envy-free.

Clearly, an envy-free allocation does not always exist even in the traditional setting with one

agent per group, for example if there are two agents who both have positive value for a single good.

However, an EF1 allocation, and therefore an EFc allocation for any c ≥ 1, always exists [101].

Next, we define the maximin share concepts [47, 120]. While much more recent than envy-

freeness, these concepts have received significant attention in the last few years [7, 16, 71, 73, 92, 120].

Definition 2.1.2. Given an agent aij and an integer c ≥ 2, the 1-out-of-c maximin share (MMS)

of aij is defined as the maximum, over all partitions of G into c sets, of the minimum of the agent’s

utilities for the sets in the partition:

MMScij(G) := max
G′1,G

′
2,...,G

′
c

min(uij(G
′
1), uij(G

′
2), . . . , uij(G

′
c)),

where (G′1, G
′
2, . . . , G

′
c) is a partition of G.

The 1-out-of-k MMS of an agent, where k is the number of groups, is simply called her MMS

and denoted by MMSij(G). Any partition of G for which the maximum is attained above in the case

c = k is called a maximin partition of the agent.

An allocation (G1, G2, . . . , Gk) is said to be

• MMS-fair for aij, if uij(Gi) ≥ MMSij(G);

• 1-out-of-c MMS-fair for aij, if uij(Gi) ≥ MMScij(G);

• q-MMS-fair for aij, for some q ∈ (0, 1), if uij(Gi) ≥ q ·MMSij(G);

• positive-MMS-fair for aij if MMSij(G) > 0 implies uij(Gi) > 0.
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Note that MMS-fairness implies q-MMS-fairness for any q ∈ (0, 1), which in turn implies positive-

MMS-fairness. On the other hand, MMS-fairness is implied by envy-freeness, and the MMS of an

agent aij is at most uij(G)/k.

We are now ready to define how we extend individual fairness notions to group fairness notions.

Definition 2.1.3. For any h ∈ [0, 1] and any given fairness notion for individual agents, an allo-

cation (G1, G2, . . . , Gk) is said to be h-democratic fair if it is fair for at least h · ni agents in every

group Ai. It is said to be unanimously fair or simply fair if it is 1-democratic fair.

The term “democratic fairness” already appeared in the work of Segal-Halevi and Nitzan [133];

however, they used it in the narrower sense that at least half of the agents in each group must be

satisfied. In our terminology this is called 1/2-democratic fairness. Hence, our democratic fairness

notion generalizes existing notions of group fairness.

2.2 Tournaments and Tournament Solutions

In this section, we introduce the basic definitions and notation on tournaments and tournament

solutions, which we will be concerned with in Chapters 7 and 8.

2.2.1 Tournaments

A tournament T is a pair (A,�), where A is a set of alternatives, sometimes called the feasible set,1

and � is a connex and asymmetric (and thus irreflexive) binary relation on A, usually referred to as

the dominance relation.2 Intuitively, a � b signifies that alternative a is preferable to alternative b.

The dominance relation can be extended to sets of alternatives by writing X � Y when a � b for

all a ∈ X and b ∈ Y .

For a tournament T = (A,�) and an alternative a ∈ A, we denote by

D(a) = Nin(a) = {x ∈ A | x � a}

the dominators of a and by

D(a) = Nout(a) = {x ∈ A | a � x}

the dominion of a. We let out(a) = |Nout(a)| and in(a) = |Nin(a)|. When varying the tournament,

we will refer to DT ′(a), DT ′(a), inT ′(a), and outT ′(a) for some tournament T ′ = (A′,�′). An

alternative a is said to cover another alternative b if D(b) ⊆ D(a). It is said to be a Condorcet

winner if it dominates all other alternatives, and a Condorcet loser if it is dominated by all other

alternatives. The order of a tournament T = (A,�) is denoted by |T | = |A|. A tournament is

1In Chapter 8, A is the set of players.
2This means that x 6� x for all x ∈ A, and exactly one of x � y and y � x holds for all x, y ∈ A such that x 6= y.
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regular if the dominator set and the dominion set of each alternative are of the same size, i.e., for all

a ∈ A we have |D(a)| = |D(a)|. It is easily seen that regular tournaments are always of odd order.

2.2.2 Tournament Solutions

A tournament solution is a function that maps a tournament to a nonempty subset of its alternatives.

We assume that tournament solutions are invariant under tournament isomorphisms. A tournament

solution is trivial if it returns all alternatives of every tournament.

We now define some common tournament solutions.3

• The top cycle (TC ) is the (unique) smallest set of alternatives such that all alternatives in the

set dominate all alternatives not in the set;

• The uncovered set (UC ), also known as the set of kings, contains all alternatives that are not

covered by another alternative;

• The Banks set (BA) contains all alternatives that are Condorcet winners of inclusion-maximal

transitive subtournaments.

For two tournament solutions S and S′, we write S′ ⊆ S, and say that S′ is a refinement of S

and S a coarsening of S′, if S′(T ) ⊆ S(T ) for all tournaments T . The following inclusions are

well-known:

BA ⊆ UC ⊆ TC .

To simplify notation, we will often identify a (sub)tournament by its set of alternatives when

the dominance relation is clear from the context. For example, for a tournament solution S and a

subset of alternatives X ⊆ A in a tournament T = (A,�), we write S(X) for S(T |X), where T |X is

the tournament induced by restricting T to the set of alternatives X.

We consider the following desirable properties of tournament solutions, all of which are standard

in the literature.

First, monotonicity requires a chosen alternative to still be chosen when its dominion is enlarged

and everything else is unchanged.

Definition 2.2.1. A tournament solution is monotonic if for all T = (A,�), T ′ = (A,�′), a ∈ A
such that �A\{a} = �′A\{a} and for all b ∈ A \ {a}, a �′ b whenever a � b,

a ∈ S(T ) implies a ∈ S(T ′).

Regularity requires that all alternatives be chosen from regular tournaments.

Definition 2.2.2. A tournament solution is regular if S(T ) = A for all regular tournaments T =

(A,�).

3See, e.g., [34, 80, 98, 115] for more thorough treatments of tournament solutions.
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Even though regularity is often considered in the context of tournament solutions, it does not

possess the normative appeal of other conditions.

Finally, we consider a structural invariance property that is based on components of similar

alternatives and, loosely speaking, requires that a tournament solution choose the “best” alternatives

from the “best” components. A component is a nonempty subset of alternatives B ⊆ A that bear

the same relationship to any alternative not in the set, i.e., for all a ∈ A\B, either B � {a} or

{a} � B. A decomposition of T is a partition of A into components.

For a given tournament T̃ , a new tournament T can be constructed by replacing each alternative

with a component. Let B1, . . . , Bk be pairwise disjoint sets of alternatives and consider tourna-

ments T1 = (B1,�1), T2 = (B2,�2), . . . , Tk = (Bk,�k), and T̃ = ({1, 2, . . . , k}, �̃). The product

of T1, T2, . . . , Tk with respect to T̃ , denoted by
∏

(T̃ , T1, T2, . . . , Tk), is the tournament T = (A,�)

such that A =
⋃k
i=1Bi and for all b1 ∈ Bi, b2 ∈ Bj ,

b1 � b2 if and only if i = j and b1 �i b2, or i 6= j and i �̃ j.

Here, T̃ is called the summary of T with respect to the above decomposition.

Definition 2.2.3. A tournament solution is said to be composition-consistent if for all tournaments

T, T1, T2, . . . , Tk and T̃ such that T =
∏

(T̃ , T1, T2, . . . , Tk),

S(T ) =
⋃

i∈S(T̃ )

S(Ti).

All three tournament solutions introduced above satisfy monotonicity. TC and UC are regular,

while UC and BA are composition-consistent.

2.3 Probabilistic Bounds

In this section, we present a number of probabilistic bounds that will be useful for our analyses. Our

first bound, commonly known as the Chernoff bound, is a fundamental result that gives an upper

bound on the probability that a sum of independent random variables is far away from its expected

value [49, 77].

Lemma 2.3.1 (Chernoff bound). Let X1, X2, . . . , Xr be independent random variables that take on

values in the interval [0, 1], and let X := X1 + · · ·+Xr. We have

Pr[X ≥ (1 + δ)E[X]] ≤ exp

(
−δ2 E[X]

3

)
,
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and,

Pr[X ≤ (1− δ)E[X]] ≤ exp

(
−δ2 E[X]

2

)
for every δ ≥ 0.

The second result, Lévy’s inequality, yields a bound on the maximum of partial sums of inde-

pendent random variables [100].

Lemma 2.3.2 (Lévy’s inequality). Let X1, X2, . . . , Xr be independent random variables, each sym-

metrically distributed around its median, and let Yi := X1 + X2 + · · · + Xi for i = 1, 2, . . . , r. For

any real number x, we have

Pr

[
max

1≤i≤r
|Yi| ≥ x

]
≤ 2 Pr[|Yr| ≥ x].

Our third result, the Berry-Esseen theorem, states that a sum of a sufficiently large number of

independent random variables behaves similarly to a normal distribution [19, 59]. On the surface,

this sounds like the central limit theorem. However, the Berry-Esseen theorem relies on a slightly

stronger assumption and delivers a more concrete bound.

Lemma 2.3.3 (Berry-Esseen theorem). Let X1, X2, . . . , Xr be r independent and identically dis-

tributed random variables, each of which has mean µ, variance σ2, and third moment4 ρ. Let

S := X1 +X2 + · · ·+Xr. There exists an absolute constant CBE such that∣∣∣∣Pr[S ≤ x]− Pr
y∼N (µr,σ2r)

[y ≤ x]

∣∣∣∣ ≤ ρCBE

σ3
√
r

for every x ∈ R, where N (µr, σ2r) is the normal distribution with mean µr and variance σ2r, i.e.,

its probability density function is

f(x) =
1

σ
√

2πr
e
−(x−µr)2

2σ2r .

4The third moment of a random variable X is defined as E[|X − E[X]|3].
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Chapter 3

Computing a Small Agreeable Set

of Indivisible Items

3.1 Introduction

A typical resource allocation problem involves dividing a set of resources among interested agents.

We are often concerned with the efficiency of the allocation, e.g., achieving high social welfare or

ensuring that no other allocation would make every agent better off than the current allocation.

Another important issue, which we will deal with at length in Chapters 4–6, is the fairness of the

allocation: we might want the resulting allocation to be envy-free or proportional. A common feature

of such problems is that one agent’s gain is another agent’s loss: The setting inherently puts the

agents in conflict with one another, and our task is to try to resolve this conflict as best we can

according to our objectives.

In this chapter, we consider a variant of the resource allocation problem where instead of the

agents being pitted against one another, they belong to one and the same group. We will collectively

allocate a subset of items to this group; our goal is to make this subset “agreeable” to all agents.

For instance, the agents could be going together on a trip and agreeing on the set of items to put

in a shared luggage, or they could be choosing a subset of items as prizes from a team competition

that they won together. Agreeability can be thought of as a minimal desirability condition: While

an agent may be able to find other subsets of items that she personally prefers, the current subset

is still acceptable for her, and she can agree with its allocation to the group. In other words, if the

agreeability condition is not met for some agent, then the agent will be unsatisfied and tempted to

leave the group. Without further constraints, the problem described so far would be trivial, since

we could simply allocate the entire set of items to the agents. We therefore impose a constraint that

the allocated subset should be as small as possible. This constraint on size is reasonable in a variety

18
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of settings, including in the two given examples. Indeed, in the first example a luggage has limited

space, and in the second example the organizers may want some items to be left as prizes for the

losing teams.

We define the notion of agreeability based on the fairness notion of envy-freeness. A subset of

items is said to be agreeable to an agent if the agent likes it at least as much as the complement set.

Agreeability, or minor variants thereof, has been considered in the context of fair division, where

each group consists of a single agent [13, 25, 27]. For example, Brams et al. [27] calls the property

“worth at least 50 percent”. In the example of agents going together on a trip, a subset of items

that they take is agreeable if they like it no less than the complement subset of items left at home.

Put differently, based on the set of items chosen, every agent would rather go on the trip than stay

at home. Similarly, for agents taking items as prizes from a team competition, if the competition is

between two teams and a subset of items is not agreeable to some agent in the winning team, we

will have an undesirable situation where the agent envies the losing team that takes the remaining

items.

This chapter initiates the study of agreeability in resource allocation. First, in Section 3.3, we

establish upper bounds on the size of the smallest agreeable set, both when the algorithm has access

to the agents’ full preferences and when the algorithm only has access to the agents’ preferences on

single items. In addition, we present algorithms that compute agreeable sets whose size matches the

worst-case bounds under both assumptions.

In Section 3.3.1, we derive a tight upper bound on the number of items that may need to be

included in an agreeable set, for any number of agents and items. Remarkably, even though agents

may have vastly differing and perhaps conflicting preferences, the number of extra items that we

might need to choose in order to accommodate all of them is surprisingly small, i.e., half an item per

additional agent (Theorem 3.3.1). Our result holds under a very weak assumption that preferences

are monotonic, meaning that an agent cannot be worse off whenever an item is added to her set.

Interestingly, to establish this result we make use of Kneser’s conjecture, a combinatorial result

whose proof by Lovász [103] gave rise to the field of topological combinatorics.

In Section 3.3.2, we turn our attention to the question of whether we can efficiently compute

an agreeable set whose size matches the worst-case bound given in Section 3.3.1. We answer the

question in the affirmative for the cases of two and three agents. To this end, we make the assump-

tion that preferences are responsive, meaning that an agent cannot be worse off when an item is

added to her set or replaced by another item that she weakly prefers to the original item. While

responsiveness is stronger than monotonicity, it is still a generalization of additivity, a very common

assumption on preferences in resource allocation problems. We present polynomial-time algorithms

that compute an agreeable subset whose size matches the upper bound when there are two or three

agents (Theorems 3.3.3 and 3.3.5).
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In Section 3.3.3, we assume that the algorithm only has access to the agents’ ordinal prefer-

ences on single items rather than subsets of items. Models of this type offer the advantage that

the associated algorithms are often simple to implement and the agents do not need to give away

or even determine their entire preferences; such models have therefore received widespread atten-

tion [13, 25, 89]. With only the ordinal preferences on single items at its disposal, however, in most

cases the algorithm cannot tell whether a certain subset is agreeable to an agent or not. Nevertheless,

by assuming that preferences are responsive, we can extend preferences on single items to partial

preferences on subsets. This allows us to deduce that certain subsets are always agreeable as long as

the full responsive preferences are consistent with the rankings over single items; we call such subsets

necessarily agreeable. Denoting by m the number of items, we show using results from discrepancy

theory that for any constant number of agents, there exists a necessarily agreeable subset of size

m/2 + O(logm), and such a subset can be found in polynomial time (Theorem 3.3.6). Further-

more, we establish the tightness of this bound by showing that even with three agents, there exist

preferences for which every necessarily agreeable subset has size m/2 + Ω(logm) (Theorem 3.3.9).

Next, in Section 3.4, we investigate the problem of computing an agreeable subset of approx-

imately optimal size for any given instance, as opposed to one whose size matches the worst-case

bound over all instances with the same number of agents and items. We tackle the problem using

two models for representing preferences that are well-studied in the literature, and exhibit compu-

tationally efficient algorithms for finding an agreeable set of approximately optimal size in each of

them. Moreover, in both of the models we show that our approximation ratios are asymptotically

tight.

In Section 3.4.1, we consider general preferences using the value oracle model, where the pref-

erences of the agents are represented by utility functions and the algorithm is allowed to query the

utility of any agent for any subset of items. We exhibit an efficient approximation algorithm with

approximation ratio O(m/ logm) in this model (Theorem 3.4.1). While this may not seem impres-

sive, especially in light of the observation that the trivial algorithm which always outputs the entire

set of items already achieves approximation ratio O(m), we show that our approximation ratio is

in fact the best we can hope for. In other words, there does not exist a polynomial-time algorithm

with approximation ratio o(m/ logm), even when there is only a single agent (Theorem 3.4.2).

In Section 3.4.2, we assume that the agents’ preferences are represented by additive utility func-

tions. Additivity provides a reasonable tradeoff between simplicity and expressiveness; it is com-

monly assumed in the literature, especially in recent work [7, 26, 48, 105, 153]. We show that under

additive valuations, it is NP-hard to decide whether there exists an agreeable set containing exactly

half of the items, even where there are only two agents (Theorem 3.4.3). On the other hand, using

results on covering integer programs, we demonstrate the existence of an O(log n)-approximation

algorithm for computing an agreeable set of minimum size (Theorem 3.4.8). Moreover, we show

that this approximation factor is tight: For any constant δ > 0, it is NP-hard to approximate the
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problem to within a factor of (1− δ) lnn (Theorem 3.4.7).

3.2 Preliminaries

We consider n agents, numbered 1, 2, . . . , n, who will be collectively allocated a subset of the set

S = {x1, x2, . . . , xm} of m indivisible items. Denote by S the set of all subsets of S. Each agent i

is endowed with a preference relation �i, a reflexive, complete, and transitive ordering over S. Let

�i denote the strict part and ∼i the indifference part of the relation �i. For items x and y, we will

sometimes abuse notation and write x � y to mean {x} � {y}. An agent i is said to strongly prefer

a set T1 to T2 if T1 �i T2, and weakly prefer T1 to T2 if T1 �i T2.

We assume in this chapter that preferences are monotonic, i.e., an agent cannot be worse off when

an item is added to her set. Monotonicity is a natural assumption in a wide range of situations. In

particular, it implies free disposal of items—every item is considered to be of nonnegative value to

all agents.

Definition 3.2.1. A preference � on S is monotonic if T ∪ {x} � T for all T ⊆ S.

Note that if x ∈ T , then T ∪{x} � T always holds, so we only need to check the condition when

x ∈ S\T .

We are now ready to define the central notion of this chapter.

Definition 3.2.2. A subset T ⊆ S is said to be agreeable to agent i if T �i S\T .

When the set of agents considered is clear from the context, we will sometimes refer to a set that

is agreeable to all agents simply as an agreeable set. Since preferences are monotonic, the whole set S

is agreeable to every agent, so an agreeable set always exists for any number of agents.1 Agreeability

to an agent also implies that the agent does not strictly prefer any subset of the complement to the

current set. That is, we have T �i U for any U ⊆ S\T .

Another property of preferences that we will consider is responsiveness, which says that an agent

cannot be worse off whenever an item is added to her set or replaced by another item that she weakly

prefers to the original item. While stronger than monotonicity, responsiveness is still a reasonable

assumption in many settings.2

Definition 3.2.3. A preference � on S is responsive if it satisfies the following two conditions:

• � is monotonic;

• (T\{y}) ∪ {x} � T for all T ⊆ S and x, y ∈ S such that x � y, x 6∈ T and y ∈ T .

1If preferences are not monotonic, an agreeable set might not exist, e.g., if there are two agents with strict
preferences, and one agent’s preference is exactly the opposite of the other agent’s preference.

2For a comprehensive treatment of properties concerning the ranking of sets of objects, we refer to a survey by
Barberà et al. [15].
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If we have access to the complete preference of an agent, we can check whether a subset is

agreeable to the agent simply by comparing it to its complement. When we only have access to

the agent’s preference on single items, however, most of the time we cannot tell whether a given

subset is agreeable or not. Nevertheless, if we assume that the agent’s preference is responsive, we

can sometimes deduce that a certain subset is agreeable only by looking at the agent’s preference

on single items. The following definition captures this intuition. In general, we use � to denote a

preference on S and �sing to denote a preference on the single items in S.

Definition 3.2.4. Fix a preference �sing on the single items in S. A subset T ⊆ S is said to

be necessarily agreeable with respect to �sing if T � S\T for any responsive preference � on S
consistent with �sing.

For the sake of brevity, we say that a subset of items is necessarily agreeable to an agent if it is

necessarily agreeable with respect to the preference on single items of the agent.

We now make a connection to the model where every agent has a cardinal utility for each

subset of items. A utility function u is a function that maps any subset of items to a nonnegative

real number. Since each agent’s preference is reflexive, complete, and transitive, there is a utility

function ui : S → R≥0 for agent i such that for any T1, T2 ⊆ S, we have T1 �i T2 if and only

if ui(T1) ≥ ui(T2). Moreover, since we consider monotonic preferences, we have ui(T1) ≤ ui(T2)

for any T1 ⊆ T2. We assume that ui(∅) = 0 for all i. A utility function u is said to be additive if

u(T1∪T2) = u(T1)+u(T2) for any disjoint subsets T1, T2, and subadditive if u(T1∪T2) ≤ u(T1)+u(T2)

for any T1, T2. Any monotonic additive function is also subadditive. Subadditive utility functions

have been extensively studied in the literature [20, 62].

When the preferences of the agents are given by subadditive utility functions, a subset that an

agent regards as agreeable also gives the agent a utility of at least half of the agent’s utility for the

whole set S. Indeed, for any agreeable subset T we have

f(S) = f(T ∪ (S\T )) ≤ f(T ) + f(S\T ) ≤ 2f(T ),

which implies that f(T ) ≥ f(S)/2. Hence an agreeable subset also gives a 2-approximation of the

welfare to an agent when the agent’s utility function is subadditive.

We end this section by giving a characterization of necessarily agreeable subsets, which will be

used multiple times in the chapter. Similar statements have been shown by Aziz et al. [13] and

Brams et al. [27], although our treatment differs slightly in dealing with ties.

Proposition 3.2.5. Fix a preference �sing on the single items in S with

x1 �sing x2 �sing · · · �sing xm.

Let T ⊆ S, and define Ik = {x1, x2, . . . , xk} for all k = 1, 2, . . . ,m.



CHAPTER 3. COMPUTING A SMALL AGREEABLE SET OF INDIVISIBLE ITEMS 23

If |Ik ∩ T | ≥ k/2 for all k = 1, 2, . . . ,m, then T is necessarily agreeable with respect to �sing.

The converse also holds if the preference �sing is strict.

Proof. Assume first that |Ik ∩ T | ≥ k/2 for all k = 1, 2, . . . ,m. Since |Im ∩ T | ≥ m/2, we have that

|T | ≥ |S\T |. Let T ′ ⊆ T be the subset consisting of the |S\T | items of T with the smallest indices.

Define a bijective function f : T ′ → S\T as follows: Given the item xk ∈ T with the smallest

index for which f(xk) is not yet defined, we define f(xk) to be the item in S\T with the smallest

index that has not occurred in the range of f so far. Since |Ik ∩T | ≥ k/2 for all k = 1, 2, . . . ,m, the

function f maps each item xk to another item xl with l > k. The definition of responsiveness implies

that for any responsive preference � on S consistent with �sing, it holds that T ′ � S\T . Since any

responsive preference is also monotonic, we have T � S\T , which implies that T is necessarily

agreeable with respect to �sing.
For the converse, assume that the preference �sing is strict, and that |Il ∩ T | < l/2 for some

l = 1, 2, . . . ,m. Let ε > 0 be a small constant, and suppose that the preference � is given by an

additive utility function u such that:

• u(xi) = 1 + (l − i)ε for 1 ≤ i ≤ l;

• u(xi) = (m− i)ε for l < i ≤ m.

Since any preference that can be represented by an additive utility function is responsive, � is

responsive. Moreover, we have u(S\T ) > l/2, whereas u(T ) < l/2 when ε is small enough. It follows

that � is a responsive preference on S consistent with �sing such that S\T � T . Hence T is not

necessarily agreeable with respect to �sing.

Finally, any logarithm written without a base in this chapter is assumed to have base 2.

3.3 Worst-Case Bounds

In this section, we establish upper bounds on the size of the smallest agreeable set, both when the

algorithm has access to the agents’ full preferences and when the algorithm only has access to the

agents’ preferences on single items. In addition, we present algorithms that compute agreeable sets

whose size matches the worst-case bounds under both assumptions.

3.3.1 General Worst-Case Bound

We commence our study of agreeable sets by deriving a tight worst-case bound on the number of

items that may need to be included in such a set, for any number of items and any number of agents

with arbitrary preferences on the items. Even with a single agent, there already exists a preference

for which we need to include at least half of the items, e.g., a preference represented by an additive

utility function that gives the same positive utility to every item. In light of this, it may seem that
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there is little hope of obtaining a small agreeable set when there are several agents, possibly with

wildly varying preferences. Nevertheless, we show that the number of extra items that we need

to include to accommodate the additional agents is surprisingly small even in the worst case—this

number is only half an item per additional agent.

Theorem 3.3.1. For any number of agents and items, there exists a subset T ⊆ S such that

|T | ≤ min

(⌊
m+ n

2

⌋
,m

)
and T is agreeable to all agents. Moreover, there exist preferences for which this bound is tight.

Theorem 3.3.1 can be seen as a discrete version of consensus halving, where the goal is to partition

a divisible item such as cake or land into two parts that all agents think are worth exactly the same.

Interestingly, a consensus halving partition can be found for any number of agents [3, 138]. It follows

that we can find a part of the item that is at most half of the item but that all agents think is worth

at least half of the item (in particular, we choose the smaller of the two parts in the consensus

halving partition). When items are indivisible, however, it may no longer be possible to choose a set

containing at most half of the items such that all agents believe this set is worth at least as much as

its complement. Indeed, if there is only one item and all agents value this item positively, the item

needs to be included in the set. Theorem 3.3.1 gives us a precise bound on how many additional

items need to be included in the worst case.

In the case of two agents, we give a direct proof of Theorem 3.3.1 in Appendix A.1. For the

general case, however, our proof of the theorem will rely on the following combinatorial result, which

is best known as Kneser’s conjecture.

Lemma 3.3.2 (Kneser’s conjecture). Let G be the undirected graph with all k-element subsets of

the set {1, 2, . . . , n} as vertices such that there exists an edge between two vertices if and only if the

corresponding sets are disjoint. The chromatic number3 of G is given by

χ(G) =

n− 2k + 2 if n ≥ 2k;

1 otherwise.

The statement of the lemma is due to Kneser [86], who proposed it as a conjecture in the

problem column of a German mathematics magazine in 1955. In spite of the simple statement, it

was not until 1978 that the conjecture was first resolved by Lovász [103] using topological methods.

The proof was later simplified by Bárány [14] and Greene [74], before Matoušek [110] gave the first

purely combinatorial proof in 2004. Lovász’s proof of the conjecture, which makes use of the Borsuk-

Ulam theorem, marked the first time that methods from algebraic topology were used to solve a

3The chromatic number of a graph is defined as the smallest number of colors needed to color the vertices of the
graph so that no two adjacent vertices share the same color.
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combinatorial problem, and gave rise to the field of topological combinatorics.

With Lemma 3.3.2 in hand, we are ready to establish our theorem.

{1, 2}

{3, 5}

{3, 4}{4, 5}

{2, 5}{1, 3}

{1, 5}{2, 3}

{1, 4} {2, 4}

Figure 3.1: The graph G in the proof of Theorem 3.3.1 when n = 2 and m = 5, also known as the
Petersen graph. A vertex with a label {i, j} corresponds to the set {xi, xj}.

Proof of Theorem 3.3.1. Let k =
⌊
m+n

2

⌋
. If k ≥ m, the set S of all items has size m = min(k,m)

and is agreeable to all agents since preferences are monotonic. Assume from now on that k < m,

and consider the undirected graph G with all (m−k)-element subsets of {x1, x2, . . . , xm} as vertices

and with edges connecting vertices whose corresponding sets are disjoint. For example, if n = 2 and

m = 5 (so k = 3 and m− k = 2), the graph G corresponds to the well-known Petersen graph and is

shown in Figure 3.1.

If all agents weakly prefer S\T to T for some (m − k)-element subset T ⊆ S, then S\T is our

desired agreeable subset of size k. Suppose for contradiction that for any (m − k)-element subset

T ⊆ S, there exists an agent who strictly prefers T to S\T . We color the vertices of G with n

colors in the following way: For each vertex v of G corresponding to a set T , color it with the color

corresponding to an agent who strictly prefers T to S\T . If there is more than one such agent,

choose one arbitrarily.

Since k =
⌊
m+n

2

⌋
≥ m

2 , we have m ≥ 2(m− k). By Lemma 3.3.2, the chromatic number of G is

m− 2(m− k) + 2 = 2k −m+ 2 ≥ 2

(
m+ n− 1

2

)
−m+ 2 = n+ 1.

Since we colored G with n colors, there exist two adjacent vertices sharing the same color. Let T1

and T2 be the sets corresponding to these vertices. This means that T1 �i S\T1 and T2 �i S\T2 for

some agent i. Since T1 and T2 are disjoint, we have T1 ⊆ S\T2 and T2 ⊆ S\T1. Monotonicity now
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implies that

S\T1 �i T2 �i S\T2 �i T1 �i S\T1,

a contradiction. This means that we can always find a subset of size k that is agreeable to all agents.

Finally, we show that there exist monotonic preferences for which the bound min (k,m) is tight.

In fact, we can even choose preferences that are represented by additive utility functions. We consider

two cases.

• n ≥ m. Then min(k,m) = m. For i = 1, 2, . . . , n, let the preference of agent i be given by

an additive utility function u such that u(xmin(i,m)) = 1 and u(xj) = 0 for all j 6= min(i,m).

Then any subset that is agreeable to agent i must contain item xmin(i,m). Hence a subset that

is agreeable to all agents must contain all m items.

• n < m. Then min(k,m) = k. For i = 1, 2, . . . , n−1, let the preference of agent i be given by an

additive utility function u such that u(xi) = 1 and u(xj) = 0 for all j 6= i. Let the preference of

agent n be given by an additive utility function u such that u(xj) = 1 for j ∈ {n, n+1, . . . ,m}
and u(xj) = 0 otherwise.

For i = 1, 2, . . . , n− 1, any subset that is agreeable to agent i must contain item xi. Also, any

subset that is agreeable to agent n must contain at least half of the items xn, xn+1, . . . , xm.

Hence a subset that is agreeable to all agents must have size at least n − 1 +
⌈
m−n+1

2

⌉
=⌈

m+n−1
2

⌉
=
⌊
m+n

2

⌋
= k, as desired.

This completes the proof.

3.3.2 Matching the Worst-Case Bound

Theorem 3.3.1 gives us a tight worst-case bound on the size of the smallest agreeable set for any

number of agents and items. However, its proof does not yield a method for obtaining a set of

that size. Since the number of sets that we have to consider is exponential in the number of items,

brute-force search is infeasible even for moderate numbers of items. Our goal in this section is to

show that when there are two or three agents with responsive preferences, it is in fact possible to

compute an agreeable set whose size matches the worst-case bound in polynomial time. This implies

that we can compute such a set even when the number of items is large.

An important issue when we discuss algorithms is how we represent the agents’ preferences. Since

preferences on subsets, unlike preferences on single items, might not have a succinct representation,

it is not possible to design algorithms that run in time polynomial in the number of items if the

algorithm is required to read the entire preference. To circumvent this problem, we assume in this

section that preferences are responsive; this allows us to extend preferences on single items to partial

preferences on subsets. Our algorithm for two agents will only make use of the preferences on single
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items and compute a necessarily agreeable subset.4 On the other hand, our algorithm for three

agents will also query the agents’ preferences on subsets through a preference oracle in addition to

utilizing the preferences on single items.

We first handle the case of two agents.

Theorem 3.3.3. Assume that there are two agents with preferences �sing1 and �sing2 on the single

items in S. There exists a subset T ⊆ S such that |T | ≤
⌊
m+2

2

⌋
and T is necessarily agreeable with

respect to both �sing1 and �sing2 . Also, there exists a polynomial-time algorithm that computes such

a subset T .

Moreover, there exist preferences on the single items in S for which the bound
⌊
m+2

2

⌋
is tight.

Proof. Assume first that m = 2k + 1 is odd, and suppose without loss of generality that x1 �sing1

x2 �sing1 · · · �sing1 x2k+1. We choose our set T of
⌊
m+2

2

⌋
= k + 1 items as follows:

1. Choose x1.

2. Between each of the k pairs of items (x2, x3), (x4, x5), . . . , (x2k, x2k+1), choose the item that

is preferred according to �sing2 . If �sing2 is indifferent between any pair of items, choose an

arbitrary item from that pair.

For any j = 1, 2, . . . ,m, our set T contains at least j/2 of the j items x1, x2, . . . , xj ; by Proposi-

tion 3.2.5, T is necessarily agreeable with respect to �sing1 . Moreover, since we choose the item that

is preferred according to �sing2 from each of the sets {x2, x3}, {x4, x5}, . . . , {x2k, x2k+1} along with

x1, Proposition 3.2.5 implies that T is also necessarily agreeable with respect to �sing2 . Hence T is

necessarily agreeable with respect to both �sing1 and �sing2 .

Assume now that m = 2k is even. Let S′ = S\{x1}. We apply the algorithm from the case of

m odd to choose a set T ⊆ S′ of size k that is necessarily agreeable with respect to both �sing1 and

�sing2 when the universe considered is S′. It follows that T ∪ {x1} is a subset of size
⌊
m+2

2

⌋
= k+ 1

that is necessarily agreeable with respect to both �sing1 and �sing2 when the universe considered is

S.

Next, we show that there exist preferences on single items for which the bound
⌊
m+2

2

⌋
is tight.

If m = 2k + 1 is odd and the preference �sing1 is strict, then by Proposition 3.2.5, any subset that

is necessarily agreeable with respect to �sing1 alone must already contain at least
⌊
m+2

2

⌋
= k + 1

items.

Finally, suppose that m = 2k is even, and let �sing1 and �sing2 be such that x1 �sing1 x2 �sing1

· · · �sing1 x2k and x2k �sing2 x2k−1 �sing2 · · · �sing2 x1. By Proposition 3.2.5, any subset T ⊆ S

that is necessarily agreeable with respect to �sing1 alone must contain at least k items, one of which

is x1. If T contains exactly k items, then it contains exactly k − 1 items among x2, x3, . . . , x2k.

4If we do not assume responsiveness, there still exists a polynomial-time algorithm for two agents that discovers
the agents’ preferences on subsets through a preference oracle; this algorithm is described in Appendix A.1.
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Proposition 3.2.5 implies that such a set T is not necessarily agreeable with respect to �sing2 . Hence

any subset T ⊆ S that is necessarily agreeable with respect to both �sing1 and �sing2 must contain

at least
⌊
m+2

2

⌋
= k + 1 items, as desired.

At a high level, the algorithm in Theorem 3.3.3 bears a resemblance to the “Trump rule”, which

was proposed by Pruhs and Woeginger [121] for fair division of indivisible items between two agents.

Like our algorithm, the Trump rule takes as input the preferences on single items of the two agents.

Using our terminology, the rule is guaranteed to produce an allocation with the property that each

agent views her bundle as necessarily agreeable, whenever such an allocation exists. The difference

between the Trump rule and our algorithm is that the Trump rule produces a partition of the items

into two subsets with each agent taking one subset, whereas our algorithm produces a single subset

that both agents share.

Observe that in the case of two agents, the upper bound for the size of the smallest necessarily

agreeable set (Theorem 3.3.3) coincides with the bound for the size of the smallest agreeable set

(Theorem 3.3.1). This is somewhat surprising because the definition of a necessarily agreeable set

only involves preferences on single items, and yet the worst-case bound remains unchanged even if

we have access to the full preferences. The following example shows that the same statement ceases

to hold when there are three agents.

Example 3.3.4. Let m = 6, and assume that the preferences on single items of the three agents are

as follows:

1. x1 �sing1 x4 �sing1 x5 �sing1 x6 �sing1 x2 �sing1 x3;

2. x2 �sing2 x5 �sing2 x6 �sing2 x4 �sing2 x3 �sing2 x1;

3. x3 �sing3 x6 �sing3 x4 �sing3 x5 �sing3 x1 �sing3 x2.

In Example 3.3.4, any subset that is necessarily agreeable to all three agents must contain

x1, x2, x3, since each of them is ranked first by some agent. Moreover, choosing only one of x4, x5, x6

does not yield a necessarily agreeable set for the agent who ranks that item fourth. Hence a nec-

essarily agreeable set must contain at least five items. On the other hand, if we have access to

the agents’ full preferences, Theorem 3.3.1 implies that we can find a set of size
⌊

6+3
2

⌋
= 4 that is

agreeable to all agents.

Therefore, to compute an agreeable set whose size matches the worst-case bound when there are

three agents, it is not sufficient to consider only preferences on single items. Nevertheless, if the

algorithm has access to the agents’ full preferences, it is possible to find such a subset in polynomial

time. To access the preferences, the algorithm is allowed to make a polynomial number of queries to

a preference oracle. In each query, the algorithm can specify an agent and two subsets of items to

the preference oracle, and the oracle reveals the preference of that agent between the two subsets.
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Theorem 3.3.5. Assume that there are three agents with responsive preferences �1, �2, and �3 on

S. There exists a polynomial-time algorithm that computes a subset T ⊆ S such that |T | ≤
⌊
m+3

2

⌋
and T is agreeable to all three agents.

Proof. Assume first that m = 2k is even. Our goal is to find a subset of size
⌊
m+3

2

⌋
= k + 1 that

is agreeable to all three agents. Suppose without loss of generality that x2k−1 is the most preferred

item according to �1, x2k is the most preferred item other than x2k−1 according to �2, and among

the remaining 2k − 2 items, the preference �1 ranks them as x1 �1 x2 �1 · · · �1 x2k−2.

Let A = {x1, x2, . . . , x2k−2}, and consider the pairs (x1, x2), (x3, x4), . . . , (x2k−3, x2k−2). Let B

be a set of k − 1 items containing an item from each pair that is not preferred to the other item

in the pair according to �2. If �2 is indifferent between any pair of items, we choose arbitrarily.

Responsiveness implies that A\B �2 B.

As long as A\B �2 B, we remove an element from B that was also originally in B, and insert

the other item in its pair into B. We must eventually reach a point where B �2 A\B, at the latest

after k − 1 moves. We consider two cases.

• We have not performed any move. By definition of B, we have that B �2 A\B and A\B �2 B,

and therefore A\B ∼2 B. Since preferences are monotonic, it follows that (A\B)∪{x2k} �2 B

and B ∪ {x2k} �2 A\B.

• We have performed at least one move. Suppose without loss of generality that in our last

move, we inserted x2i−1 into and removed x2i from B. Let C = (A\(B ∪ {x2i})) ∪ {x2i−1}
and D = (B\{x2i−1}) ∪ {x2i}, i.e., C and D are the sets A\B and B before the last move,

respectively. We have that C �2 D and B �2 A\B, and it follows from monotonicity that

C ∪ {x2k} �2 D and B ∪ {x2k} �2 A\B. We claim that at least one of D ∪ {x2k} �2 C and

(A\B) ∪ {x2k} �2 B holds.

Assume for contradiction that C �2 D ∪ {x2k} and B �2 (A\B) ∪ {x2k}. Responsiveness

implies that

C �2 D ∪ {x2k} �2 B �2 (A\B) ∪ {x2k} �2 C,

a contradiction. Hence at least one of D ∪ {x2k} �2 C and (A\B) ∪ {x2k} �2 B holds, as

claimed.

In both cases, we can find in polynomial time a subset E ⊆ A of size k − 1 containing an

item from each of the pairs (x1, x2), (x3, x4), . . . , (x2k−3, x2k−2) such that E ∪ {x2k} �2 A\E and

(A\E) ∪ {x2k} �2 E.

We now choose our agreeable set of size k + 1 as follows:

1. Choose both x2k−1 and x2k.

2. Choose either E or A\E according to which set agent 3 prefers. (If agent 3 is indifferent

between the two sets, choose one of them arbitrarily.)
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We claim that our chosen set T is agreeable to all three agents. We prove the claim separately

for each of the agents.

• For any j = 1, 2, . . . ,m, the set T contains at least j/2 of the j most preferred items according

to �1. Since �1 is responsive, Proposition 3.2.5 implies that T is necessarily agreeable to agent

1.

• Since E ∪ {x2k} �2 A\E and A\E ∪ {x2k} �2 E, and T contains either E or A\E along with

both x2k−1 and x2k, T is agreeable to agent 2.

• Since we choose the set E or A\E that agent 3 prefers and we include both of the remaining

items x2k−1 and x2k, T is agreeable to agent 3.

Hence T is agreeable to all three agents, as claimed. This concludes the analysis for the case where

m is even.

Finally, assume that m = 2k+1 is odd. Our goal is to find a subset of size
⌊
m+3

2

⌋
= k+2 that is

agreeable to all three agents. Let S′ = S\{x1}. We apply the algorithm from the case of m even to

choose a set T ⊆ S′ of size k + 1 that is agreeable to all three agents when the universe considered

is S′. It follows that T ∪ {x1} is a subset of size k+ 2 that is agreeable to all three agents when the

universe considered is S.

3.3.3 Computing Small Necessarily Agreeable Sets

In this section, we consider a model in which the algorithm only has access to each agent’s ranking

over the items. We will therefore be interested in computing a small subset that is necessarily

agreeable to every agent. While the algorithm has significantly less information at its disposal than

before, as we will see, it is still possible to find small subsets that are necessarily agreeable to all

agents.

If the algorithm had access to the agents’ preferences over all subsets of items, Theorem 3.3.1

implies that it could always find a subset of size
⌊
m+n

2

⌋
that is agreeable to all agents. For two

agents, the algorithm in Theorem 3.3.3 only uses the agents’ rankings to compute a subset of this

size that is necessarily agreeable to both agents. As Example 3.3.4 shows, however, a necessarily

agreeable subset of size
⌊
m+n

2

⌋
might not exist even when there are three agents. Indeed, it is not

clear how much extra “penalty” we have to pay for the information restriction that we are imposing.

For example, it could be that with three agents, there already exist preferences on single items for

which any necessarily agreeable subset contains at least cm items for some constant c > 1/2. We

show in the next theorem that this is in fact not the case—there always exists a necessarily agreeable

subset of size m/2 +O(logm) as long as the number of agents is constant. Moreover, such a set can

be computed in polynomial time.
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Theorem 3.3.6. For any constant number of agents, there exists a subset of S of size m/2+O(logm)

that is necessarily agreeable to all agents. Moreover, such a subset can be computed in polynomial

time.

To prove this theorem, we will use the following result from discrepancy theory due to Bohus [22].

Lemma 3.3.7 ([22]). Let σ1, σ2, . . . , σn be permutations of the set M = {1, 2, . . . ,m}. There exists

a function f : M → {−1, 1} such that for any 1 ≤ p ≤ q ≤ m and any 1 ≤ j ≤ n,∣∣∣∣∣∣
q∑
i=p

f(σj(i))

∣∣∣∣∣∣ ≤ 8n logm.

Moreover, such a function can be computed in polynomial time.

Proof of Theorem 3.3.6. Suppose that agent j ranks the single items as xσj(1) �singj xσj(2) �singj

· · · �singj xσj(m). By Lemma 3.3.7, we can efficiently compute a function f : S → {−1, 1} such that∣∣∣∣∣
q∑
i=1

f(xσj(i))

∣∣∣∣∣ ≤ 8n logm

for any q = 1, 2, . . . ,m and any j = 1, 2, . . . , n.

We construct our agreeable subset as follows. We include in our subset all items xi such that

f(xi) = 1, as well as the d4n logme most preferred items of each agent that are not yet included.

(If some agent has fewer than d4n logme items that are not yet included, we simply include all of

that agent’s items.) For i = 1, 2, . . . ,m, let Xi be an indicator variable such that Xi = 1 if item xi

is included in the set and Xi = −1 if not. For any agent j and any i = 1, 2, . . . ,m, we have

Xσj(1) + · · ·+Xσj(i) ≥ min{i,−8n logm+ 2 · d4n logme} ≥ 0.

By Proposition 3.2.5, this implies that the chosen set is necessarily agreeable to all agents. Moreover,

our subset includes at most

m

2
+ (n+ 1) · d4n logme =

m

2
+O(logm)

items, as desired.

Next, we address the tightness of the bound in Theorem 3.3.6. Bohus’s result is known to be

asymptotically tight for constant n: Newman et al. [118] constructed, for every m that is a power

of three, an example of three permutations whose discrepancy is Ω(logm). While upper bounds on

the discrepancy of permutations can be easily turned into upper bounds on the size of necessarily

agreeable sets as seen above, lower bounds are somewhat more delicate. Nevertheless, Newman
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et al.’s examples satisfy stronger conditions than merely having a large discrepancy. One of these

conditions, which we state in the following lemma, will be sufficient for proving a lower bound on

the size of necessarily agreeable sets. The lemma is a restatement of Corollary 2 in the work of

Newman et al. [118].

Lemma 3.3.8 ([118]). Given any positive integer k, let m = 3k and M = {1, 2, . . . ,m}. There exist

three permutations σ1, σ2, σ3 of M such that for any function f : M → {−1, 1}, if ∆ :=
∑
i∈M f(i) ≥

1, then there exist 1 ≤ q ≤ m and 1 ≤ j ≤ 3 such that

q∑
i=1

f(σj(i)) ≤
−k + 2∆− 2

3
.

We now show that the bound in Theorem 3.3.6 is tight even when there are three agents. Recall

that if there are two agents, it is possible to compute a subset of size
⌊
m+2

2

⌋
that is necessarily

agreeable to both agents (Theorem 3.3.3).

Theorem 3.3.9. Suppose that m = 3k for some positive integer k. There exist preferences on

single items of three agents such that every necessarily agreeable subset of items have size at least

m/2 + Ω(logm).

Proof. Let σ1, σ2, σ3 be the permutations of S from Lemma 3.3.8, where we use S = {x1, x2, . . . , xm}
in place of M = {1, 2, . . . ,m}. For each j = 1, 2, 3, let the preference on single items of agent j be

xσj(1) �singj xσj(2) �singj · · · �singj xσj(m).

Consider any subset T ⊆ S of size at most m/2+k/4. We will show that T cannot be necessarily

agreeable to all three agents, which immediately implies the theorem since k = log3m. To see that

this is the case, let fT : S → {−1, 1} denote the indicator function of T , i.e., fT (xi) = 1 if xi ∈ T
and fT (xi) = −1 if xi /∈ T . Since T is of size at most m/2 + k/4, we have ∆T :=

∑m
i=1 fT (xi) =

|T | − |S \ T | ≤ k/2. If ∆T < 0, then T is not necessarily agreeable by Proposition 3.2.5, so we may

assume that ∆T ≥ 0. Since m is odd and ∆T is an integer, we also have ∆T ≥ 1. By Lemma 3.3.8,

there exists 1 ≤ q ≤ m and 1 ≤ j ≤ 3 such that

q∑
i=1

fT (σj(xi)) ≤
−k + 2∆T − 2

3
≤ −k + k − 2

3
< 0.

By Proposition 3.2.5, T is not necessarily agreeable to agent j, as desired.

Theorems 3.3.6 and 3.3.9 show that the bound m/2 + O(logm) for the size of the smallest

necessarily agreeable set is asymptotically tight. We next present a randomized algorithm that,

despite its simplicity, computes a necessarily agreeable subset of size m/2 + O(
√
m) in polynomial

time. The algorithm works by first choosing whether to include each item independently with 50%

probability, and then including the O(
√
m) most preferred items of each agent that were excluded

in the first step.
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For the analysis of the algorithm, we will require two probabilistic results: the Chernoff bound

and Lévy’s inequality. The statements of both results can be found in Section 2.3.

Theorem 3.3.10. Assume that the number of agents is constant. Let ε ∈ (0, 1), and let c > 0 be a

constant such that e−2c2/3 < ε/4n. Consider the following randomized polynomial-time algorithm:

1. For each item, either include it in our set or not with probability 1/2, independently of the

remaining items.

2. Include the dc
√
me most preferred items of each agent that were excluded in Step 1.

With probability at least 1−ε, the algorithm computes a subset of size m/2+O(
√
m) that is necessarily

agreeable to all agents.

Proof. Let X1, X2, . . . , Xm be independent random variables such that Xi = 1 if item xi is included

in our subset in the first step, and Xi = 0 if not. By the definition of the algorithm, each Xi is

either 0 or 1 with probability 1/2, independently of the other Xi’s.

For j = 1, 2, . . . ,m, suppose that agent j ranks the single items as xσj(1) �singj xσj(2) �singj

· · · �singj xσj(m). Let Y ji := Xσj(1) + · · · + Xσj(i) for i = 1, 2, . . . , n. For any agent j, we have

E[Y jm] = m/2. The Chernoff bound (Lemma 2.3.1) with δ = 2c/
√
m implies that

Pr
[
Y jm ≥

m

2
+ c
√
m
]
≤ e− 2c2

3 .

Similarly,

Pr
[
Y jm ≤

m

2
− c
√
m
]
≤ e−c

2

.

Combining the two inequalities, we have

Pr
[∣∣∣Y jm − m

2

∣∣∣ ≥ c√m] ≤ e− 2c2

3 + e−c
2

≤ 2e−
2c2

3 .

Using Lévy’s inequality (Lemma 2.3.2) with the random variables Xσj(i) − 1/2 for i = 1, 2, . . . , n, it

follows that

Pr

[
max

1≤i≤m

∣∣∣∣Y ji − i

2

∣∣∣∣ ≥ c√m] ≤ 4e−
2c2

3 .

Using the union bound over all agents j, we have

Pr

[
max

1≤i≤m

∣∣∣∣Y ji − i

2

∣∣∣∣ ≥ c√m for some j ∈ {1, 2, . . . ,m}
]
≤ 4ne−

2c2

3 < ε.

Hence, with probability at least 1− ε,∣∣∣∣Y ji − i

2

∣∣∣∣ < c
√
m
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for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m, or equivalently, Y ji − i/2 ∈ (−c
√
m, c
√
m) for all i, j. Now,

since in Step 2 we include the dc
√
me most preferred items of each agent that were excluded in

Step 1, if we update the random variables to reflect these changes, we have Y ji − i/2 ≥ 0 for all i, j.

By Proposition 3.2.5, the set that the algorithm returns is necessarily agreeable to all agents. Since

we include at most m/2 + c
√
m items in Step 1 and dc

√
me items for each agent in Step 2, the set

contains at most
m

2
+ (n+ 1) ·

⌈
c
√
m
⌉

=
m

2
+O(

√
m)

items, as desired.

3.4 Efficient Approximation

While our results in Sections 3.3 provide insights on small agreeable sets and how to compute them

efficiently, an important issue is still left unaddressed by these results. In many instances, the

minimum size of an agreeable set is much smaller than the worst-case bound over all instances with

that number of agents and items. Indeed, an extreme example is when there is a single item that

every agent likes more than all of the remaining items combined. In this case, it suffices to select

that item alone. This results in a much smaller set than the worst-case bound, which is at least half

of the items for any number of agents.

In this section, we investigate the problem of computing an agreeable subset of approximately

optimal size for any given instance, as opposed to one whose size matches the worst-case bound

over all instances with the same number of agents and items. We show that finding an optimal

agreeable set is computationally hard, and therefore focus on finding an approximate solution. We

do so using two well-known models for representing preferences, namely the value oracle model and

additive valuations. For each of these models, we present polynomial-time algorithms for computing

an agreeable set of approximately optimal size. Moreover, we show that the approximation ratios

obtained by our algorithms are asymptotically tight for both models.

3.4.1 General Preferences

We begin with a model in which agents can have arbitrary preferences on subsets of items. Recall

that our results so far do not yield any guarantee on the approximation ratio beyond the obvious

O(m) upper bound for arbitrary preferences over subsets of items. The goal of this section is to

explore the approximation ratios that we can achieve in this general setting.

Before we move on to our results, let us be more precise about the model that we work with.

First, we work with the agents’ utility functions u1, u2, . . . , un instead of directly with the preferences

themselves. Since the number of subsets of S is exponentially large, the utility functions take

exponential space to write down. For this reason, it is undesirable to include them as part of the
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input. Instead, we work with the value oracle model [63], in which the algorithm can query the

value of ui(T ) for any subset T ⊆ S and any i = 1, 2, . . . , n. We also note that we do not assume

responsiveness of the agents’ preferences in this section.

Our first result is a simple polynomial-time approximation algorithm with approximation ratio

O(m/ logm). Even though this approximation guarantee is only Ω(logm) better than the obvious

O(m) bound, we will see later that this is already the best we can hope for in polynomial time.

Theorem 3.4.1. There exists a polynomial-time O(m/ logm)-approximation algorithm for comput-

ing a minimum size agreeable set in the value oracle model.

Proof. We start by partitioning the set S of items into dlogme parts S1, . . . , Sdlogme, where each

part is of size at most dm/ logme. For each set A ⊆ {1, 2, . . . , dlogme}, we check whether the set⋃
i∈A Si is agreeable or not by comparing each agent’s value for the set to that for its complement.

We then output the smallest agreeable set that we find. Since the number of possible sets A is linear

in m, the running time of our algorithm is polynomial in m and n.

To prove the approximation guarantee of the algorithm, let S∗ be a smallest agreeable set.

Suppose that |S∗| = k. By monotonicity, the union of all sets Si containing elements of S∗ is also

agreeable, and it is one of the sets that we check. Moreover, this union has size at most k ·dm/ logme,
implying that our algorithm indeed has approximation ratio O(m/ logm).

Even though our algorithm is very simple, we show next that its approximation guarantee is in

fact the best one can hope for, even when there is a single agent.

Theorem 3.4.2. For every constant c > 0, there exists m0 such that for every m > m0, there is no

(possibly randomized and adaptive) algorithm that makes at most mc/8 queries to the value oracle

and always outputs an agreeable set with expected size at most m/(c logm) times the optimum, even

when there is only one agent.

In other words, the above theorem implies that there is no polynomial time algorithm with

approximation ratio o(m/ logm). We note here that our lower bound is information-theoretic and

is not based on any computational complexity assumptions. Moreover, it rules out any algorithm

that makes a polynomial number of queries, not only those that run in polynomial time.

Proof of Theorem 3.4.2. Let g : S → R≥0 be a function such that

g(T ) =

1 if |T | ≥ m/2;

0 otherwise.
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Moreover, for each subset T ∗ ⊆ S, let fT∗ : S → R≥0 denote the function

fT∗(T ) =

1 if |T | ≥ m/2 or T ∗ ⊆ T ;

0 otherwise.

That is, fT∗ is g together with a planted solution T ∗.

Consider any algorithm A that makes at most mc/8 queries. Assume for the moment that A is

deterministic. Let us examine a run of A when the agent’s utility function is g. Suppose that A’s

queries to g are on the sets T1, T2, . . . , Tbmc/8c ⊆ S.

Let T ∗ be a subset of S of size bc logm/4c chosen uniformly at random. Consider the queries

that A makes when the agent’s utility function is fT∗ ; suppose that the queries made are on the

sets T ′1, T
′
2, . . . , T

′
bmc/8c ⊆ S. For each j = 1, 2, . . . , bmc/8c, if Ti = T ′i and g(Ti) = fT∗(T

′
i ) for all

i = 1, 2, . . . , j − 1, then A goes through the same computation route for both g and fT∗ , and hence

Tj = T ′j . Moreover, when both runs share the same computational route so far and Tj = T ′j , we can

bound the probability that g(Tj) 6= fT∗(T
′
j) as follows. First, if |Tj | ≥ m/2, then g(Tj) is always

equal to fT∗(T
′
j). Otherwise, we have

Pr[g(Tj) 6= fT∗(T
′
j)] = Pr[g(Tj) 6= fT∗(Tj)] = Pr[T ∗ ⊆ Tj ].

If |Tj | < |T ∗|, this probability is 0. Else, since Tj is independent of T ∗, we can bound the probability

as

Pr[T ∗ ⊆ Tj ] =

( |Tj |
bc logm/4c

)(
m

bc logm/4c
)

=

(
|Tj |
m

)(
|Tj | − 1

m− 1

)
. . .

(
|Tj | − bc logm/4c+ 1

m− bc logm/4c+ 1

)
≤
(
|Tj |
m

)bc logm/4c

≤ 2−bc logm/4c

≤ 2m−c/4,

where the last inequality holds for large enough m.

By the union bound, the probability that the two sequences of queries are not identical is at

most (2m−c/4) ·mc/8 = 2m−c/8, which is less than 1/2 when m is sufficiently large. Furthermore,

observe that when the two sequences are identical, A must output an agreeable subset with respect

to the utility function g; any such set is of size at least m/2. Thus, the expected size of the output

of A when given the utility function fT∗ is more than m/2 · (1/2) = m/4. However, the optimal

agreeable set for fT∗ has size only bc logm/4c. As a result, the expected size of the output of A is
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more than m/(c logm) times the optimum, as desired.

Finally, note that ifA is randomized, we can use the above argument on each choice of randomness

and average over all the choices, which gives a similar conclusion.

We remark that the same result holds even if we require the utility function of the agent to be

subadditive or submodular.5 To obtain the proof for a subadditive utility function, for any T 6= ∅
such that g(T ) = 0, we set instead g(T ) = 1/2; we perform an analogous modification to fT∗ .

Subadditivity holds for g since

g(A ∪B) ≤ 1 = 1/2 + 1/2 ≤ g(A) + g(B)

for any A,B 6= ∅, and similarly for fT∗ . The rest of the proof then proceeds as before.

On the other hand, more work is required to adapt the proof to submodular functions. In

particular, we let k = bc logm/4c and define g as follows:

g(T ) =


1 if |T | ≥ m/2,

1− 1
2|T |−k(k+1)

if k ≤ |T | < m/2,

|T |
k+1 otherwise.

Likewise, for any T such that originally fT∗(T ) = 0, we modify the value of fT∗(T ) to be the same

as g(T ). One can check that g and fT∗ are submodular, and the proof again proceeds as before.

3.4.2 Additive Utilities

In this section, we assume that the agents’ preferences are represented by additive utility functions.

Each agent i has some nonnegative utility ui(xj) for item xj , and ui(T ) =
∑
x∈T ui(x) for any subset

of items T ⊆ S.

Clearly, the problem of deciding whether there exists an agreeable set of a certain size is in NP.

The following theorem shows that it is NP-complete, even when there are two agents. Note that if

there is only one agent, it is easy to find an optimal agreeable set by repeatedly choosing an item

that yields the highest utility to the agent among the remaining items until the set of chosen items

is agreeable.

Theorem 3.4.3. For two agents with additive utility functions, it is NP-hard to decide whether

there is an agreeable set of size exactly m/2.

Proof. We will reduce from the following problem called Balanced 2-Partition: Given a multiset

A of non-negative integers, decide whether there exists a subset B ⊆ A such that |B| = |A \ B| =

|A|/2 and
∑
a∈B a =

∑
a∈A\B a =

∑
a∈A a/2.

5A function f : S → R≥0 is said to be submodular if f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B) for any A ⊆ B ⊆ S
and x ∈ S\B. Any submodular function is also subadditive.
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Like the well-known 2-Partition problem where the cardinality constraint is not included, Bal-

anced 2-Partition is NP-hard. For completeness, we give a proof of NP-hardness of Balanced

2-Partition in Appendix A.2.

The reduction from Balanced 2-Partition proceeds as follows. Let a1, . . . , a|A| be the elements

of A. The set S contains |A| items x1, . . . , x|A|, each associated with an element of A. The utility

functions are then defined by u1(xi) = ai and u2(xi) = M − ai, where M =
∑
a∈A a. We show next

that this reduction is indeed a valid reduction.

(YES Case) Suppose that there exists B ⊆ A such that |B| = |A|/2 and
∑
a∈B a =

∑
a∈A a/2.

Let T be the set of all items corresponding to the elements of B. It is obvious that T has size

|A|/2 = m/2 and that T is agreeable.

(NO Case) We prove the contrapositive; suppose that there is an agreeable subset T ⊆ S of size

m/2. Let B ⊆ A be the set of elements corresponding to the items in T . Since T is agreeable,∑
x∈T ui(x) ≥

∑
x∈S\T ui(x) for i = 1, 2. When i = 1, this implies that

∑
a∈B a ≥

∑
a∈A a/2.

When i = 2, using the fact that |T | = m/2, we have
∑
a∈B a ≤

∑
a∈A a/2. It follows that

∑
a∈B a =∑

a∈A a/2. Since |B| = m/2 = |A|/2, this concludes the proof.

Theorem 3.4.3 shows that the problem is weakly NP-hard even when there are two agents.

Nevertheless, when the number of agents is constant, the following theorem shows that there exists

a pseudo-polynomial time dynamic programming algorithm for computing an optimal agreeable set.

In particular, the problem is not strongly NP-hard for any constant number of agents.

Theorem 3.4.4. For any constant number of agents with additive utility functions, there exists a

pseudo-polynomial time algorithm that computes an agreeable set of minimum size.

Proof. The algorithm uses dynamic programming. Assume that the utilities of agent i for the items

are nonnegative integers with sum σi. We construct a table Σ of size (m + 1)(σ1 + 1) . . . (σn + 1),

where for each 0 ≤ m′ ≤ m and each tuple (y1, . . . , yn) with 0 ≤ yi ≤ σi, the entry Σ(m′, y1, . . . , yn)

of the table corresponds to the minimum number of items from among the items x1, x2, . . . , xm′ that

we need to include so that agent i has utility exactly yi for all i (if this is achievable). Initially we

have Σ(0, 0, . . . , 0) = 0 and Σ(m′, y1, . . . , yn) =∞ otherwise. We then iterate through the values of

m′ in increasing order. For each m′ ≥ 1, we update the entries of the table as follows:

• If ui(xm′) ≤ yi for all i and

1 + Σ (m′ − 1, y1 − u1(xm′) . . . , yn − un(xm′)) < Σ(m′ − 1, y1, . . . , yn),

let Σ(m′, y1, . . . , yn) = 1 + Σ (m′ − 1, y1 − u1(xm′) . . . , yn − un(xm′)).

• Else, let Σ(m′, y1, . . . , yn) = Σ(m′ − 1, y1, . . . , yn).

Finally, we look up the entries Σ(m, y1, . . . , yn) such that yi ≥ σi/2 for all i and return the

minimum value over all such entries. The algorithm runs in time O(mσ1 . . . σn). Note that if we
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also want to return an agreeable set (rather than just the size), we can also keep track of the sets of

items along with the values in our table.

While there is a pseudo-polynomial time algorithm for the problem when the number of agents is

constant, we show next that if the number of agents is not constant, the problem becomes strongly

NP-hard. In other words, there is no pseudo-polynomial time algorithm for this variant unless

P=NP.

Theorem 3.4.5. When the number of agents is not constant, it is strongly NP-hard to decide

whether there is an agreeable set of size exactly (m+ 1)/2.

Proof. We reduce from 3SAT. Given a 3SAT formula φ with m′ clauses C1, C2, . . . , Cm′ on n′

variables y1, y2, . . . , yn′ , let there be n = m′ + n′ agents, where we abuse notation and call the

agents C1, C2, . . . , Cm′ , y1, y2, . . . , yn′ , and m = 2n′+ 1 items, where 2n′ items correspond to all the

literals y1,¬y1, y2,¬y2, . . . , yn′ ,¬yn′ and the remaining item is called a. We assume without loss of

generality that each clause of φ has at least two variables—it is obvious that every 3SAT formula

can be transformed into this form in polynomial time. The utility functions of the agents are defined

by

uCi(b) =

1 if b = a or the literal b is present in Ci;

0 otherwise;

and

uyi(b) =

1 if b = a, b = yi, or b = ¬yi;

0 otherwise.

We show next that this is a valid reduction. First, note that all of the integer parameters are

polynomial in the size of the input. Hence, we are left to show that YES and NO instances of 3SAT

map to YES and NO instances of our problem respectively.

(YES Case) Suppose that there exists an assignment that satisfies φ. For each yi, let bi be the

literal of yi that is true according to this assignment. Let T = {a, b1, b2, . . . , bn′}. Since each clause

Cj is satisfied by the assignment, we have
∑n′

i=1 uCj (bi) ≥ 1. It follows that
∑
x∈T uCj (x) ≥ 2, and

therefore T �Cj S \ T . Moreover, for each variable yi, we have
∑
x∈T uyi(x) = 2, which also implies

that T �yi S \ T . As a result, T is an agreeable set of size n′ + 1 = (m+ 1)/2 as desired.

(NO Case) We prove the contrapositive; suppose that there exists an agreeable set T ⊆ S of size

(m + 1)/2 = n′ + 1. We assume without loss of generality that a ∈ T ; indeed, since the utility of

any agent for a is at least as much as the utility of the agent for any other item, if a /∈ T we can

replace an arbitrary item in T by a and maintain the agreeability of T .
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Since T �yi S \ T , at least one literal corresponding to yi is included in T . Moreover, since the

size of T is n′ + 1 and a ∈ T , exactly one literal of each yi is in T ; let bi be this literal. Consider

the assignment to the variables such that all the bi’s are set to true. Since T �Cj S \ T for every

Cj and Cj contains at least two literals, at least one literal in Cj is set to true by this assignment.

Hence the assignment satisfies the formula φ.

Given that computing an agreeable set of minimum size is NP-hard, it is natural to attempt to

find an approximation algorithm for the problem. When the utilities are additive, this turns out

to be closely related to approximating the classical problem Set Cover. In Set Cover, we are

given a ground set U and a collection C of subsets of U . The goal is to select a minimum number of

subsets whose union is the entire set U .

Set Cover was one of the first problems shown to be NP-hard in Karp’s seminal paper [82].

Since then, its approximability has been intensively studied and is now well understood. A simple

greedy algorithm yields a (ln |U |+ 1)-approximation for the problem [81, 102]. On the other hand, a

long line of work in hardness of approximation [4, 61, 104, 116, 123] culminates in Dinur and Steurer’s

work [55], in which the NP-hardness of approximating Set Cover within a factor of (1− ε) ln |U |
was proved for every constant ε > 0.

The first connection we will make between Set Cover and approximating minimum size agree-

able set is on the negative side—we will show that any inapproximability result for Set Cover can

be translated to that for approximating minimum size agreeable set as well. To do so, we will first

state Dinur and Steurer’s result more precisely.

Lemma 3.4.6 ([55]). For every constant ε > 0, there is a polynomial time reduction from any

3SAT formula φ to a Set Cover instance (U, C) and a function f(U) which is polynomial in |U |
such that

• (Completeness) if φ is satisfiable, the optimum of (U, C) is at most f(U);

• (Soundness) if φ is unsatisfiable, the optimum of (U, C) is at least ((1− ε) ln |U |)f(U).

We are now ready to prove the hardness of approximating minimum size agreeable set.

Theorem 3.4.7. For any constant δ > 0, it is NP-hard to approximate minimum size agreeable set

to within a factor (1− δ) lnn of the optimum.

Proof. Let ε = δ/2. Given a 3SAT formula φ, we first use Dinur and Steurer’s reduction to produce

a Set Cover instance (U, C). Let there be |U | agents, each of whom is associated with a distinct

element of U ; it is convenient to think of the set of agents as simply U . As for the items, let there

be one item for each subset C ∈ C and additionally let there be one special item called t. In other

words, S = C ∪ {t}.
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The utility function of each agent a ∈ U is then defined by

ua(s) =


|{C ∈ C | a ∈ C}| − 1 if s = t;

1 if s ∈ C and a ∈ s;

0 otherwise.

We show next that this reduction indeed gives the desired inapproximability result.

(Completeness) If φ is satisfiable, then there are f(U) subsets from C that together cover U . We

can take T to contain all of these subsets and the special item t. Clearly, T has size f(U) + 1 and

is agreeable.

(Soundness) If φ is unsatisfiable, then any set cover of (S, C) contains at least ((1−ε) ln |U |)f(U)

subsets. Consider any agreeable set T . For each a ∈ U , from our definition of ua(t), the set T must

include at least one subset that contains a. In other words, T \ {t} is a set cover of (S, C). Hence,

|T | ≥ ((1− ε) ln |U |)f(U).

The two parts together imply that it is NP-hard to approximate minimum size agreeable set to

within a factor ((1−ε) ln |U |)f(U)
f(U)+1 of the optimum. This ratio is at least (1− δ) lnn when f(U) ≥ 2/δ,

which can be assumed without loss of generality (since otherwise we can solve the Set Cover

instance in time |U |O(f(U)) = |U |O(1), implying that P = NP).

Unlike the above inapproximability result, it is unclear how algorithms for Set Cover can be

used to approximate minimum size agreeable set. Fortunately, our problem is in fact a special case of

a generalization of Set Cover called Covering Integer Program (CIP), which can be written

as follows:

minimize cTx

subject to Ax ≥ 1,

0 ≤ x ≤ u,

x ∈ Zm,

where c, u ∈ Rm and A ∈ Rn×m are given as input.

The problem of finding a minimum size agreeable set can be formulated in this form by setting

c, u and A as follows:

cs = 1 ∀s ∈ S

us = 1 ∀s ∈ S

Ai,s =
2ui(s)∑
s′∈S ui(s

′)
∀i = 1, 2, . . . , n, ∀s ∈ S
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Similarly to Set Cover, the approximability of CIP is well studied. In particular, the problem

is known to be approximable to within a factor O(log n) of the optimum in polynomial time [90].

This immediately implies an O(log n)-approximation algorithm for finding a minimum size agreeable

set as well.

Theorem 3.4.8. For agents with additive utility functions, there exists a polynomial-time O(log n)-

approximation algorithm for computing a minimum size agreeable set.

3.5 Conclusion and Future Work

In this chapter, we introduce the notion of agreeability, which captures an agent’s acceptance of

the set of items allocated to her group, and present a number of fundamental results on the notion.

For any number of agents and items, we derive a tight upper bound on the number of items that

may need to be included in an agreeable subset. We also present polynomial-time algorithms for

computing an agreeable set whose size matches the upper bound or approximates the optimal size

for a given instance using well-known models for representing preferences.

Our work suggests a number of possible future directions. With polynomial-time algorithms for

computing an agreeable set whose size matches the upper bound for two and three agents in hand, a

natural question is whether we can similarly obtain efficient algorithms when there are more agents.

The algorithm for three agents is already quite involved, so one might suspect that the problem is

intractable for larger numbers of agents. If that were to be the case, it would be useful to have a

confirmation by means of a hardness result, even for some fixed large number of agents. Since the

problem is a search problem for which we know that a solution always exists, it cannot be NP-hard,

but could potentially be hard with respect to a subclass of TFNP such as PPAD or PLS. One could

also investigate the complexity of deciding the existence of agreeable subsets of certain sizes for

which there is no guarantee of existence, as we do in Theorems 3.4.3 and 3.4.5.

Another avenue for future work is to extend the notion of agreeability to more general settings.

For instance, a motivating example that we give is that the group of agents receive some items

as prizes from a team competition that they won against another group. One could consider a

generalization where there are more than two competing groups. However, in this case there are

several reasonable ways of defining agreeability, since we do not know how the remaining items are

distributed among the remaining groups. One possibility is to require that each agent in the group

find the set of items to be worth at least 1/k of the whole set, where k is the number of groups. An

alternative definition is to impose the condition that for each agent in the group, we can partition

the remaining items among the other k− 1 groups so that the agent does not envy any of the other

groups. While both definitions reduce to our notion in the case of two groups and additive utilities,

the equivalence ceases to hold when there are at least three groups or if utilities are not additive.

As such, the results that we can obtain will likely depend on the definition that we use.



Chapter 4

Asymptotic Existence of Fair

Divisions for Groups

4.1 Introduction

In this chapter, we study envy-free divisions in the group setting. Given that such divisions do not

always exist even in the individual setting,1 we investigate in Section 4.3 the asymptotic existence

and non-existence of envy-free divisions using a probabilistic model, previously used in the setting

with one agent per group [54]. We show in Section 4.3.1 that under additive valuations and other

mild technical conditions, when all groups contain an equal number of agents, an envy-free division

is likely to exist if the number of goods exceeds the total number of agents by a logarithmic factor, no

matter whether the agents are distributed into several groups of small size or few groups of large size

(Theorem 4.3.1). In particular, any allocation that maximizes social welfare is likely to be envy-free.

In addition, when there are two groups with possibly unequal numbers of agents and the distribution

on the valuation of each good is symmetric, an envy-free division is likely to exist if the number of

goods exceeds the total number of agents by a logarithmic factor as well (Theorem 4.3.2). Although

it might not be surprising that a welfare-maximizing allocation is envy-free with high probability

when there are sufficiently many goods, the fact that only an extra logarithmic factor is required is

perhaps somewhat unexpected. Indeed, as the number of agents in each group increases, it seems

as though the independence between the preferences of each agent would make it much harder to

satisfy all of them simultaneously, since they all need to be allocated the same goods.

To complement our existence results, we show on the other hand in Section 4.3.2 that we cannot

get away with a much lower number of goods and still have an envy-free division with high probability.

In particular, if the number of goods is less than the total number of agents by a superconstant factor,

1See Section 2.1.

43
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or if the number of goods is less than the total number of agents and the number of groups is large,

the probability that an envy-free division exists is low (Corollaries 4.3.5 and 4.3.6). This leaves the

gap between asymptotic existence and non-existence of envy-free divisions at a mere logarithmic

factor.

While the techniques used to show asymptotic existence of envy-free divisions in Section 4.3

give rise to mechanisms that compute such divisions with high probability, these mechanisms are

unfortunately not truthful. In other words, implementing these mechanisms in the presence of

strategic agents can lead to undesirable outcomes. In Section 4.4, we tackle the issue of truthful-

ness and show that a simple truthful mechanism, namely the random assignment mechanism, is

α-approximate envy-free with high probability for any constant α ∈ [0, 1) (Theorem 4.4.1). Ap-

proximate envy-freeness means that even though an agent may envy another agent in the resulting

division, the values of the agent for her own allocation and for the other agent’s allocation differ

by no more than a multiplicative factor of α. In other words, the agent’s envy is relatively small

compared to her value for her own allocation. The number of goods required to obtain approximate

envy-freeness with high probability increases as we increase α. Our result shows that it is possible

to achieve truthfulness and approximate envy-freeness simultaneously in a wide range of random

instances, and improves upon the previous result for the setting with one agent per group [6] in

several ways.

Our results in Section 4.3 can be viewed as generalizations of previous results by Dickerson et

al. [54], who showed asymptotic existence and non-existence under a similar model but in a more

limited setting where each group has only one agent. In particular, these authors proved that under

certain technical conditions on the probability distributions, an allocation that maximizes social

welfare is envy-free with high probability if the number of goods is larger than the number of agents

by a logarithmic factor. In fact, their result also holds when the number of agents stay constant, as

long as the number of goods goes to infinity. Similarly, we show that a welfare-maximizing allocation

is likely to be envy-free if the number of goods exceeds the number of agents by a logarithmic factor.

While we require that the number of agent per group goes to infinity, the number of groups can stay

small, even constant. On the non-existence front, Dickerson et al. showed that if the utility for each

good is independent and identically distributed across agents, then envy-free allocations are unlikely

to exist when the number of goods is larger than the number of agents by a linear fraction. On the

other hand, our non-existence results apply to the regime where the number of goods is smaller than

the number of agents. Note that while this regime is uninteresting in Dickerson et al.’s setting since

envy-free allocations cannot exist, in our generalized setting an envy-free allocation can already exist

when the number of goods is at least the number of groups.

Besides the asymptotic results on envy-free divisions, results of this type have also been shown

for other fairness notions, including proportionality and the maximin share criterion. These two

notions are weaker than envy-freeness when utilities are additive. Suksompong [149] showed that
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proportional allocations exist with high probability if the number of goods is a multiple of the

number of agents or if the number of goods grows asymptotically faster than the number of agents.

Kurokawa et al. [92] showed that if either the number of agents or the number of goods goes to

infinity, then an allocation satisfying the maximin share criterion is likely to exist as long as each

probability distribution has at least constant variance. Amanatidis et al. [7] analyzed the rate of

convergence for the existence of allocations satisfying the maximin share criterion when the utilities

are drawn from the uniform distribution over the unit interval.

4.2 Preliminaries

The basic definitions and notation of the group fair division setting are introduced in Section 2.1.

We assume in this chapter that agents have additive utility functions. We may suppose without loss

of generality that uij(g) ∈ [0, 1] for each agent aij and each good g, since otherwise we can scale

down all utilities by their maximum. We also assume for most of the chapter that all groups contain

the same number of agents n′ := n1 = n2 = · · · = nk. The social welfare of an allocation is the sum

of the utilities of all agents from the allocation.

Let us now state two assumptions on distributions of utilities; in Section 4.3 we will work with

the first and in Section 4.4 with the second.

[A1] For each good g ∈ G, the utilities uij(g) ∈ [0, 1] for each agent aij ∈ A are drawn independently

at random from a distribution Dg. Each distribution Dg is non-atomic, i.e., Pr[uij(g) = x] = 0

for every x ∈ [0, 1]. Moreover, the variances of the distributions are bounded away from zero,

i.e., there exists a constant σmin > 0 such that the variance of Dg is at least σ2
min for every

good g.

[A2] For each agent aij ∈ A and each good g ∈ G, the utility uij(g) ∈ [0, 1] is drawn independently

at random from a probability distribution Dij,g. The mean of each distribution is bounded

away from zero, i.e., there exists a constant µmin > 0 such that E[uij(g)] ≥ µmin for every

aij ∈ A and g ∈ G.

Note that assumption [A2] is weaker than [A1]. Indeed, in [A2] we do not require Dij,g to

be the same for every aij . In addition, since uij(g) ∈ [0, 1] for all aij ∈ A and g ∈ G, we have

E[uij(g)] ≥ E[uij(g)2] ≥ E[uij(g)2]−E[uij(g)]2 = Var(uij(g)). Hence, the condition that the means of

the distributions are bounded away from zero follows from the analogous condition on the variances.

In Section 4.4, we consider the notion of approximate envy-freeness, which means that for each

agent, there is no bundle of another group for which the agent’s utility is a certain (multiplicative)

factor larger than the utility of the agent for the allocation of her own group. The notion is defined

formally below.
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Definition 4.2.1. We write Gp %αij Gq for α ∈ [0, 1] if and only if uij(Gp) ≥ αuij(Gq). Agent

aij considers an allocation (G1, G2, . . . , Gk) of goods to the k groups α-approximate envy-free if

Gi %αi Gi′ for every group Ai′ 6= Ai. We say that an allocation is α-approximate envy-free if it is

α-approximate envy-free for every agent.

Finally, we give the definition of a truthful mechanism, which we will use in Section 4.4.

Definition 4.2.2. A mechanism is a function that takes as input the utility of agent aij for good

g for all aij ∈ A and g ∈ G, and outputs a (possibly random) allocation of goods to the groups. A

mechanism is said to be truthful if every agent always obtains the highest possible (expected) utility

by submitting her true utilities to the mechanism, regardless of the utilities that the remaining agents

submit.

4.3 Asymptotic Existence and Non-Existence of Fair Divi-

sions

In this section, we study the existence and non-existence of fair divisions. First, we show that when

m ∈ Ω(n log n), where Ω(·) hides a sufficiently large constant, there exists an envy-free division with

high probability (Theorem 4.3.1). In particular, we prove that a welfare-maximizing allocation is

likely to be envy-free. This gives rise to a simple algorithm that finds such a fair division with high

probability. We also extend our existence result to the case where there are two groups but the

groups need not have the same number of agents; we show a similar result in this case, provided

that each distribution Dg satisfies an additional symmetry condition (Theorem 4.3.2).

Moreover, on the non-existence front, we prove that when m is smaller than n, the probability

that a fair division exists is at most 1/kn−m (Theorem 4.3.4). This has as consequences that if

the number of goods is less than the total number of agents by a superconstant factor, or if the

number of goods is less than the total number of agents and the number of groups is large, then the

probability that an envy-free division exists is low (Corollaries 4.3.5 and 4.3.6).

4.3.1 Existence

We begin with our main existence result.

Theorem 4.3.1. Assume that [A1] holds. For any fixed σmin > 0, there exists a constant C > 0

such that, for any sufficiently large n′, if m > Cn log n, then there exists an envy-free allocation with

high probability.

In fact, we not only prove that an envy-free allocation exists but also give a simple greedy

algorithm that finds one such allocation with high probability. The algorithm is simple: we greedily

allocate each good to the group that maximizes the total utility of the good with respect to the
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agents in that group. This yields an allocation that maximizes the social welfare. The allocation is

therefore Pareto optimal, i.e., there exists no other allocation in which every agent is weakly better

off and at least one agent is strictly better off. The pseudocode of the algorithm is shown below.

Algorithm 1 Greedy Allocation Algorithm for Multiple Groups

1: procedure Greedy–Allocation–Multiple
2: let G1 = G2 = · · · = Gk = ∅.
3: for each good g ∈ G do

4: choose i∗ from arg maxi=1,2,...,k

∑n′

j=1 uij(g)
5: let Gi∗ ← Gi∗ ∪ {g}
6: end for
7: end procedure

The analysis of the algorithm contains similarities to that of the corresponding result in the

setting with one agent per group [54]. However, significantly more technical care will be required

to handle our setting in which each group contains multiple agents. This is reflected by our use

of the Berry-Esseen theorem (Lemma 2.3.3). Here we provide a proof sketch that contains all the

high-level ideas but leaves out some tedious details, especially calculations; the full proof can be

found in Appendix B.1.

Proof sketch of Theorem 4.3.1. We will first bound Pr[uij(Gi′) > uij(Gi)] for each agent aij and

each group Ai′ 6= Ai; we then use the union bound at the end to conclude Theorem 4.3.1. To bound

Pr[uij(Gi′) > uij(Gi)], we define a random variable Bij,g to be uij(g) if good g is allocated to group

Ai and zero otherwise. Similarly, define Ci
′

ij,g to be uij(g) if the good is allocated to group Ai′ and

zero otherwise.

Intuitively, with respect to agent aij , Bij,g is the utility contribution of good g to the group Ai.

On the other hand, Ci
′

ij,g is the utility that is “lost” to group i′. In other words, uij(Gi′) > uij(Gi)

if and only if SB < SC , where SB =
∑
g∈GBij,g and SC =

∑
g∈G C

i′

ij,g. We will use the Chernoff

bound to estimate the probability of this event. To do so, we first need to bound E[Bij,g] and

E[Ci
′

ij,g].

From the symmetry between different groups, the probability that good g is allocated to each

group is 1/k. Thus, we have E[Bij,g] = 1
k E [uij(g) | good g is allocated to Ai] and E[Ci

′

ij,g] =
1
k E [uij(g) | good g is allocated to Ai′ ]. It is now fairly easy to see that E[Ci

′

ij,g] ≤ µg/k, where

µg is the mean of Dg; the reason is that the expected value of uij(g) when g is not allocated to Ai

is clearly at most µg. For convenience, we will assume in this proof sketch that E[Ci
′

ij,g] is roughly

µg/k.

Now, we will bound the expected value of Bij,g. For each p = 1, 2, . . . , k, let Xp denote the sum

of the utilities of good g with respect to all agents in Ap. Due to the symmetry among agents within
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the same group, we have

E[Bij,g] =
1

n′k
E [Xi | Xi = max{X1, X2, . . . , Xk}]

=
1

n′k
E[max{X1, X2, . . . , Xk}].

The latter equality comes from the symmetry between different groups.

Now, we use the Berry-Esseen theorem (Lemma 2.3.3), which tells us that each of X1, X2, . . . , Xk

is close to N (µgn
′,Ω(σ2

minn
′)). With simple calculations, one can see that the expectation of the

maximum of k identically independent random variables sampled from N (µgn
′,Ω(σ2

minn
′)) is µgn

′+

Ω(σmin
√
n′). Roughly speaking, we also have

E [Bij,g] =
µg
k

+ Ω

(
σmin

k
√
n′

)
.

Having bounded the expectations of Bij,g and Ci
′

ij,g, we are ready to apply the Chernoff bound.

Let δ = Θ
(
σmin
µg
√
n′

)
where Θ(·) hides some sufficiently small constant. When n′ is sufficiently large,

we can see that (1 + δ)E[Ci
′

ij,g] < (1− δ)E[Bij,g], which implies that (1 + δ)E[SC ] < (1− δ)E[SB ].

Using the Chernoff bound (Lemma 2.3.1) on SB and SC , we have

Pr[SB ≤ (1− δ)E[SB ]] ≤ exp

(
−δ2 E[SB ]

2

)
,

and,

Pr[SC ≥ (1 + δ)E[SC ]] ≤ exp

(
−δ2 E[SC ]

3

)
.

Thus, we have

Pr[SB < SC ] ≤ exp

(
−δ2 E[SB ]

2

)
+ exp

(
−δ2 E[SC ]

3

)
≤ 2 exp

(
−Ω

(
σ2
minm

nµg

))
(Since µg ≤ 1) ≤ 2 exp

(
−Ω

(
σ2
minm

n

))
.

Recall that Pr[uij(Gi′) > uij(Gi)] = Pr[SB < SC ]. Using the union bound for all aij and all

Ai′ 6= Ai, the probability that the allocation output by the algorithm is not envy-free is at most

2n(k − 1) exp

(
−Ω

(
σ2
minm

n

))
,

which is at most 1/m when m ≥ Cn log n for some sufficiently large C. This completes the proof
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sketch of the theorem.

Unfortunately, the algorithm in Theorem 4.3.1 cannot be extended to give a proof for the case

where the groups do not have the same number of agents. However, in a more restricted setting

where there are only two groups with potentially different numbers of agents and an additional

symmetry condition on the distributions Dg is enforced, a result similar to that in Theorem 4.3.1

can be shown, as stated in the theorem below.

Theorem 4.3.2. Assume that [A1] holds. Suppose that there are only two groups but not necessarily

with the same number of agents; let n1, n2 denote the numbers of agents of the first and second group

respectively (so n = n1 + n2). Assume also that the distributions Dg are symmetric (around 1/2),2

i.e.,

Pr
X∼Dg

[
X ≤ 1

2
− x
]

= Pr
X∼Dg

[
X ≥ 1

2
+ x

]
for all x ∈ [0, 1/2]. For any fixed σmin > 0, there exists a constant C > 0 such that for any

sufficiently large n1 and n2, if m > Cn log n, then there exists an envy-free allocation with high

probability.

The algorithm is similar to that in Theorem 4.3.1; the only difference is that, instead of allocating

each good to the group with the highest total utility over its agents, we allocate the good to the

group with the highest average utility, as seen in the pseudocode of Algorithm 2.

Algorithm 2 Greedy Allocation Algorithm for Two Possibly Unequal-Sized Groups

1: procedure Greedy–allocation–Two
2: let G1 = G2 = ∅.
3: for each good g ∈ G do

4: choose i∗ from arg maxi=1,2

∑ni
j=1 uij(g)

ni
5: let Gi∗ ← Gi∗ ∪ {g}
6: end for
7: end procedure

The proof is essentially the same as that of Theorem 4.3.1 after the random variables defined are

changed corresponding to the modification in the algorithm. For instance, Bij,g is now defined as

Bij,g = uij(g) · 1

[
i = arg max

q=1,2

∑nq
p=1 uqp(g)

nq

]

where 1[E] denotes an indicator variable for event E.

Due to the similarities between the two proofs, we will not repeat the whole proof. Instead,

we would like to point out that all the arguments from Theorem 4.3.1 work here save for only one

2There is nothing special about the number 1/2; a similar result holds if the distributions are supported on a
subset of an interval [a, b] and are symmetric around (a+ b)/2, for some 0 < a < b.
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additional fact that we need to prove:

Lemma 4.3.3. Let X1 and X2 denote
∑n1

p=1 uqp(g)/n1 and
∑n2

p=1 uqp(g)/n2 respectively. Then,

Pr[X1 ≥ X2] =
1

2
.

Proof. To show this, observe first that, since Dg is symmetric over 1/2, the distributions of X1 and

X2 are also symmetric over 1/2. Let f1 and f2 be the probability density functions of X1 and X2

respectively, we have

Pr[X1 ≥ X2] =

∫ 1

0

∫ x

0

f1(x)f2(y)dydx

=

∫ 1

0

∫ x

0

f1(1− x)f2(1− y)dydx

=

∫ 1

0

∫ 1

x

f1(x)f2(y)dydx

= Pr[X2 ≥ X1].

Hence, Pr[X1 ≥ X2] = Pr[X2 ≥ X1] = 1/2, as desired.

4.3.2 Non-Existence

Next, we state and prove an upper bound for the probability that an envy-free allocation exists

when the number of agents exceeds the number of goods. Such an allocation obviously does not

exist under this condition if every group contains only one agent. In fact, the theorem holds even

without the assumption that the variances of the distributions Dg are at least σ2
min > 0.

Theorem 4.3.4. Assume that [A1] holds. If m < n, then there exists an envy-free allocation with

probability at most 1/kn−m.

Proof. Suppose that m ≤ n − 1, and fix an allocation G1, . . . , Gk. We will bound the probability

that this allocation is envy-free. Consider any agent Aij . The probability that the allocation is

envy-free for this particular agent is the probability that the total utility of the agent for the bundle

Gi is no less than that for any other bundle Gi′ . This can be written as follows:

Pr
uij(g)∈Dg for all g∈G

∑
g∈Gi

uij(g) = max
i′=1,2,...,k

∑
g∈Gi′

uij(g)

 .
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For each q = 1, 2, . . . , k, define pq as

pq = Pr
xg∈Dg for all g∈G

∑
g∈Gq

xg = max
q′=1,2,...,k

∑
g∈Gq′

xg

 .
Notice that the probability that the allocation is envy-free for agent aij is pi.

Since the utilities of different agents are chosen independently from one another, the probability

that this allocation is envy-free for every agent is simply the product of the probability that the

allocation is envy-free for each agent, i.e.,

n∏
aij∈A

pi =

k∏
q=1

pn
′

q .

Using the inequality of arithmetic and geometric means, we arrive at the following bound:

k∏
q=1

pn
′

q ≤

(
1

k

k∑
q=1

pq

)n′k
.

Recall our assumption that the distributions Dg are non-atomic. Hence we may assume that the

events
∑
g∈Gq xg = maxq′=1,2,...,k

∑
g∈Gq′

xg are disjoint for different j. This implies that
∑k
q=1 pq =

1. Thus, the probability that this fixed allocation is envy-free is at most

(
1

k

k∑
q=1

pq

)n′k
=

(
1

k

)n′k
=

1

kn
.

Finally, since each allocation is envy-free with probability at most 1/kn and there are km possible

allocations, by union bound the probability that there exists an envy-free allocation is at most

1/kn−m. This completes the proof of the theorem.

The following corollaries can be immediately derived from Theorem 4.3.4. They say that an

envy-free allocation is unlikely to exist when the number of goods is less than the number of agents

by a superconstant factor, or when the number of goods is less than the number of agents and the

number of groups is large.

Corollary 4.3.5. Assume that [A1] holds. When m = n− ω(1), the probability that there exists an

envy-free allocation converges to zero as n→∞.

Corollary 4.3.6. Assume that [A1] holds. When m < n, the probability that there exists an envy-

free allocation converges to zero as k →∞.
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4.4 Truthful Mechanism for Approximate Envy-Freeness

While the algorithms in Section 4.3 translate to mechanisms that yield with high probability envy-

free divisions that are compatible with social welfare assuming that agents are truth-telling, the

resulting mechanisms suffer from the setback that they are easily manipulable. Indeed, since they aim

to maximize (total or average) welfare, strategic agents will declare their values for the goods to be

high, regardless of what the actual values are. This presents a significant disadvantage: implementing

these mechanisms in most practical situations, where we do not know the true valuations of the agents

and have no reason to assume that they will reveal their valuations in a honest manner, can lead to

potentially undesirable outcomes.

In this section, we work with the weaker notion of approximate envy-freeness and show that a

simple truthful mechanism yields an approximately envy-free allocation with high probability. In

particular, we prove that the random allocation mechanism, which allocates each good to an agent

chosen uniformly and independently at random, is likely to produce such an allocation. In the setting

where each group consists of only one agent, Amanatidis et al. [6] showed that when the distribution

is as above and the number of goods m is large enough compared to n, the random allocation

mechanism yields an approximately envy-free allocation with high probability. Our statement is an

analogous statement for the case where each group can have multiple agents.

Theorem 4.4.1. Assume that [A2] holds. For every α ∈ [0, 1), there exists a constant C depending

only on α and µmin such that if m > Ck log n, then the random allocation, where each good g ∈ G
is allocated independently and uniformly at random to a group, is α-approximate envy-free with high

probability.

Before we prove Theorem 4.4.1, we note some ways in which our result is stronger than that of

Amanatidis et al.’s apart from the fact that multiple agents per group are allowed in our setting.

First, Amanatidis et al. required Dij,g to be the same for all g, which we do not assume here. Next,

they only showed that the random allocation is likely to be approximately proportional, a weaker

notion that is implied by approximate envy-freeness. Moreover, in their result, m needs to be as high

as Ω(n2), whereas in our case it suffices for m to be in the range Ω(k log n). Finally, we also derive a

stronger probabilistic bound; they showed a “success probability” of the algorithm of 1−O(n2/m),

while our success probability is 1− exp(−Ω(m/k)).

Proof of Theorem 4.4.1. For each agent aij ∈ A, each good g ∈ G and each q ∈ {1, 2, . . . , k}, let

Bqij,g be a random variable representing the contribution of good g’s utility with respect to agent

aij to group Aq, i.e., Bqij,g is uij(g) if good g is allocated to group Aq and is zero otherwise.

Define Sqij :=
∑
g∈GA

q
ij,g. Observe that each agent aij considers the allocation to be α-

approximate envy-free if and only if Siij ≥ αSqij for every q. Let δ = 1−α
1+α ; from this choice of δ and

since E[Sqij ] is equal for every q, we can conclude that Siij ≥ αSqij is implied by Siij ≥ (1− δ)E[Siij ]
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and Sqij ≤ (1 + δ)E[Sqij ]. In other words, we can bound the probability that the random allocation

is not α-approximate envy-free as follows.

Pr[∃aij ∈ A, q ∈ {1, 2, . . . , k} : Siij < αSqij ]

≤
∑

aij∈A,q∈{1,2,...,k}

Pr[Siij < αSqij ]

≤
∑

aij∈A,q∈{1,2,...,k}

Pr[Siij < (1− δ)E[Siij ] or Sqij > (1 + δ)E[Siij ]]

≤
∑

aij∈A,q∈{1,2,...,k}

(Pr[Siij < (1− δ)E[Siij ]] + Pr[Sqij > (1 + δ)E[Sqij ]]).

Since Sqij =
∑
g∈GB

q
ij,g and the random variables Bqij,g are independent and lie in [0, 1], we can

use the Chernoff bound (Lemma 2.3.1) to upper bound the last terms. Hence, the probability that

the allocation is not α-approximate envy-free is at most

∑
aij∈A,q∈{1,2,...,k}

exp

(
−δ2 E[Siij ]]

2

)
+ exp

(
−δ2 E[Sqij ]]

3

)
.

Finally, observe that

E[Sqij ] =
∑
g∈G

E[Bqij,g] =
∑
g∈G

1

k
E[uij(g)] ≥ mµmin

k
.

This means that the desired probability is bounded above by

∑
aij∈A,q∈{1,2,...,k}

exp

(
−δ2mµmin

2k

)
+ exp

(
−δ2mµmin

3k

)

≤ 2nk exp

(
−δ2mµmin

3k

)
≤ exp

(
−δ

2mµmin
3k

+ 3 log n

)
.

When m >
(

10
µminδ2

)
k log n, the above expression is at most exp(−Ω(m/k)), concluding our

proof.

4.5 Conclusion and Future Work

In this chapter, we study the group fair division setting and establish nearly tight bounds on the

number of agents and goods under which a fair division is likely or unlikely to exist. Furthermore, we

consider the issue of truthfulness and show that a simple truthful mechanism produces an allocation
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that is approximately envy-free with high probability.

While the assumptions of additivity and independence are somewhat restrictive and might not

apply fully to settings in the real world, our results give indications as to what we can expect if

the assumptions are relaxed, such as if a certain degree of dependence is introduced. An interesting

future direction is to generalize the results to settings with more general valuations. In particu-

lar, if the utility functions are low-degree polynomials, then one could try applying the invariance

principle [117], which is a generalization of the Berry-Esseen theorem that we use.

We end the chapter with some further questions that remain after this work. A natural question

is whether we can generalize our existence and non-existence results (Theorems 4.3.1 and 4.3.4)

to the setting where the groups do not contain the same number of agents. This non-symmetry

between the groups seems to complicate the approaches that we use in this chapter. For example, it

breaks the greedy algorithm used in Theorem 4.3.1. Nevertheless, it might still be possible to prove

existence of an envy-free division using other algorithms or without relying on a specific algorithm.

Another direction for future research is to invent procedures for computing envy-free divisions,

whenever such divisions exist, for the general setting where each group contains multiple agents and

agents have arbitrary monotonic valuations. Even procedures that only depend on rankings of single

goods [28] do not appear to extend easily to this setting. Indeed, if a group contains two agents

whose preferences are opposite of each other, it is not immediately clear what we should allocate to

the group. It would be useful to have a procedure that produces a desirable outcome, even for a

small number of agents in each group.

Lastly, one could explore the limitations that arise when we impose the condition of truthfulness,

an important property when we implement the mechanisms in practice. For instance, truthful

allocation mechanisms have recently been characterized in the case of two agents [5], and it has been

shown that there is a separation between truthful and non-truthful mechanisms for approximating

maximin shares [6]. In our setting, a negative result on the existence of a truthful mechanism that

yields an envy-free division with high probability would provide such a separation as well, while a

positive result in this direction would have even more consequences for practical applications.



Chapter 5

Approximate Maximin Shares for

Groups of Agents

5.1 Introduction

The previous chapter shows an approach that uses asymptotic analysis to circumvent the potential

non-existence of fair divisions, which leads to statements on the probability that a fair allocation

exists as the size of the instance grows. In this chapter, we present a different approach to obtain

positive results using worst-case analysis and approximation. In particular, we study the existence

of allocations satisfying the maximin share criteria introduced in Section 2.1.

In Section 5.3, we consider the setting where there are two groups of agents. For this setting, we

completely determine the cardinality of agents in the groups for which it is possible to approximate

the maximin share within a positive factor that depends only on the number of agents and not on

the number of goods. In particular, an approximation is possible when one of the groups contain

a single agent, when both groups contain two agents, or when the groups contain three and two

agents respectively. In all other cases, no approximation is possible in a strong sense: There exists

an instance with only four goods in which some agent with positive maximin share necessarily gets

zero utility. These results, along with bounds for the approximation factors, are summarized in

Table 5.1.

In Section 5.4, we generalize our results to the setting with several groups of agents. On the

positive side, we show that a positive approximation is possible if only one group contains more

than a single agent (Theorem 5.4.1). On the other hand, we show on the negative side that when

all groups contain at least two agents and one group contains at least five agents, it is possible that

some agent with positive maximin share will be forced to obtain zero utility (Theorem 5.4.2), which

means that there is no hope of obtaining an approximation in this case.

55
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Number of agents Approximation ratio
(n1, n2) = (1, 1) α = 1 (Cut-and-choose protocol; see, e.g., [26])
(n1, n2) = (2, 1) 2/3 ≤ α ≤ 3/4 (Theorem 5.3.3)

n2 = 1 2/(n1 + 1) ≤ α ≤ 1/
⌊⌊√

2n1

⌋
/2
⌋

(Corollary 5.3.5)
(n1, n2) = (2, 2) 1/8 ≤ α ≤ 1/2 (Theorem 5.3.6)
(n1, n2) = (3, 2) 1/16 ≤ α ≤ 1/2 (Theorem 5.3.7)
n1 ≥ 4, n2 ≥ 2 α = 0 (Proposition 5.3.1)
n1, n2 ≥ 3 α = 0 (Proposition 5.3.2)

Table 5.1: Values of the best possible approximation ratio, denoted by α, for the maximin share
when there are two groups with n1 ≥ n2 agents. The approximation ratios hold regardless of the
number of goods.

5.2 Preliminaries

The basic definitions and notation of the group fair division setting are introduced in Section 2.1.

We assume in this chapter that agents have additive utility functions. Let us state two lemmas that

we will use in the analysis of the modified round-robin algorithm in Section 5.3.2.

Lemma 5.2.1 ([7]). Suppose that each group contains one agent. Consider a round-robin algorithm

in which the agents take turns taking their favorite good from the remaining goods; if there are

goods remaining after the last agent takes a good, we circle back to the first agent. In the resulting

allocation, the envy that an agent has toward any other agent is at most the maximum utility of the

former agent for any single good. Moreover, if an agent is ahead of another agent in the round-robin

ordering, then the former agent has no envy toward the latter agent.

Lemma 5.2.2 ([7, 26]). Given an arbitrary instance in which each group contains one agent, if we

allocate an arbitrary good to an agent as her only good, then the maximin share of any remaining

agent with respect to the remaining goods does not decrease.

Both of these lemmas admit rather straightforward proofs which can also be found in the cited

references.

5.3 Two Groups of Agents

In this section, we consider the setting where there are two groups of agents and characterize the

cardinality of the groups for which a positive approximation of the maximin share is possible regard-

less of the number of goods. In particular, suppose that the two groups contain n1 and n2 agents,

where we assume without loss of generality that n1 ≥ n2. Then a positive approximation is possible

when n2 = 1 as well as when (n1, n2) = (2, 2) or (3, 2). The results are summarized in Table 5.1.
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5.3.1 Large Number of Agents: No Possible Approximation

We begin by showing that when the numbers of agents in the groups are large enough, no approxima-

tion of the maximin share is possible. Observe that if we prove that a maximin share approximation

is not possible for groups with n1 and n2 agents, then it is also not possible for groups with n′1 ≥ n1

and n′2 ≥ n2 agents, since we would still need to fulfill the approximation for the first n1 and n2

agents in the respective groups.

Proposition 5.3.1. If n1 ≥ 4 and n2 ≥ 2, then there exists an instance in which some agent with

nonzero maximin share necessarily receives zero utility.

Proof. Assume that n1 = 4 and n2 = 2, and suppose that there are four goods. The utilities of the

agents in the first group are u11 = (0, 1, 0, 1), u12 = (0, 1, 1, 0), u13 = (1, 0, 0, 1), and u14 = (1, 0, 1, 0),

while the utilities of those in the second group are u21 = (1, 1, 0, 0) and u22 = (0, 0, 1, 1).

In this example, every agent has a maximin share of 1. To guarantee nonzero utility for the

agents in the second group, we must allocate at least one of the first two goods and at least one of

the last two goods to the group. But this implies that some agent in the first group receives zero

utility.

Proposition 5.3.2. If n1, n2 ≥ 3, then there exists an instance in which some agent with nonzero

maximin share necessarily receives zero utility.

Proof. Assume that n1 = n2 = 3, and suppose that there are three goods. The utilities of the agents

in the both groups are ui1 = (1, 1, 0), ui2 = (1, 0, 1), and ui3 = (0, 1, 1) for i = 1, 2.

In this example, every agent has a maximin share of 1. In any allocation, one of the groups gets

at most one good, and some agent in that group receives zero utility.

5.3.2 Approximation via Modified Round-Robin Algorithm

When both groups contain a single agent, it is known that a simple “cut-and-choose” protocol similar

to a famous cake-cutting protocol yields the full maximin share for both agents (see, e.g., [26]). It

turns out that as soon as at least one group contains more than one agent, the full maximin share

can no longer be guaranteed. We next consider the simplest such case where the groups contain one

and two agents, respectively. The maximin share approximation algorithm for this case is similar

to the modified round-robin algorithm that yields a 1/2-approximation for an arbitrary number of

agents [7], but we will need to make some adjustments to handle more than one agent being in the

same group.

Theorem 5.3.3. Let (n1, n2) = (2, 1), and suppose that α is the best possible approximation ratio

for the maximin share. Then 2/3 ≤ α ≤ 3/4.



CHAPTER 5. APPROXIMATE MAXIMIN SHARES FOR GROUPS OF AGENTS 58

Proof. We first show the upper bound. Suppose that there are four goods. The utilities of the agents

in the first group for the goods are u11 = (3, 1, 2, 2) and u12 = (2, 3, 2, 1), while the utilities of the

agent in the second group are u21 = (3, 2, 2, 1).

In this example, every agent has a maximin share of 4. We will show that any allocation gives

some agent a utility of at most 3. Note that an allocation that would give every agent a utility of at

least 4 must allocate two goods to both groups. If the fourth and one of the second and third goods

are allocated to the second group, the agent gets a utility of 3. Otherwise, one can check that one

of the agents in the first group gets a utility of 3.

Next, we exhibit an algorithm that guarantees each agent a 2/3 fraction of her maximin share.

Since we do not engage in interpersonal comparisons of utilities, we may assume without loss of

generality that every agent has utility 1 for the whole bundle of goods. Since the maximin share of

an agent is always at most 1/2, it suffices to allocate a bundle worth at least 1/3 to her.

If some good is worth at least 1/3 to a21, let her take that good. By Lemma 5.2.2, the maximin

shares of a11 and a12 do not decrease. Since they receive all of the remaining goods, they obtain

their maximin share. Hence we may now assume that no good is worth at least 1/3 to a21. We let

each of a11 and a12, in arbitrary order, take a good worth at least 1/3 if there is any. There are

three cases.

• Both of them take a good. Then each of them gets a utility of at least 1/3. Since every good

is worth less than 1/3 to a21, she also gets a utility of at least 1 − 1/3 − 1/3 = 1/3 from the

remaining goods.

• One of them takes a good and the other does not. Assume without loss of generality that a11

is the agent who takes a good. We run the round-robin algorithm on a12 and a21 using the

remaining goods, starting with a21. Since every good is worth less than 1/3 to a21, the value

of the whole bundle of goods minus the good that a11 takes is at least 2/3. By Lemma 5.2.1,

a21 gets a utility of at least 1/2× 2/3 = 1/3. Similarly, the envy of a12 toward a21 is at most

the maximum utility of a12 for a good allocated during the round-robin algorithm, which is at

most 1/3. This implies that a21’s bundle is worth at most 2/3 to a12, and hence a12’s bundle

in the final allocation (i.e., her bundle from the round-robin algorithm combined with the good

that a11 takes) is worth at least 1/3 to her.

• Neither of them takes a good. We run the round-robin algorithm on all three agents, starting

with a21. By Lemma 5.2.1, a21 gets a utility of at least 1/3. The envy of a11 toward a21 is

at most the maximum utility of a11 for a good, which is at most 1/3. Hence a21’s bundle is

worth at most 2/3 to a11, which means that a11’s bundle in the final allocation (i.e., her bundle

combined with a12’s bundle) is worth at least 1/3 to her. An analogous argument holds for

a12.

This covers all three possible cases.
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Next, we generalize to the setting where the first group contains an arbitrary number of agents

while the second group contains a single agent. In this case, an algorithm similar to that in The-

orem 5.3.3 can be used to obtain a constant factor approximation when the number of agents is

constant. In addition, we show that the approximation ratio necessarily degrades as the number of

agents grows.

Algorithm 3 Algorithm for approximate maximin share when the groups contain n1 ≥ 2 and
n2 = 1 agents (Theorem 5.3.4).

1: procedure Approximate–Maximin–Share–1
2: if Agent a21 values some good g at least 1

n1+1 then
3: Allocate g to a21 and the remaining goods to the first group.
4: else
5: Let each agent in the first group, in arbitrary order, take a good worth at least 1

n1+1 to
her if there is any.

6: Allocate the remaining goods to the agents who have not taken a good using the round-
robin algorithm, starting with a21.

7: end if
8: end procedure

Theorem 5.3.4. Let n1 ≥ 2 and n2 = 1, and suppose that α is the best approximation ratio for the

maximin share. Then 2
n1+1 ≤ α ≤

1
bf(n1)/2c , where f(n1) is the largest integer such that

(
f(n1)

2

)
≤ n1.

Proof. We first show the upper bound. Let l = f(n1), and suppose that there are l goods. Let
(
l
2

)
of the agents in the first group positively value a distinct set of two goods. In particular, each of

them has utility 1 for both goods in their set and 0 for the remaining goods. Let the agent in the

second group have utility 1 for all goods.

In this example, each agent in the first group has a maximin share of 1, while the agent a21 has

a maximin share of bl/2c. To guarantee nonzero utility for the l agents in the first group, we must

allocate all but at most one good to the group, leaving at most one good for the second group. So

the agent in the second group obtains at most a 1/bl/2c fraction of her maximin share.

An algorithm that guarantees a 2
n1+1 -approximation of the maximin share (Algorithm 3) is

similar to that for the case n1 = 2 (Theorem 5.3.3). Again, we normalize the utility of each agent

for the whole set of goods to 1. First, let a21 take a good worth at least 1
n1+1 to her if there is any. If

she takes a good, we allocate the remaining goods to the first group and are done by Lemma 5.2.2.

Else, we let each of the agents in the first group, in arbitrary order, take a good worth at least 1
n1+1

to her if there is any. After that, we run the round-robin algorithm on the agents who have not

taken a good, starting with a21.

Suppose that r agents in the first group take a good. Each of them obtains a utility of at least
1

n1+1 . The remaining goods, which are allocated by the round-robin algorithm, are worth a total

of at least n1+1−r
n1+1 to a21. Since there are n1 + 1 − r agents who participate in the round-robin

algorithm, and a21 is the first to choose, she obtains utility at least 1
n1+1−r ·

n1+1−r
n1+1 = 1

n1+1 . Finally,



CHAPTER 5. APPROXIMATE MAXIMIN SHARES FOR GROUPS OF AGENTS 60

by Lemma 5.2.1, each agent in the first group who does not take a good in the first stage has envy

at most 1
n1+1 ≤

1
3 toward a21. Hence for such an agent, a21’s bundle is worth at most 2/3, and so

the bundle allocated to the first group is worth at least 1
3 ≥

1
n1+1 .

Algorithm 3 can be implemented in time polynomial in the number of agents and goods. Also,

since
(b√2n1c

2

)
≤ (
√

2n1)2

2 = n1, we have the following corollary.

Corollary 5.3.5. Let n1 ≥ 2 and n2 = 1, and suppose that α is the best approximation ratio for

the maximin share. Then 2
n1+1 ≤ α ≤

1

bb√2n1c/2c .

5.3.3 Approximation via Maximin Partitions

We now consider the two remaining cases, (n1, n2) = (2, 2) and (3, 2). We show that in both cases,

a positive approximation is also possible. However, the algorithms for these two cases will rely on a

different idea than the previous algorithms. These positive results provide a clear distinction between

the settings where it is possible to approximate the maximin share and those where it is not. For

the former settings, the maximin share can be approximated within a positive factor independent

of the number of goods. On the other hand, for the latter settings, there exist instances in which

some agent with positive maximin share necessarily gets zero utility even when there are only four

goods (Propositions 5.3.1 and 5.3.2), and therefore no approximation is possible even if we allow

dependence on the number of goods.

Algorithm 4 Algorithm for approximate maximin share when the groups contain n1 = n2 = 2
agents (Theorem 5.3.6).

1: procedure Approximate–Maximin–Share–2
2: for each agent aij do
3: Compute her maximin partition (Gij , G\Gij).
4: end for
5: Partition G into 16 subsets (H1, H2, . . . ,H16) according to whether each good belongs to Gij

or G\Gij for each 1 ≤ i, j ≤ 2.
6: if Some subset Hp is important (i.e., of value at least 1/8 of the agent’s maximin share) to

both a11 and a12 then
7: Allocate Hp to the first group and the remaining goods to the second group.
8: else
9: Suppose that Hp, Hq are important to a11 and Hr, Hs to a12.

10: Find a pair from (Hp, Hr), (Hp, Hs), (Hq, Hr), (Hq, Hs) that does not coincide with the
important subsets for an agent in the second group.

11: Allocate that pair of subsets to the first group and the remaining goods to the second
group.

12: end if
13: end procedure

Theorem 5.3.6. Let (n1, n2) = (2, 2), and suppose that α is the best possible approximation ratio

for the maximin share. Then 1/8 ≤ α ≤ 1/2.
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Proof. We first show the upper bound. Suppose that there are four goods. The utilities of the agents

in the first group for the goods are u11 = (0, 2, 1, 1) and u12 = (2, 0, 1, 1), while the utilities of those

in the second group are u21 = (1, 1, 0, 0) and u22 = (0, 0, 1, 1).

In this example, both agents in the first group have a maximin share of 2, and both agents in

the second group have a maximin share of 1. To ensure nonzero utility for the agents in the second

group, we must allocate at least one of the first two goods and at least one of the last two goods to

the group. However, this implies that some agent in the first group gets a utility of at most 1.

Next, we exhibit an algorithm that yields a 1/8-approximation of the maximin share (Algo-

rithm 4). For each agent aij , let (Gij , G\Gij) be one of her maximin partitions. By definition, we

have that both uij(Gij) and uij(G\Gij) are at least the maximin share of aij . Let (H1, H2, . . . ,H16)

be a partition of G into 16 subsets according to whether each good belongs to Gij or G\Gij for each

1 ≤ i, j ≤ 2; in other words, for every i, j, the goods in each set Hk either all belong to Gij or all

belong to G\Gij . By the pigeonhole principle, for each agent aij , among the eight sets Hk whose

union is Gij , the set that she values most gives her a utility of at least 1/8 of her maximin share;

call this set Hp. Likewise, we can find a set Hq ⊆ G\Gij that the agent values at least 1/8 of her

maximin share. We call these subsets important to aij . It suffices for every agent to obtain a subset

that is important to her.

If some subset Hp is important to both a11 and a12, we allocate that subset to the first group

and the remaining goods to the second group. Since each agent in the second group has at least two

important subsets, and only one is taken away from them, this yields the desired guarantee. Else,

two subsets Hp, Hq are important to a11 and two other subsets Hr, Hs are important to a12. We

will assign one of the pairs (Hp, Hr), (Hp, Hs), (Hq, Hr), (Hq, Hs) to the first group. If a pair does

not work, that means that some agent in the second group has exactly that pair as her important

subsets. But there are four pairs and only two agents in the second group, hence some pair must

work.

We briefly discuss the running time of Algorithm 4. The algorithm can be implemented efficiently

except for one step: computing a maximin partition of each agent. This step is NP-hard even when

the two agents have identical utility functions by a straightforward reduction from the partition

problem. Nevertheless, Woeginger [160] showed that a PTAS for the problem exists.1 Using the

PTAS, we can compute an approximate maximin partition instead of an exact one and obtain a

(1/8− ε)-approximate algorithm for the maximin share in time polynomial in the number of goods

for any constant ε > 0.

A similar idea can be used to show that a positive approximation of the maximin share is possible

when (n1, n2) = (3, 2).

Theorem 5.3.7. Let (n1, n2) = (3, 2), and suppose that α is the best possible approximation ratio

for the maximin share. Then 1/16 ≤ α ≤ 1/2.
1Woeginger also showed that an FPTAS for this problem does not exist unless P = NP.
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Proof. The upper bound follows from Theorem 5.3.6 and the observation preceding Proposition 5.3.1.

For the lower bound, compute the maximin partition for each agent, and partition G into 32

subsets according to which part of the partition of each agent a good belongs to. For each agent,

at least 2 of the subsets are important, i.e., of value at least 1/16 of her maximin share. If some

subset is important to both a21 and a22, allocate that subset to them and the remaining goods to

the first group. Otherwise, we can allocate some pair of important subsets to the second group using

a similar argument as in Theorem 5.3.6.

5.3.4 Experimental Results

To complement our theoretical results, we ran computer experiments to see the extent to which it

is possible to approximate the maximin share in random instances. For (n1, n2) = (2, 2) and (3, 2),

we generated 100000 random instances where there are four goods and the utility of each agent for

each good is drawn independently and uniformly at random from the interval [0, 1]. The results are

shown in Table 5.2a. An approximation ratio of 0.9 can be guaranteed in over 90% when there are

two agents in each group, and in over 80% when there are three agents in one group and two in the

other. In other words, an allocation that “almost” satisfies the maximin criterion can be found in a

large majority of the instances. However, the proportion drops significantly to around 70% and 50%

if we demand that the partition yield the full maximin share to the agents, indicating that this is a

much more stringent requirement. We also ran the experiment on instances where the utilities are

drawn from an exponential distribution and from a log-normal distribution. As shown in Tables 5.2b

and 5.2c, the number of instances for which the (approximate) maximin criterion is satisfied is lower

for both distributions than for the uniform distribution. This is to be expected since the utilities

are less spread out, meaning that conflicts are more likely to occur. The heavy drop as we increase

the requirement from α ≥ 0.9 to α ≥ 1 is present for these distributions as well.

We also remark here that the case with four goods seems to be the hardest case for maximin

approximation. Indeed, with two goods an allocation yielding the full maximin share always exists,

with three goods the maximin share is low since any partition leaves at most one good to one group,

and with more than four goods there are more allocations and therefore more possibilities to exploit

the differences between the utilities of the agents.

5.4 Several Groups of Agents

In this section, we consider a more general setting where there are several groups of agents. We show

that when only one group contains more than a single agent, a positive approximation is possible

independent of the number of goods. On the other hand, when all groups contain at least two agents

and one group contains at least five agents, no approximation is possible in a strong sense.
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α ≥ 0.5 α ≥ 0.6 α ≥ 0.7 α ≥ 0.8 α ≥ 0.9 α ≥ 1
(n1, n2) = (2, 2) 100000 100000 99937 98803 92015 69248
(n1, n2) = (3, 2) 100000 99997 99672 96174 81709 49386

(a) The uniform distribution over the interval [0, 1]

α ≥ 0.5 α ≥ 0.6 α ≥ 0.7 α ≥ 0.8 α ≥ 0.9 α ≥ 1
(n1, n2) = (2, 2) 100000 99982 99280 94464 80683 55833
(n1, n2) = (3, 2) 100000 99827 97295 86293 63914 36626

(b) The exponential distribution with mean 1

α ≥ 0.5 α ≥ 0.6 α ≥ 0.7 α ≥ 0.8 α ≥ 0.9 α ≥ 1
(n1, n2) = (2, 2) 100000 99990 99220 92658 74966 55768
(n1, n2) = (3, 2) 100000 99895 97159 82918 57068 36802

(c) The log-normal distribution with parameters µ = 0 and σ = 1 for the associated normal distribution

Table 5.2: Experimental results showing the number of instances, out of 100000, for which the
respective maximin approximation ratio is achievable by some allocation of goods when utilities are
drawn independently from the specified probability distribution.

5.4.1 Positive Results

We first show a positive result when all groups but one contain a single agent. This is a generalization

of the corresponding result for two groups (Theorem 5.3.4). The algorithm also uses the round-robin

algorithm as a subroutine, but more care must be taken to account for the extra groups.

Theorem 5.4.1. Let n1 ≥ 2 and n2 = n3 = · · · = nk = 1. Then it is possible to give every agent at

least 2
n1+2k−3 of her maximin share.

Proof. Let α := 1
n1+2k−3 . If some agent in a singleton group values a good at least α times her value

for the whole set of goods, put that good as the only good in her allocation. Since her maximin

share is at most 1/k ≤ 1/2 times her value for the whole set of goods, this agent obtains the desired

guarantee. We will give the remaining agents their guarantees with respect to the reduced set of

goods and agents. By Lemma 5.2.2, the maximin share of an agent can only increase as we remove

an agent and a good, and the approximation ratio 2
n1+2k−3 also increases as k decreases. This

implies that guarantees for the reduced instance also translate to ones for the original instance. We

recompute each agent’s value for the whole set of goods as well as the number of groups and repeat

this step until no agent in a singleton group values a good at least α times her value for the whole

set of goods.

Next, we normalize the utility of each agent for the whole set of goods to 1 as in Theorem 5.3.3.

We let each of the agents in the first group, in arbitrary order, take a good worth at least α to her if

there is any. The approximation guarantee is satisfied for any agent who takes a good. Suppose that

after this step, there are n0 ≤ n1 agents in the first group and k0 ≤ k − 1 agents in the remaining

groups who have not taken a good. We run the round-robin algorithm on these n0 + k0 agents,
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starting with the k0 agents who do not belong to the first group.

Consider one of the n0 agents in the first group. Since no good allocated by the round-robin

algorithm is worth at least α to her, she has envy at most α toward each of the k0 agents. Assume

for contradiction that the bundle allocated to the first group is worth less than α to her. Then she

values the bundle of each of the k0 agents at most 2α. Hence her utility for the whole set of goods

is less than α+ 2k0α = 2k0+1
n1+2k−3 ≤

2k−1
2k−1 = 1, a contradiction.

Consider now one of the k0 agents in the remaining group. She has utility at least 1− (n1−n0)α

for the set of goods allocated by the round-robin algorithm. With respect to the bundles allocated by

the round-robin algorithm, she has no envy toward herself or any of the n0 agents in the first group,

and she has envy at most α toward the remaining k0 − 1 agents. Summing up the corresponding

inequalities, averaging, and using the fact that her utility for all bundles combined is at least 1 −
(n1 − n0)α, we find that her utility for her own bundle is at least 1−(n1−n0)α−(k0−1)α

n0+k0
. It suffices to

show that this is at least α. The inequality is equivalent to α(2k0 + n1 − 1) ≤ 1, which holds since

k0 ≤ k − 1.

5.4.2 Negative Results

We next show that when all groups contain at least two agents and one group contains at least five

agents, no approximation is possible.

Theorem 5.4.2. Let n1 ≥ 4 if k is even and n1 ≥ 5 if k is odd, and n2 = n3 = · · · = nk = 2. Then

there exists an instance in which some agent with nonzero maximin share necessarily receives zero

utility.

Proof. Let n1 = 4 if k is even and 5 if k is odd, and suppose that there are 2k goods. In each of

the groups 2, 3, . . . , k, one agent has utility 1 for the first k goods and 0 for the last k, while the

other agent has utility 0 for the first k goods and 1 for the last k. Hence all of these agents have a

maximin share of 1. To ensure that they all get nonzero utility, each group must receive one of the

first k and one of the last k goods. This only leaves one good from the first k and one from the last

k to the first group.

First, consider the case k even. Let the utilities of the agents in the first group be given by

• u11 = (

k/2︷ ︸︸ ︷
1, 1, . . . , 1,

k/2︷ ︸︸ ︷
0, 0, . . . , 0,

k/2︷ ︸︸ ︷
1, 1, . . . , 1,

k/2︷ ︸︸ ︷
0, 0, . . . , 0);

• u12 = (

k/2︷ ︸︸ ︷
1, 1, . . . , 1,

k/2︷ ︸︸ ︷
0, 0, . . . , 0,

k/2︷ ︸︸ ︷
0, 0, . . . , 0,

k/2︷ ︸︸ ︷
1, 1, . . . , 1);

• u13 = (

k/2︷ ︸︸ ︷
0, 0, . . . , 0,

k/2︷ ︸︸ ︷
1, 1, . . . , 1,

k/2︷ ︸︸ ︷
1, 1, . . . , 1,

k/2︷ ︸︸ ︷
0, 0, . . . , 0);

• u14 = (

k/2︷ ︸︸ ︷
0, 0, . . . , 0,

k/2︷ ︸︸ ︷
1, 1, . . . , 1,

k/2︷ ︸︸ ︷
0, 0, . . . , 0,

k/2︷ ︸︸ ︷
1, 1, . . . , 1).
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All four agents have a maximin share of 1, but for any combination of a good from the first k goods

and one from the last k, some agent obtains a utility of 0.

Next, consider the case k odd. Let the utilities of the agents in the first group be given by

• u11 = (

(k−1)/2︷ ︸︸ ︷
1, 1, . . . , 1,

(k+1)/2︷ ︸︸ ︷
0, 0, . . . , 0,

(k+1)/2︷ ︸︸ ︷
1, 1, . . . , 1,

(k−1)/2︷ ︸︸ ︷
0, 0, . . . , 0);

• u12 = (

(k+1)/2︷ ︸︸ ︷
1, 1, . . . , 1,

(k−1)/2︷ ︸︸ ︷
0, 0, . . . , 0,

(k+1)/2︷ ︸︸ ︷
0, 0, . . . , 0,

(k−1)/2︷ ︸︸ ︷
1, 1, . . . , 1);

• u13 = (

(k+1)/2︷ ︸︸ ︷
0, 0, . . . , 0,

(k−1)/2︷ ︸︸ ︷
1, 1, . . . , 1,

(k−1)/2︷ ︸︸ ︷
0, 0, . . . , 0,

(k+1)/2︷ ︸︸ ︷
1, 1, . . . , 1);

• u14 = (

(k−1)/2︷ ︸︸ ︷
0, 0, . . . , 0,

(k+1)/2︷ ︸︸ ︷
1, 1, . . . , 1,

(k−1)/2︷ ︸︸ ︷
1, 1, . . . , 1,

(k+1)/2︷ ︸︸ ︷
0, 0, . . . , 0);

• u15 = (

(k−1)/2︷ ︸︸ ︷
1, 1, . . . , 1, 0,

k−1︷ ︸︸ ︷
1, 1, . . . , 1, 0,

(k−1)/2︷ ︸︸ ︷
1, 1, . . . , 1).

All five agents have a maximin share of 1, but as in the previous case, any combination of a good

from the first k goods and one from the last k yields no utility to some agent.

5.5 Conclusion and Future Work

In this chapter, we study the problem of approximating the maximin share when we allocate goods

to groups of agents. When there are two groups, we characterize the cardinality of the groups for

which we can obtain a positive approximation of the maximin share. We also show positive and

negative results for approximation when there are several groups.

We conclude the chapter by listing some future directions. For two groups, closing the gap

between the lower and upper bounds of the approximation ratios (Table 5.1) is a significant problem

from a theoretical point of view but perhaps even more so from a practical one. In particular, it

would be especially interesting to determine the asymptotic behavior of the best approximation ratio

when one group contains a single agent and the number of agent in the other group grows. For the

case of several groups, one can ask whether it is in general possible to obtain a positive approximation

when some groups contain a single agent while others contain two agents; the techniques that we

present in this chapter do not seem to extend easily to this case. Another question is to determine

whether the dependence on the number of groups in the approximation ratio (Theorem 5.4.1) is

necessary. One could also address the issue of truthfulness or add constraints on the allocation, for

example by requiring that the allocation form a contiguous block on a line, as has been done for the

traditional fair division setting [6, 24, 151].

In light of the fact that the positive results in this chapter only hold for groups with a small

number of agents, a natural question is whether we can relax the fairness notion in order to allow
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for more positive results. For example, one could consider only requiring that a certain fraction of

agents in each group, instead of all of them, think that the allocation is fair. Alternatively, if we use

envy-freeness as the fairness notion, then a possible relaxation is to require envy-freeness only up to

some number of goods, where the number of goods could depend on the number of agents in each

group. We will explore both of these directions in the next chapter.



Chapter 6

Democratic Fair Allocation of

Indivisible Goods

6.1 Introduction

In the last chapter, we have seen fairness guarantees for groups of agents based on the maximin

share. While such guarantees are possible for groups with certain numbers of agents, there does

not always exist an allocation that gives all agents a positive fraction of their maximin share. The

impossibility occurs even for two groups with three agents each (Proposition 5.3.2). This shows that

the “unanimous fairness” notion that we have worked with so far might be too strong to be practical

in a number of situations.

What do groups do when they cannot attain unanimity? In democratic societies, they use some

kind of voting. The premise of voting is that it is impossible to satisfy everyone, so we should

try to satisfy as many members as possible. Based on this observation, we say that a division is

h-democratic fair, for some fairness notion and for some h ∈ [0, 1], if at least a fraction h of the

agents in each group believe it is fair. We would like h, the fraction of happy agents, to be as large

as possible. We thus pose the following question:

Given a fairness notion, what is the largest h such that an h-democratic fair allocation

of indivisible goods can always be found?

Our goal in this chapter is to answer the above question for different fairness notions.

Initially, in Section 6.3 we consider two groups of agents with binary valuations. We study a

relaxation of envy-freeness called envy-freeness up to c goods (EFc).1 One might expect to have a

trade-off curve where a larger c corresponds to a larger h. However, we find that the actual trade-off

1See Definition 2.1.1.

67
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h ↓ | q → (0, 1/2] (1/2, 1]

(0, 1/3]
Yes (Cor. 6.4.2)

Bin: Yes (Thm. 6.4.1), Add: ?
(1/3, 1/2] Bin: Yes (↑), Add: No (↓)
(1/2, 2/3] ? Bin: ?, Add: No (Prop. 6.4.3)
(2/3, 1] No (Prop. 6.3.1)

h EFc for any constant c ≥ 1

(0, 1/2] Yes (Thm. 6.4.1)
(1/2, 1] No (Prop. 6.3.5)

Table 6.1: Summary of results for two groups of agents with Binary and Additive valuations. For
each range of h, q ∈ (0, 1], the table shows whether there always exists an allocation that gives at
least a fraction h of the agents in each group at least a fraction q of their maximin share. For EFc,
the results hold for monotonic valuations too. The arrows refer to the directions pointed to in the
table. The table is clearer when viewed in color.

curve is degenerate: for every constant c, it is not possible to guarantee more than 1/2-democratic

EFc (Proposition 6.3.5); as we show later, the bound 1/2 is tight. The same holds for MMS fairness.

Next, in Section 6.4 we consider two groups whose agents have arbitrary monotonic valuations.

We present an efficient protocol that guarantees EF1 to at least 1/2 of the agents in each group

(Theorem 6.4.1); as mentioned in the previous paragraph, the factor 1/2 is tight even for agents

with binary valuations. When all agents have additive valuations, this protocol guarantees 1/2 of

the MMS to 1/2 of the agents (Corollary 6.4.2). This is tight: one cannot guarantee more than

1/2 of the MMS to more than 1/3 of the agents (Proposition 6.4.3). If we are instead interested in

relaxing envy-freeness, it is possible to guarantee unanimous EF(n − 1) when agents have additive

valuations, where n denotes the total number of agents in the two groups (Theorem 6.4.4).

Finally, in Section 6.5 we present two generalizations of our results to k ≥ 3 groups. The first

generalization has stronger fairness guarantees: when all valuations are binary, it guarantees to 1/k

of the agents in all groups both EF1 and MMS; the factor 1/k is tight for EF1 (Theorem 6.5.1).

When valuations are additive, it guarantees an additive approximation to EF and MMS. However, the

running time of the protocol might be exponential. The second generalization relies on a polynomial-

time protocol but provides weaker guarantees: when all valuations are binary, it guarantees MMS

to 1/k of the agents (Theorem 6.5.6), and when valuations are additive, it guarantees an additive

approximation to MMS (Theorem 6.5.5).

Some of our results and open questions are summarized in Table 6.1.

6.2 Preliminaries

The basic definitions and notation of the group fair division setting are introduced in Section 2.1.

Unlike in the last two chapters, we do not always assume in this chapter that agents have additive
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valuations. Since we will be primarily concerned with EF1 and MMS-fairness, we state and prove a

proposition that shows an interesting link between the two notions.

Proposition 6.2.1. If an allocation is EF1 for an agent with an additive utility function, then

(a) it is also 1/k-MMS-fair for that agent—the factor 1/k is tight;

(b) if the agent’s utility function is binary, then the allocation is also MMS-fair for that agent.

Proof. Denote by u the utility function of the agent and assume without loss of generality that the

agent is in group A1. We prove the two parts in order.

(a) EF1 implies that in each bundle Gi 6= G1, there exists a subset Ci with |Ci| ≤ 1 such that

u(G1) ≥ u(Gi\Ci). Summing over all bundles gives k · u(G1) ≥ u(G\(C2 ∪ C3 ∪ · · · ∪ Ck)).

Now, in any partition of G into k bundles, there is at least one bundle that does not contain

any good in C2 ∪C3 ∪ · · · ∪Ck. This bundle is contained in G\(C2 ∪C3 ∪ · · · ∪Ck). Therefore,

the MMS is at most u(G\(C2 ∪ C3 ∪ · · · ∪ Ck)), which is at most k · u(G1). Therefore, u(G1)

is at least 1/k of the MMS.

To show that the factor 1/k is tight, assume that there are 2k − 1 goods with u(g1) =

u(g2) = · · · = u(gk) = 1 and u(gk+1) = u(gk+2) = · · · = u(g2k−1) = k. If the agent’s

group A1 gets g1 and group i gets {gi, gk+i−1} for i = 2, 3, . . . , k, the agent gets utility 1

and finds the allocation EF1. However, the MMS is k, as can be seen from the partition

({g1, g2, . . . , gk}, {gk+1}, {gk+2}, . . . , {g2k−1}).

(b) Suppose that the agent’s group gets l of the agent’s desired goods. EF1 implies that each of

the other k− 1 groups gets at most l+ 1 of the agent’s desired goods. Hence the agent has at

most l+ (k− 1)(l+ 1) = kl+ k− 1 desired goods. Therefore the agent’s MMS is at most l, so

the allocation is MMS-fair for her.

This concludes the proof.

6.3 Two Groups with Binary Valuations

This section considers the special case in which there are two groups, the agents have additive

valuations, and each agent either desires a good (in which case her utility for the good is 1) or

does not desire it (in which case her utility is 0). Even in this special case, some fairness guar-

antees are unattainable. The instance used in the following proposition is the same as the one in

Proposition 5.3.2.

Proposition 6.3.1. For any h > 2/3, there is an instance with two groups of agents with binary

valuations in which no allocation is h-democratic positive-MMS-fair.
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Proof. There are three goods. In each group there are three agents, each of whom has utility 0 for

a unique good and utility 1 for each of the other two goods. Each agent has a positive MMS (1),

but no allocation gives all agents a positive utility.

We next leverage a combinatorial construction of Erdős to show the limitations of 1-out-of-c

MMS-fairness.

Lemma 6.3.2. For any integer c ≥ 2, there is an instance with two groups each consisting of c22c+1

agents with binary valuations, such that each agent desires c goods but no allocation gives all agents

a positive utility.

Proof. Erdős [58] proved that for any positive integer c, there exists a collection C of c22c+1 subsets

of size c of a base set G that does not have “property B”. This means that no matter how we

partition G into two subsets G1 and G2, some subset in C has an empty intersection with G1 or G2.

Take the elements of G to be our goods. Each group consists of c22c+1 agents, each of whom

desires all goods in a unique subset of goods in C. Then every agent desires c goods, but no allocation

gives all agents a positive utility.

Proposition 6.3.3. For any integer c ≥ 2 and any h > 1 − 1
c22c+1 , there is an instance with two

groups of agents with binary valuations in which no allocation is h-democratic 1-out-of-c MMS-fair.

Proof. Consider the instance from Lemma 6.3.2. The 1-out-of-c MMS of an agent who desires c

goods is positive (1), but no allocation gives all agents a positive utility.

As Lemma 6.3.2 shows, in certain instances it might be impossible to give every agent a positive

utility. Interestingly, deciding whether an instance admits an allocation that leaves no agent with

zero utility is an NP-complete problem.

Proposition 6.3.4. Deciding whether an instance with two groups of agents with binary valuations

admits an allocation that gives every agent a positive utility is NP-complete.

Proof. For any allocation, we can clearly verify in polynomial time whether it yields a positive utility

to every agent. To show that the problem is NP-hard, we reduce from Monotone SAT, a variant

of the classical satisfiability problem where each clause contains either only positive literals or only

negative literals. Monotone SAT is known to be NP-hard [70, p. 259].

Given a Monotone SAT formula φ with variables x1, x2, . . . , xm, let there be m items corre-

sponding to the m variables. For each clause that contains only positive literals, we construct an

agent in the first group who values exactly the items contained in this clause. Similarly, for each

clause that contains only negative literals, we construct an agent in the second group who values

exactly the items contained in this clause. Any assignment that satisfies φ gives rise to an allocation

where the items corresponding to true variables in the assignment are allocated to the first group

and those corresponding to false variables in the assignment are allocated to the second group; this
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allocation gives every agent nonzero utility. Likewise, any allocation that gives every agent nonzero

utility yields a satisfying assignment of φ. Hence the reduction is valid.

If we change the fairness requirement from MMS to EFc, then we can satisfy no more than half

of the agents in each group.

Proposition 6.3.5. For any constant integer c ≥ 1 and any h > 1/2, there is an instance with two

groups of agents with binary valuations in which no allocation is h-democratic EFc.

Proof. Consider an instance with m = 4l goods and
(

4l
2l

)
agents in each group, for some l ≥ 1. Each

agent desires a unique subset of 2l goods. An allocation is EFc for an agent if and only if her group

receives at least l − bc/2c of her 2l desired goods.

The symmetry between the groups implies that the best fairness guarantee can be attained by

giving exactly 2l goods to each group; the symmetry between the goods implies that it does not

matter which 2l goods are given to which group. In each such allocation, the number of a group’s

members who receive exactly j desired goods is
(

2l
j

)
·
(

4l−2l
2l−j

)
=
(

2l
j

)2
. Therefore, the number of a

group’s members who receive at least l−bc/2c desired goods is:
∑2l
j=l−bc/2c

(
2l
j

)2
=
∑l−1
j=l−bc/2c

(
2l
j

)2
+

1
2

(
2l
l

)2
+ 1

2

(
4l
2l

)
, where the equality follows from expanding the central binomial coefficient

(
4l
2l

)
. The

fraction of a group’s members who think the division is EFc is attained by dividing this expression

by
(

4l
2l

)
. This fraction is:

1

2
+

1

2
·
(

2l
l

)2(
4l
2l

) +

∑l−1
j=l−bc/2c

(
2l
j

)2(
4l
2l

) ≤ 1

2

(
1 + (c+ 1)

(
2l
l

)2(
4l
2l

) ) .
Using Stirling’s approximation, we find that

(
2l
l

)
∼ 4l√

πl
, so

(
2l
l

)2(
4l
2l

) ∼ 42l

πl
42l√
2πl

=

√
2

πl
.

As l→∞, the fraction of agents in each group who think that the allocation is EFc approaches 1/2,

as claimed.

6.4 Two Groups with General Valuations

In this section, we assume that there are two groups and each agent has an arbitrary monotonic

utility function.

We start with a positive result: it is always possible to efficiently allocate goods so that at least

half of the agents in each group believe the division is EF1. The protocol mirrors the well-known

“cut-and-choose” protocol for dividing a cake between two agents.
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Theorem 6.4.1. For two groups of agents with monotonic valuations, 1/2-democratic EF1 is at-

tainable.

Proof. We arrange the goods in a line and process them from left to right. Starting from an empty

block, we add one good at a time until the current block is EF1 for at least half of the agents in at

least one group. We allocate the current block to one such group, and the remaining goods to the

other group.

Since the whole set of goods is EF1 for both groups, the protocol terminates. Assume without

loss of generality that the left block G1 is allocated to the first group A1, and the right block G2 to

the second group A2. By the description of the protocol, the allocation is EF1 for at least half of

the agents in A1, so it remains to show that the same holds for A2. Let g be the last good added to

the left block. More than half of the agents in A2 think that G1\{g} is not EF1, so for these agents,

G1\{g} is worth less than G2 ∪ {g}\{g′} for any g′ ∈ G2 ∪ {g}. Taking g′ = g, we find that these

agents value G1\{g} less than G2. But this implies that the agents find G2 to be EF1, completing

the proof.

Theorem 6.4.1 shows that if the goods lie on a line, we can find a 1/2-democratic EF1 allocation

that moreover gives each group a contiguous block on the line. This may be important, for example,

if the goods are houses on a street and each group wants to have all its houses in a contiguous

block [24, 151].

If agents have additive valuations, Proposition 6.2.1 implies:

Corollary 6.4.2. For two groups with additive agents, 1/2-democratic 1/2-MMS-fairness is attain-

able.

For EF1, the factor 1/2 in Theorem 6.4.1 is tight even for binary valuations, as shown in Proposi-

tion 6.3.5. For 1/2-MMS-fairness, the factor 1/2 in Corollary 6.4.2 is “almost” tight, as the following

proposition shows.

Proposition 6.4.3. For any h > 1/3 and q > 1/2, there is an instance with two groups of agents

with additive valuations in which no allocation is h-democratic q-MMS-fair.

Proof. Consider an instance with m = 3 goods and n1 = n2 = 3 agents in each group, with utility

vectors: ui1 = (2, 1, 1), ui2 = (1, 2, 1), and ui3 = (1, 1, 2) for i = 1, 2. The MMS of every agent

is 2. In any allocation, one group receives at most one good, so at most one of its three agents

receives utility more than 1. In that group, at most 1/3 of the agents receive more than 1/2 of their

MMS.

A corollary of Proposition 6.4.3 is that for every h ∈ (1/3, 1/2], the maximum fraction q such

that there always exists an h-democratic q-MMS-fair allocation is q = 1/2.

Proposition 6.3.5 shows that the factor 1/2 in Theorem 6.4.1 cannot be improved even for agents

with binary valuations and even if we relax EF1 to EFc for any constant c. Nevertheless, if we let
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the relaxation of envy-freeness depend on the number of agents, it is possible to obtain a unanimous

fairness guarantee.

Theorem 6.4.4. For any two groups of agents with additive valuations, there exists an allocation

that is EF(n− 1) for all agents, where n = n1 + n2 is the total number of agents in both groups.

Proof. Choose an arbitrary agent in one of the groups. We will partition the goods into two parts

and let the agent choose the part that she prefers. The resulting allocation is envy-free and therefore

EF(n−1) for this agent. Hence it suffices to show that there exists a partition in which each bundle

is EF(n− 1) (with respect to the other bundle) for all of the remaining n− 1 agents.

To this end, assume that there is a divisible good, which we refer to as a cake, represented by

the half-open interval (0,m]. The value density functions of the agents over the cake are piecewise

constant: for every l ∈ {1, 2, . . . ,m}, the value density vij in the half-open interval (l − 1, l] equals

uij(gl).

It is known that there exists a partition of the cake into two parts, using at most n − 1 cuts,

in which every agent has equal value for both parts [3]. Starting with two empty bundles, for each

l ∈ {1, 2, . . . ,m}, we add good gl to the bundle corresponding to the part that contains at least half

of the interval (l− 1, l]. (If both parts contain exactly half of the interval, we add gl to an arbitrary

bundle.)

We claim that every agent finds either bundle to be EF(n−1). Fix an agent aij and a bundle G′.

From our partitioning choice, we have that uij(G\G′)− uij(G′) ≤ uij(G′′) for some set G′′ ⊆ G\G′

of size at most n− 1. This implies that the agent finds G′ to be EF(n− 1) with respect to G \G′,
as claimed.

6.5 Three or More Groups

In this section we study the most general setting where we allocate goods among any number of

groups. When there are two groups, the protocol in Theorem 6.4.1 is computationally efficient

and yields an allocation that is both approximately envy-free and approximately MMS-fair. We

present two ways of generalizing the result to multiple groups: one keeps the approximate envy-

freeness guarantee but loses computational efficiency, while the other keeps only the approximate

MMS-fairness guarantee but also retains computational efficiency.

6.5.1 Approximate Envy-Freeness

The main theorem of this subsection is the following.

Theorem 6.5.1. When all agents have binary valuations, there exists an allocation that is 1/k-

democratic EF1 and 1/k-democratic MMS-fair. The factor 1/k is tight for EF1.
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To establish this theorem, we prove two lemmas that may be of independent interest—one on

the allocation of divisible goods (“cake cutting”) and the other on group allocation for agents with

additive valuations.

The result on cake cutting generalizes the theorems of Stromquist [142] and Su [144], who proved

the existence of contiguous envy-free cake allocations for individual agents. Since these results

are well-known, we present the model and proof quite briefly, focusing on the changes required to

generalize from individuals to groups.

We consider a “cake” modeled as the interval [0, 1]. Each agent aij has a value density function

vij : [0, 1] → R≥0. The value of an agent for a piece X is Vij(X) =
∫
x∈X vij(x)dx. Denoting by Xi

the allocation to group i, an allocation is envy-free for an agent aij if Vij(Xi) ≥ Vij(Xi′) for every

group i′. A contiguous allocation is an allocation of the cake in which each group gets a contiguous

interval.

Lemma 6.5.2. There always exists a contiguous cake allocation that is 1/k-democratic envy-free.

The factor 1/k is tight.

Proof. The space of all contiguous partitions corresponds to the standard simplex in Rk. Triangulate

that simplex and assign each vertex of the triangulation to one of the groups. In each vertex,

ask the group owning that vertex to select one of the k pieces using plurality voting among its

members, breaking ties arbitrarily. Label that vertex with the group’s selection. The resulting

labeling satisfies the conditions of Sperner’s lemma (see Su [144]). Therefore, the triangulation has

a Sperner subsimplex—a subsimplex all of whose labels are different. We can repeat this process

with finer and finer triangulations. This gives an infinite sequence of smaller and smaller Sperner

subsimplices. This sequence has a subsequence that converges to a single point. By the continuity of

preferences, this limit point corresponds to a partition in which each group selects a different piece.

Since the selection is by plurality, at least 1/k of the agents in each group prefer their group’s piece

over all other pieces.

The tightness of the 1/k factor follows from Lemma 6 of Segal Halevi and Nitzan [133]. It

shows an example with k groups and n′ agents in each group with the property that in order to

give a positive value to q out of n′ agents in each group, we need to cut the cake into at least

k(kq − n′)/(k − 1) intervals. In a contiguous partition there are exactly k intervals. Therefore, the

fraction of agents in each group that can be guaranteed a positive value is q/n′ ≤ 1/k+1/n′−1/kn′.

Since n′ can be arbitrarily large, the largest fraction that can be guaranteed is 1/k.

The next lemma presents a reduction from approximate envy-free allocation of indivisible goods

to envy-free cake cutting. We call this approximation “EF-minus-2”. An allocation is EF-minus-2

for agent aij if for every group i′, uij(Gi) > uij(Gi′)− 2uij,max. The reduction generalizes Theorem

5 of Suksompong [151]; a similar reduction was used in Theorem 3 of Barrera et al. [17].
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Lemma 6.5.3. When agents have additive valuations, there always exists a contiguous allocation

of indivisible goods that is 1/k-democratic EF-minus-2.

Proof. We create an instance of the cake cutting problem in the following way.

• The cake is the half-open interval (0,m].

• The value density functions are piecewise constant: for every l ∈ {1, . . . ,m}, the value density

vij in the half-open interval (l − 1, l] equals uij(gl).

By Lemma 6.5.2, there exists a contiguous cake allocation that is envy-free for at least 1/k of

the agents in each group. From this allocation we construct an allocation of goods as follows.

• If point g of the cake is in the interior of a piece, then good g is given to the group owning

that piece.

• If point g of the cake is at the boundary between two pieces, then good g is given to the group

owning the piece to its left.

A group gets good g only if it owns a positive fraction of the interval (g − 1, g]. Hence, in the

allocation, each group loses strictly less than the value of a good and gains strictly less than the

value of a good (relative to its value in the cake division). This means that every agent who believes

that the cake allocation is envy-free also believes that the allocation of the goods is EF-minus-2.

We are now ready to prove Theorem 6.5.1.

Proof of Theorem 6.5.1. Suppose an allocation is EF-minus-2 for some agent aij . This means that

the agent’s envy towards any other group is less than 2uij,max ≤ 2. Since the agent has binary

valuations, the envy is at most 1, meaning that the allocation is EF1 for that agent. Hence any

1/k-democratic EF-minus-2 allocation, which is guaranteed to exist by Lemma 6.5.3, is also 1/k-

democratic EF1. By Proposition 6.2.1 it is also 1/k-democratic MMS-fair.

We next show that the factor 1/k is tight. Assume that there are m = km′ goods for some large

positive integer m′. Each group consists of 2m agents, each of whom values a distinct combination

of the goods. Consider first an allocation that gives exactly m′ goods to each group, and fix a group.

We claim that the fraction of the agents in the group whose utilities for some two bundles differ by

at most 1 converges to 0 for large m′. Indeed, this follows from the central limit theorem: Fix two

bundles and consider a random agent from the group; let X be the random variable denoting the

(possibly negative) difference between the agent’s utilities for the two bundles. Then X is a sum of

m′ independent and identically distributed random variables with mean 0. The central limit theorem

implies that for any fixed ε > 0, there exists a constant c such that Pr[|X| ≤ 1] ≤ Pr[|X| ≤ c
√
m′] ≤ ε

for any sufficiently large m′. Taking the union bound over all pairs of bundles, we find that the

fraction of agents in the group who value some two bundles within 1 of each other approaches 0 as
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m′ goes to infinity. This means that all but a negligible fraction of the agents find only one bundle

to be EF1. By symmetry, 1/k of these agents find the bundle allocated to the group to be EF1. It

follows that the fraction of agents in the group for whom the allocation is EF1 converges to 1/k.

It remains to consider the case where the allocation does not give the same number of goods to

all groups. In this case, let G denote the set of bundles with the smallest number of goods, which

must be strictly smaller than m′. If we move goods from bundles with more than m′ goods to

bundles in G in such a way that the number of goods in each bundle in G increases by exactly one,

the fraction of agents in an arbitrary group that receives a bundle in G who finds the allocation

to be EF1 can only increase. We can repeat this process, at each step possibly adding bundles to

G, until all bundles contain the same number of goods, which is the case we have already handled.

Since the fraction of agents for whom the allocation is EF1 is bounded above by 1/k for large m′ in

the latter allocation, and this fraction only increases during our process of moving goods, the same

is true for the original allocation.

The cake cutting protocol of Lemma 6.5.2 might take infinitely many steps to converge. In fact,

there is no finite protocol for contiguous envy-free cake cutting even for individuals [143]. However,

the division guaranteed by Lemma 6.5.3 and Theorem 6.5.1 can be found in finite time (exponential

in the input size) by checking all possible allocations. An interesting open question is whether a

faster algorithm exists.

6.5.2 Approximate Maximin Share

In this subsection, we show that if we weaken our fairness requirement to approximate MMS, it is

possible to compute a fair allocation in time polynomial in the input size.

Lemma 6.5.4. When agents have additive valuations, there always exists an allocation such that

at least 1/k of the agents aij in each group Ai receive utility at least 1
k · uij(G)− k−1

k · uij,max, and

such an allocation can be computed efficiently.

This lemma generalizes the corresponding result for the setting with one agent per group by

Suksompong [151]. The factor (k − 1)/k is tight even for individual agents.

Proof. We arrange the goods in a line and process them from left to right. Starting from an empty

block, we add one good at a time until the current block yields utility at least 1
k ·uij(G)− k−1

k ·uij,max

for at least 1/k of the agents in at least one group. We allocate the current block to one such group

and repeat the process with the remaining k − 1 groups. It is clear that this algorithm can be

implemented efficiently. Any group that receives a block from the algorithm meets the requirement,

so it suffices to show that the algorithm allocates a block to every group. We claim that if l groups

are yet to receive a block, at least l/k of the agents aij in each of these groups have utility at least
l
k · uij(G) − k−l

k · uij,max for the remaining goods. This would imply the desired result because for



CHAPTER 6. DEMOCRATIC FAIR ALLOCATION OF INDIVISIBLE GOODS 77

the last group, at least 1/k of the agents have utility 1
k · uij(G)− k−1

k · uij,max, which is exactly our

requirement.

To show the claim, we proceed by backward induction on l. The claim trivially holds when l = k.

Suppose that the statement holds when there are l + 1 groups left, and consider a group j that is

not the next one to receive a block. At least (l + 1)/k of the agents aij in the group have utility

at least l+1
k · uij(G)− k−l−1

k · uij,max for the remaining goods. Since the group does not receive the

next block, less than 1/k of the agents in the group have utility at least 1
k · uij(G) − k−1

k · uij,max

for the block excluding the last good. Hence, less than 1/k of the agents have utility at least
1
k ·uij(G) + 1

k ·uij,max for the whole block. This means that at least l/k of the agents have utility at

least
(
l+1
k · uij(G)− k−l−1

k · uij,max

)
−
(

1
k · uij(G) + 1

k · uij,max

)
= l

k ·uij(G)− k−l
k ·uij,max, completing

the induction.

It is clear by definition that the MMS of any agent aij is at most 1
k · uij(G). Lemma 6.5.4

therefore implies the following theorem.

Theorem 6.5.5. When agents have additive valuations, there always exists an allocation such that

at least 1/k of the agents aij in each group Ai receive utility at least MMSij(G)− k−1
k · uij,max, and

such an allocation can be computed efficiently.

For binary valuations, if we change the stopping condition in Lemma 6.5.4 to be when the current

block yields the MMS for at least 1/k of the agents in some group, we get the following guarantee.

Theorem 6.5.6. When agents have binary valuations, there always exists a 1/k-democratic MMS-

fair allocation, and such an allocation can be computed efficiently.

6.6 Conclusion and Future Work

In this chapter, we initiate the study of democratic fairness in the allocation of indivisible goods

among groups. For two groups, we have a comprehensive understanding of possible democratic

fairness guarantees. We have a complete characterization of possible envy-freeness approximations,

and upper and lower bounds for maximin-share-fairness approximations. Some remaining gaps are

shown in Table 6.1; closing them raises interesting combinatorial challenges.

For k ≥ 3 groups, the challenges are much greater. Currently all of our fairness guarantees are to

no more than 1/k of the agents in each group. From a practical perspective, it may be important in

some settings to give fairness guarantees to at least half of the agents in all groups. Finding protocols

that provide such guarantees is an avenue for future work. From an algorithmic perspective, it is

interesting whether there exists a polynomial-time algorithm that guarantees EF1 to any positive

fraction of the agents.
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Chapter 7

On the Structure of Stable

Tournament Solutions

7.1 Introduction

In the second part of the dissertation, we turn our attention to decision making problems, where our

goal is to choose the “best” alternatives from a given set of alternatives. We begin in this chapter

by assuming the existence of a dominance relation between the alternatives—in other words, the

alternatives form a tournament.1 The question of selecting the best alternatives in this setting

has been studied in detail in the literature on tournament solutions. The lack of transitivity is

typically attributed to the independence of pairwise comparisons as they arise in sports competitions,

multi-criteria decision analysis, and preference aggregation.2 In particular, the pairwise majority

relation of a profile of transitive individual preference relations often forms the basis of the study

of tournament solutions. This is justified by a theorem due to McGarvey [112], which shows that

every tournament can be induced by some underlying preference profile. Many tournament solutions

therefore correspond to well-known social choice functions such as Copeland’s rule, Slater’s rule, the

Banks set, and the bipartisan set.

Over the years, many desirable properties of tournament solutions have been proposed. Some of

these properties, so-called choice consistency conditions, make no reference to the actual tournament

but only relate choices from different subtournaments to each other. An important choice consistency

condition, which goes under various names, requires that the choice set is invariant under the removal

of unchosen alternatives. In conjunction with a dual condition on expanded feasible sets, this

property is known as stability [41]. Stability implies that choices are made in a robust and coherent

1See Section 2.2.
2Due to their generality, tournament solutions have also found applications in unrelated areas such as biology [2,

96, 129, 139].
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way. Furthermore, stable choice functions can be rationalized by a preference relation on sets of

alternatives.

Examples of stable tournament solutions are the top cycle, the minimal covering set, and the

bipartisan set. The latter is elegantly defined via the support of the unique mixed maximin strategies

of the zero-sum game given by the tournament’s skew-adjacency matrix. Curiously, for some tour-

nament solutions, including the tournament equilibrium set and the minimal extending set, proving

or disproving stability turned out to be exceedingly difficult. As a matter of fact, whether the tour-

nament equilibrium set satisfies stability was open for more than two decades before the existence

of counterexamples with about 10136 alternatives was shown using the probabilistic method.

Brandt [31] systematically constructed stable tournament solutions by applying a well-defined

operation to existing (non-stable) tournament solutions. Brandt’s study was restricted to a particular

class of generating tournament solutions, namely tournament solutions that can be defined via

qualified subsets (such as the uncovered set and the Banks set). For any such generator, Brandt

gave sufficient conditions for the resulting tournament solution to be stable. Later, Brandt et al. [42]

showed that for one particular generator, the Banks set, the sufficient conditions for stability are

also necessary.

In this chapter, we show that every stable choice function is generated by a unique underlying

simple choice function, which never excludes more than one alternative (Theorem 7.3.1). We go

on to prove a general characterization of stable tournament solutions that is not restricted to gen-

erators defined via qualified subsets (Theorem 7.3.4). As a corollary, we obtain that the sufficient

conditions for generators defined via qualified subsets are also necessary (Corollary 7.3.6). Finally,

we prove a strong connection between stability and a new property of tournament solutions called

local reversal symmetry (Theorem 7.6.3). Local reversal symmetry requires that an alternative is

chosen if and only if it is unchosen when all its incident edges are inverted. This result allows us to

settle two important problems in the theory of tournament solutions. We provide the first concrete

tournament—consisting of 24 alternatives—in which the tournament equilibrium set violates sta-

bility (Theorem 7.6.4). Secondly, we prove that there is no more discriminating stable tournament

solution than the bipartisan set (Corollary 7.6.7). We also axiomatically characterize the bipartisan

set by using only properties that have been previously proposed in the literature (Corollary 7.6.10).

We believe that these results serve as a strong argument in favor of the bipartisan set if choice

consistency is desired.

7.2 Stable Sets and Stable Choice Functions

Let U be a universal set of alternatives. Any finite non-empty subset of U will be called a feasible

set. Before we analyze tournament solutions in Section 7.4, we first consider a more general model

of choice which does not impose any structure on feasible sets. A choice function is a function that
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maps every feasible set A to a non-empty subset of A called the choice set of A. For two choice

functions S and S′, we write S′ ⊆ S, and say that S′ is a refinement of S and S a coarsening of S′,

if S′(A) ⊆ S(A) for all feasible sets A. A choice function S is called trivial if S(A) = A for all

feasible sets A.

Brandt [31] proposed a general method for refining a choice function S by defining minimal

sets that satisfy internal and external stability criteria with respect to S, similar to von-Neumann–

Morgenstern stable sets in cooperative game theory.3

A subset of alternatives X ⊆ A is called S-stable within feasible set A for choice function S if

it consists precisely of those alternatives that are chosen in the presence of all alternatives in X.

Formally, X is S-stable in A if

X = {a ∈ A : a ∈ S(X ∪ {a})}.

Equivalently, X is S-stable if and only if

S(X) = X, and (internal stability)

a /∈ S(X ∪ {a}) for all a ∈ A \X. (external stability)

The intuition underlying this formulation is that there should be no reason to restrict the choice set

by excluding some alternative from it (internal stability) and there should be an argument against

each proposal to include an outside alternative into the choice set (external stability).

An S-stable set is inclusion-minimal (or simply minimal) if it does not contain another S-

stable set. Ŝ(A) is defined as the union of all minimal S-stable sets in A. Ŝ defines a choice

function whenever every feasible set admits at least one S-stable set. In general, however, neither

the existence of S-stable sets nor the uniqueness of minimal S-stable sets is guaranteed. We say that

Ŝ is well-defined if every choice set admits exactly one minimal S-stable set. We can now define the

central concept of this chapter.

Definition 7.2.1. A choice function S is stable if Ŝ is well-defined and S = Ŝ.

Stability is connected to rationalizability and non-manipulability. In fact, every stable choice

function can be rationalized via a preference relation on sets of alternatives [41] and, in the context

of social choice, stability and monotonicity imply strategyproofness with respect to Kelly’s preference

extension [31].

The following example illustrates the preceding definitions. Consider universe U = {a, b, c} and

choice function S given by the table below (choices from singleton sets are trivial and therefore

3This is a generalization of earlier work by Dutta [57], who defined the minimal covering set as the unique minimal
set that is internally and externally stable with respect to the uncovered set (see Section 7.4).



CHAPTER 7. ON THE STRUCTURE OF STABLE TOURNAMENT SOLUTIONS 82

B C

S(B)

B C

S(C)

B ∪ C

S(B ∪ C)

Figure 7.1: Visualization of stability. A stable choice function S chooses a set from both B (left)
and C (middle) if and only if it chooses the same set from B ∪C (right). The direction from the left
and middle diagrams to the right diagram corresponds to γ̂ while the converse direction corresponds
to α̂.

omitted).

X S(X) Ŝ(X)

{a, b} {a} {a}
{b, c} {b} {b}
{a, c} {a} {a}
{a, b, c} {a, b, c} {a}

The feasible set {a, b, c} admits exactly two S-stable sets, {a, b, c} itself and {a}. The latter holds

because S({a}) = {a} (internal stability) and S({a, b}) = S({a, c}) = {a} (external stability). All

other feasible sets X admit unique S-stable sets, which coincide with S(X). Hence, Ŝ is well-defined

and given by the entries in the rightmost column of the table. Since S 6= Ŝ, S fails to be stable. Ŝ,

on the other hand, satisfies stability.

Choice functions are usually evaluated by checking whether they satisfy choice consistency con-

ditions that relate choices from different feasible sets to each other. The following two properties,

α̂ and γ̂, are set-based variants of Sen’s α and γ [136]. α̂ is a rather prominent choice-theoretic

condition, also known as Chernoff’s postulate 5∗ [50], the strong superset property [23], outcast [1],

and the attention filter axiom [109].4

Definition 7.2.2. A choice function S satisfies α̂ if for all feasible sets B and C,

S(B) ⊆ C ⊆ B implies S(C) = S(B). (α̂)

A choice function S satisfies γ̂ if for all feasible sets B and C,

S(B) = S(C) implies S(B) = S(B ∪ C). (γ̂)

It has been shown that stability is equivalent to the conjunction of α̂ and γ̂.

4We refer to [114] for a more thorough discussion of the origins of this condition.
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stability

α̂

α̂⊆ α̂⊇

γ̂

γ̂⊆ γ̂⊇

idempotency

Figure 7.2: Logical relationships between choice-theoretic properties

Theorem 7.2.3 ([41]). A choice function is stable if and only if it satisfies α̂ and γ̂.

Hence, a choice function S is stable if and only if for all feasible sets B, C, and X with X ⊆ B∩C,

X = S(B) and X = S(C) if and only if X = S(B ∪ C).

Stability, α̂, and γ̂ are illustrated in Figure 7.1.

For a finer analysis, we split α̂ and γ̂ into two conditions [41, Remark 1].

Definition 7.2.4. A choice function S satisfies

• α̂⊆ if for all B,C, it holds that S(B) ⊆ C ⊆ B implies S(C) ⊆ S(B),5

• α̂⊇ if for all B,C, it holds that S(B) ⊆ C ⊆ B implies S(C) ⊇ S(B),

• γ̂⊆ if for all B,C, it holds that S(B) = S(C) implies S(B) ⊆ S(B ∪ C), and

• γ̂⊇ if for all B,C, it holds that S(B) = S(C) implies S(B) ⊇ S(B ∪ C).

Obviously, for any choice function S we have

S satisfies α̂ if and only if S satisfies α̂⊆ and α̂⊇ , and

S satisfies γ̂ if and only if S satisfies γ̂⊆ and γ̂⊇ .

A choice function is idempotent if the choice set is invariant under repeated application of the

choice function, i.e., S(S(A)) = S(A) for all feasible sets A. It is easily seen that α̂⊇ is stronger

than idempotency since S(S(A)) ⊇ S(A) implies S(S(A)) = S(A).

Figure 7.2 shows the logical relationships between stability and its weakenings.

5α̂⊆ has also been called the Aı̈zerman property or the weak superset property (e.g., [31, 98]).



CHAPTER 7. ON THE STRUCTURE OF STABLE TOURNAMENT SOLUTIONS 84

7.3 Generators of Stable Choice Functions

We say that a choice function S′ generates a stable choice function S if S = Ŝ′. Understanding

stable choice functions can be reduced to understanding their generators. It turns out that impor-

tant generators of stable choice functions are simple choice functions, i.e., choice functions S′ with

|S′(A)| ≥ |A| − 1 for all A. In fact, every stable choice function S is generated by a unique simple

choice function. To this end, we define the root of a choice function S as

dSe(A) =

S(A) if |S(A)| = |A| − 1,

A otherwise.

Not only does dSe generate S, but any choice function sandwiched between S and dSe is a generator

of S.

Theorem 7.3.1. Let S and S′ be choice functions such that S is stable and S ⊆ S′ ⊆ dSe. Then,

Ŝ′ is well-defined and Ŝ′ = S. In particular, S is generated by the simple choice function dSe.

Proof. We first show that any S-stable set is also S′-stable. Suppose that a set X ⊆ A is S-stable

in A. Then S(X) = X, and a 6∈ S(X ∪ {a}) for all a ∈ A\X. Since S satisfies α̂, we have

S(X ∪ {a}) = X and therefore dSe(X ∪ {a}) = X for all a ∈ A\X. Using the inclusion relationship

S ⊆ S′ ⊆ dSe, we find that S′(X) = X and S′(X ∪{a}) = X for all a ∈ A\X. Hence, X is S′-stable

in A.

Next, we show that every S′-stable set contains an S-stable set. Suppose that a set X ⊆ A

is S′-stable in A. Then S′(X) = X and a 6∈ S′(X ∪ {a}) for all a ∈ A\X. Using the relation

S ⊆ S′, we find that a 6∈ S(X ∪ {a}) for all a ∈ A\X. We will show that S(X) ⊆ X is S-stable

in A. Since S satisfies α̂, we have S(S(X)) = S(X) and S(X ∪ {a}) = S(X) for all a ∈ A\X. It

remains to show that b 6∈ S(S(X) ∪ {b}) for all b ∈ A\S(X). If b ∈ A\X, we already have that

S(X ∪ {b}) = S(X) and therefore S(S(X) ∪ {b}) = S(X) by α̂. Otherwise, if b ∈ X\S(X), α̂ again

implies that S(S(X) ∪ {b}) = S(X).

Since S is stable, for any feasible set A there exists a unique minimal S-stable set in A, which

is given by S(A) = Ŝ(A). From what we have shown, this set is also S′-stable, and moreover any

S′-stable set contains an S-stable set which in turn contains S(A). Hence S(A) is also the unique

minimal S′-stable set in A. This implies that Ŝ′ is well-defined and Ŝ′ = Ŝ = S.

Theorem 7.3.1 entails that in order to understand stable choice functions, we only need to

understand the circumstances under which a single alternative is discarded.6

6Together with Theorem 7.3.4, Theorem 7.3.1 also implies that, for any stable tournament solution S, dSe is a
coarsest generator of S. When only considering generators that satisfy α̂⊆ , dSe is also the coarsest generator of S.

In addition, since simple choice functions trivially satisfy α̂⊆ , the two theorems imply that dSe is the unique simple
choice function generating S.
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An important question is which simple choice functions are roots of stable choice functions. It

follows from the definition of root functions that any root of a stable choice function needs to satisfy

α̂. This condition is, however, not sufficient as it is easy to construct a simple choice function S

that satisfies α̂ such that Ŝ violates α̂. Nevertheless, the theorem implies that the number of stable

choice functions can be bounded by counting the number of simple choice functions that satisfy α̂.

The number of simple choice functions for a universe of size n ≥ 2 is only
∏n
i=2(i+ 1)(

n
i), compared

to
∏n
i=2(2i − 1)(

n
i) for arbitrary choice functions.

In order to give a complete characterization of choice functions that generate stable choice func-

tions, we need to introduce a new property. A choice function S satisfies local α̂ if minimal S-stable

sets are invariant under removing outside alternatives.7

Definition 7.3.2. A choice function S satisfies local α̂ if for any sets X ⊆ Y ⊆ Z such that X is

minimally S-stable in Z, we have that X is also minimally S-stable in Y .

Recall that a choice function S satisfies α̂⊆ if for any sets A,B such that S(A) ⊆ B ⊆ A,

we have S(B) ⊆ S(A). In particular, every simple choice function satisfies α̂⊆ . We will provide a

characterization of choice functions S satisfying α̂⊆ such that Ŝ is stable. First we need the following

(known) lemma.

Lemma 7.3.3 ([41]). Let S be a choice function such that Ŝ is well-defined. Then Ŝ satisfies γ̂.

Theorem 7.3.4. Let S be a choice function satisfying α̂⊆ . Then Ŝ is stable if and only if Ŝ is

well-defined and S satisfies local α̂.

Proof. For the direction from right to left, suppose that Ŝ is well-defined and S satisfies local α̂.

Then Lemma 7.3.3 implies that Ŝ satisfies γ̂. Moreover, it follows directly from local α̂ and the fact

that Ŝ is well-defined that Ŝ satisfies α̂. Hence, Ŝ is stable.

For the converse direction, suppose that Ŝ is stable. We first show that Ŝ is well-defined.

Every feasible set A contains at least one S-stable set because otherwise Ŝ is not a choice

function. Next, suppose for contradiction that there exists a feasible set that contains two distinct

minimal S-stable sets. Consider such a feasible set A of minimum size, and pick any two distinct

minimal S-stable sets in A, which we denote by B and C. If |B\C| = |C\B| = 1, then α̂⊆

implies S(B ∪ C) = B = C, a contradiction. Otherwise, assume without loss of generality that

|C\B| ≥ 2, and pick x, y ∈ C\B with x 6= y. Then A\{x} contains a unique minimal S-stable

set. As B is also S-stable in A\{x}, it follows that Ŝ(A\{x}) ⊆ B. Since Ŝ satisfies α̂, we have

Ŝ(A\{x}) = Ŝ(A\{x, y}). Similarly, we have Ŝ(A\{y}) = Ŝ(A\{x, y}). But then γ̂ implies that

Ŝ(A) = Ŝ(A\{x, y}) ⊆ A, which contradicts the fact that C is minimal S-stable in A.

7It can be checked that we obtain an equivalent condition even if we require that all outside alternatives have to
be removed. When defining local α̂ in this way, it can be interpreted as some form of transitivity of stability: stable
sets of minimally stable sets are also stable within the original feasible set (cf. [31, Lemma 3]).
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We now show that S satisfies local α̂. Since Ŝ is well-defined, minimal S-stable sets are unique

and given by Ŝ. Since Ŝ satisfies α̂, minimal S-stable sets are invariant under deleting outside

alternatives. Hence, S satisfies local α̂, as desired.

Remark 7.3.5. Theorem 7.3.4 does not hold without the condition that S satisfies α̂⊆ . To this end,

let U = {a, b, c}, S({a, b, c}) = {b}, and S(X) = X for all other feasible sets X. Then both {a, b}
and {b, c} are minimally S-stable in {a, b, c}, implying that Ŝ is not well-defined. On the other hand,

Ŝ is trivial and therefore also stable. This example also shows that a generator of a stable choice

function need not be sandwiched between the choice function and its root.

Combining Theorem 7.3.4 with Theorem 7.2.3, we obtain the following characterization.

Corollary 7.3.6. Let S be a choice function satisfying α̂⊆ . Then,

Ŝ is stable if and only if
̂̂
S is well-defined and

̂̂
S = Ŝ

if and only if Ŝ satisfies α̂ and γ̂

if and only if Ŝ is well-defined and S satisfies local α̂.

Since simple choice functions trivially satisfy α̂⊆ , this corollary completely characterizes which

simple choice functions generate stable choice functions.

7.4 Tournament Solutions

We now turn to tournament solutions, an important special case of choice functions whose output

depends on a binary relation. See Section 2.2 for an overview of tournaments and tournament

solutions.

In this section, we define two tournament solutions that are central to this chapter. The first

one, the bipartisan set, generalizes the notion of a Condorcet winner to probability distributions

over alternatives. The skew-adjacency matrix G(T ) = (gab)a,b∈A of a tournament T is defined by

letting

gab =


1 if a � b

−1 if b � a

0 if a = b.

The skew-adjacency matrix can be interpreted as a symmetric zero-sum game in which there are two

players, one choosing rows and the other choosing columns, and in which the matrix entries are the

payoffs of the row player. Laffond et al. [93] and Fisher and Ryan [68] have shown independently

that every such game admits a unique mixed Nash equilibrium, which moreover is symmetric. Let

pT ∈ ∆(A) denote the mixed strategy played by both players in equilibrium. Then, pT is the unique
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probability distribution such that

∑
a,b∈A

pT (a)q(b)gab ≥ 0 for all q ∈ ∆(A).

In other words, there is no other probability distribution that is more likely to yield a better al-

ternative than pT . Laffond et al. [93] defined the bipartisan set BP(T ) of T as the support of

pT .8

Definition 7.4.1. The bipartisan set (BP) of a given tournament T = (A,�) is defined as

BP(T ) = {a ∈ A | pT (a) > 0}.

BP satisfies stability, monotonicity, regularity, and composition-consistency. Moreover, BP ⊆
UC , and BP can be computed in polynomial time by solving a linear feasibility problem.

The next tournament solution, the tournament equilibrium set, was defined by Schwartz [131].

Given a tournament T = (A,�) and a tournament solution S, a nonempty subset of alternatives

X ⊆ A is called S-retentive if S(D(x)) ⊆ X for all x ∈ X such that D(x) 6= ∅.

Definition 7.4.2. The tournament equilibrium set (TEQ) of a given tournament T = (A,�) is

defined recursively as the union of all inclusion-minimal TEQ-retentive sets in T .

This is a proper recursive definition because the cardinality of the set of dominators of an

alternative in a particular set is always smaller than the cardinality of the set itself. BP and

TEQ coincide on all tournaments of order 5 or less [39].9

Schwartz [131] showed that TEQ ⊆ BA and conjectured that every tournament contains a unique

inclusion-minimal TEQ-retentive set, which was later shown to be equivalent to TEQ satisfying any

one of a number of desirable properties for tournament solutions including stability and monotonicity

[31, 32, 33, 41, 78, 79, 94]. This conjecture was disproved by Brandt et al. [37], who have non-

constructively shown the existence of a counterexample with about 10136 alternatives using the

probabilistic method. Since it was shown that TEQ satisfies the above mentioned desirable properties

for all tournaments that are smaller than the smallest counterexample to Schwartz’s conjecture, the

search for smaller counterexamples remains an important problem. In fact, the counterexample found

by Brandt et al. [37] is so large that it has no practical consequences whatsoever for TEQ . Apart

from concrete counterexamples, there is ongoing interest in why and under which circumstances

TEQ and a related tournament solution called the minimal extending set ME = B̂A violate stability

[42, 113, 161].

8The probability distribution pT was independently analyzed by Kreweras [91], Fishburn [66], Felsenthal and
Machover [64], and others. An axiomatic characterization in the context of social choice was recently given by Brandl
et al. [29].

9It is open whether there are tournaments in which BP and TEQ are disjoint.
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Computing the tournament equilibrium set of a given tournament was shown to be NP-hard and

consequently there does not exist an efficient algorithm for this problem unless P equals NP [40].

7.5 Stable Tournament Solutions and Their Generators

Tournament solutions comprise an important subclass of choice functions. In this section, we examine

the consequences of the findings from Sections 7.2 and 7.3, in particular Theorems 7.2.3, 7.3.1, and

7.3.4, for tournament solutions.

Stability is a rather demanding property which is satisfied by only a few tournament solutions.

Three well-known tournament solutions that satisfy stability are the top cycle TC , the minimal

covering set MC defined by MC = ÛC , and the bipartisan set BP , which is a refinement of MC . By

virtue of Theorem 7.3.1, any stable tournament solution is generated by its root dSe. For example,

dTC e is a tournament solution that excludes an alternative if and only if it is the only alternative

not contained in the top cycle (and hence a Condorcet loser). Similarly, one can obtain the roots

of other stable tournament solutions such as MC and BP . In some cases, the generator that is

typically considered for a stable tournament solution is different from its root; for example, MC is

traditionally generated by UC , a refinement of dMC e.
Since tournament solutions are invariant under tournament isomorphisms, a simple tournament

solution may only exclude an alternative a if any automorphism of T maps a to itself. Note that if a

tournament solution S is stable, dSe is different from S unless S is the trivial tournament solution.

It follows from Theorem 7.2.3 that stable tournament solutions satisfy both α̂ and γ̂. It can be

shown that α̂ and γ̂ are independent from each other even in the context of tournament solutions.

Remark 7.5.1. There are tournament solutions that satisfy only one of α̂ and γ̂. Examples are

given in Appendix C.1.

We have shown in Theorem 7.3.1 that stable tournament solutions are generated by unique

simple tournament solutions. If we furthermore restrict our attention to monotonic stable tourna-

ment solutions, the following theorem shows that we only need to consider root solutions that are

monotonic.

Theorem 7.5.2. A stable tournament solution S is monotonic if and only if dSe is monotonic.

Proof. First, note that monotonicity is equivalent to requiring that unchosen alternatives remain

unchosen when they are weakened. Now, for the direction from left to right, suppose that S is

monotonic. Let T = (A,�), B = dSe(T ), and a ∈ A \ B. Since dSe is simple, we have dSe(T ) =

B\{a}, and therefore S(T ) = B\{a}. Using the fact that S is stable and thus satisfies α̂, we find

that S(T |B\{a}) = B\{a}. Let T ′ be a tournament obtained by weakening a with respect to some

alternative in B. Monotonicity of S entails that a 6∈ S(T ′). Since T |B\{a} = T ′|B\{a}, we have
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S(T ′|B\{a}) = B\{a}, and α̂ implies that S(T ′) = B\{a} and dSe(T ′) = B\{a} as well. This means

that a remains unchosen by dSe in T ′, as desired.

The converse direction even holds for all generators of S (see [31, Proposition 5]).

Analogous results do not hold for composition-consistency or regularity.

Theorem 7.3.4 characterizes stable choice functions Ŝ using well-definedness of Ŝ and local α̂ of

S. These two properties are independent from each other (and therefore necessary for the charac-

terization) even in the context of tournament solutions.

Remark 7.5.3. There is a tournament solution S that satisfies local α̂, but Ŝ violates α̂. There

is a tournament solution S for which Ŝ is well-defined, but Ŝ is not stable. Examples are given in

Appendix C.2.

Theorem 7.3.4 generalizes previous statements about stable tournament solutions. Brandt stud-

ied a particular class of generators defined via qualified subsets and shows the direction from right

to left of Theorem 7.3.4 for these generators [31, Theorem 4].10 Later, Brandt et al. proved Theo-

rem 7.3.4 for one particular generator BA ([42, Corollary 2]).

7.6 Local Reversal Symmetry

In this section, we introduce a new property of tournament solutions called local reversal symmetry

(LRS ).11 While intuitive by itself, LRS is strongly connected to stability and can be leveraged to

disprove that TEQ is stable and to prove that no refinement of BP is stable.

For a tournament T , let T a be the tournament whose dominance relation is locally reversed at

alternative a, i.e., T a = (A,�a) with

i �a j if and only if (i � j and a /∈ {i, j}) or (j � i and a ∈ {i, j}).

The effect of local reversals is illustrated in Figure 7.3. Note that T = (T a)
a

and (T a)
b

=
(
T b
)a

for

all alternatives a and b.

Definition 7.6.1. A tournament solution S satisfies local reversal symmetry (LRS) if for all tour-

naments T and alternatives a,

a ∈ S(T ) if and only if a /∈ S(T a).

10Brandt’s proof relies on a lemma that essentially showed that the generators he considers always satisfy local α̂.
11The name of this axiom is inspired by a social choice criterion called reversal symmetry. Reversal symmetry

prescribes that a uniquely chosen alternative has to be unchosen when the preferences of all voters are reversed [126].
A stronger axiom, called ballot reversal symmetry, which demands that the choice set is inverted when all preferences
are reversed was recently introduced by Duddy et al. [56].
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Figure 7.3: Local reversals of tournament T at alternative a result in T a.

LRS can be naturally split into two properties, LRSIN and LRSOUT . LRSIN corresponds to

the direction from right to left in the above equivalence and requires that unchosen alternatives be

chosen when all incident edges are reversed. LRSOUT corresponds to the direction from left to right

and requires that chosen alternatives be unchosen when all incident edges are reversed.

It follows directly from the definition that LRSIN (resp. LRSOUT ) of a tournament solution S

carries over to any tournament solution that is a coarsening (resp. refinement) of S.

Lemma 7.6.2. Let S and S′ be two tournament solutions such that S ⊆ S′. If S satisfies LRSIN ,

then so does S′. Conversely, if S′ satisfies LRSOUT , then so does S.

There is an unexpected strong relationship between the purely choice-theoretic condition of

stability and LRS .

Theorem 7.6.3. Every stable tournament solution satisfies LRSIN .

Proof. Suppose for contradiction that S is stable but violates LRSIN . Then there exists a tournament

T = (A,�) and an alternative a ∈ A such that a /∈ S(T ) and a /∈ S(T a).

Let T ′ = (A′,�′), where A′ = X ∪ Y and each of T ′|X and T ′|Y is isomorphic to T |A\{a}. Also,

partition X = X1∪X2 and Y = Y1∪Y2, where X1 and Y1 consist of the alternatives that are mapped

to DT (a) by the isomorphism. To complete the definition of T ′, we add the relations X1 �′ Y2,

Y2 �′ X2, X2 �′ Y1, and Y1 �′ X1. The structure of tournament T ′ is depicted in Figure 7.4.

We claim that both X and Y are externally S-stable in T ′. To this end, we note that for every

alternative x ∈ X (resp. y ∈ Y ) the subtournament T |Y ∪{x} (resp. T |X∪{y}) is isomorphic either to

T or to T a, with x (resp. y) being mapped to a. By assumption, a is neither chosen in T nor in T a,

and therefore X and Y are both externally S-stable in T ′.

Now, suppose that S(X∪{y}) = X ′ ⊆ X for some y ∈ Y . Note that X ′ 6= ∅ because tournament

solutions always return non-empty sets. Since S satisfies α̂, we have S(X) = X ′. Hence, S(X) =

X ′ = S(X ∪ {y}) for all y ∈ Y . Since S satisfies γ̂, we also have S(X ∪ Y ) = X ′. Similarly, we can

deduce that S(X ∪ Y ) = Y ′ for some ∅ 6= Y ′ ⊆ Y . This yields the desired contradiction.

7.6.1 Disproving Stability

As discussed in Section 7.4, disproving that a tournament solution satisfies stability can be very

difficult. By virtue of Theorem 7.6.3, it now suffices to show that the tournament solution violates
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Figure 7.4: Construction of a tournament T ′ with two S-stable sets X and Y used in the proof of
Theorem 7.6.3.

LRSIN . For TEQ , this leads to the first concrete tournament in which TEQ violates stability.

With the help of a computer, we found a minimal tournament in which TEQ violates LRSIN using

exhaustive search. This tournament is of order 13 and thereby lies exactly at the boundary of the

class of tournaments for which exhaustive search is possible. Using the construction explained in

the proof of Theorem 7.6.3, we thus obtain a tournament of order 24 in which TEQ violates γ̂.

This tournament consists of two disjoint isomorphic subtournaments of order 12 both of which are

TEQ-retentive.

Theorem 7.6.4. TEQ violates LRSIN .

Proof. We define a tournament T = ({x1, x2, . . . , x13},�) such that x13 6∈ TEQ(T ) and x13 6∈
TEQ(T x13). The dominator sets in T are defined as follows:

D(x1) = {x4, x5, x6, x8, x9, x12}, D(x2) = {x1, x6, x7, x10, x12},
D(x3) = {x1, x2, x6, x7, x9, x10}, D(x4) = {x2, x3, x7, x8, x11},
D(x5) = {x2, x3, x4, x8, x10, x11}, D(x6) = {x4, x5, x9, x11, x12},
D(x7) = {x1, x5, x6, x11, x12, x13}, D(x8) = {x2, x3, x6, x7, x12, x13},
D(x9) = {x2, x4, x5, x7, x8, x13}, D(x10) = {x1, x4, x6, x7, x8, x9, x13},
D(x11) = {x1, x2, x3, x8, x9, x10, x13}, D(x12) = {x3, x4, x5, x9, x10, x11, x13},
D(x13) = {x1, x2, x3, x4, x5, x6}.

A rather tedious check reveals that

TEQ(D(x1)) = {x4, x8, x12}, TEQ(D(x2)) = {x6, x10, x12},
TEQ(D(x3)) = {x6, x7, x9}, TEQ(D(x4)) = {x2, x7, x11},
TEQ(D(x5)) = {x2, x8, x10}, TEQ(D(x6)) = {x4, x9, x11},
TEQ(D(x7)) = {x1, x5, x11}, TEQ(D(x8)) = {x3, x6, x12},
TEQ(D(x9)) = {x2, x5, x7}, TEQ(D(x10)) = {x4, x6, x7},
TEQ(D(x11)) = {x1, x2, x8}, and TEQ(D(x12)) = {x3, x4, x9}.

It can then be checked that TEQ(T ) = TEQ(T x13) = {x1, x2, . . . , x12}.
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Let nTEQ be the greatest natural number n such that all tournaments of order n or less admit a

unique inclusion-minimal TEQ-retentive set. Together with earlier results by Brandt et al. [40] and

Yang [161], we now have that 14 ≤ nTEQ ≤ 23.

The tournament used in the preceding proof does not show that ME (or BA) violate LRSIN .

A computer search for such tournaments was unsuccessful. While it is known that ME violates

stability, a concrete counterexample thus remains elusive.

7.6.2 Most Discriminating Stable Tournament Solutions

An important property of tournament solutions that is not captured by any of the axioms introduced

in Section 2.2 is discriminative power.12 It is known that BA and MC (and by the known inclusions

also UC and TC ) almost always select all alternatives when tournaments are drawn uniformly at

random and the number of alternatives goes to infinity [65, 132].13 Experimental results suggest that

the same is true for TEQ . Other tournament solutions, which are known to return small choice sets,

fail to satisfy stability and composition-consistency. A challenging question is how discriminating

tournament solutions can be while still satisfying desirable axioms.

LRS reveals an illuminating dichotomy in this context for common tournament solutions. We

state without proof that discriminating tournament solutions such as Copeland’s rule, Slater’s rule,

and Markov’s rule satisfy LRSOUT and violate LRSIN . On the other hand, coarse tournament

solutions such as TC , UC , and MC satisfy LRSIN and violate LRSOUT . The bipartisan set hits the

sweet spot because it is the only one among the commonly considered tournament solutions that

satisfies LRSIN and LRSOUT (and hence LRS ).

Theorem 7.6.5. BP satisfies LRS.

Proof. Since BP is stable, Theorem 7.6.3 implies that BP satisfies LRSIN . Now, assume for contra-

diction that BP violates LRSOUT , i.e., there is a tournament T = (A,�) and an alternative a such

that a ∈ BP(T ) and a ∈ BP(T a). For a probability distribution p and a subset of alternatives B ⊆ A,

let p(B) =
∑
x∈B p(x). Consider the optimal mixed strategy pT |A\{a} in tournament T |A\{a}. It is

known (see [98, Proposition 6.4.8]) that a ∈ BP(T ) if and only if pT |A\{a}(D(a)) > pT |A\{a}(D(a)).

For T a, we thus have that pTa|A\{a}(D(a)) > pTa|A\{a}(D(a)). This is a contradiction because

DT (a) = DTa(a) and DT (a) = DTa(a).

The relationship between LRS and the discriminative power of tournament solutions is no co-

incidence. To see this, consider all labeled tournaments of fixed order and an arbitrary alternative

12To see that discriminative power is not captured by the axioms, observe that the trivial tournament solution
satisfies stability, monotonicity, regularity, and composition-consistency.

13However, these analytic results stand in sharp contrast to empirical observations that Condorcet winners are likely
to exist in real-world settings, which implies that tournament solutions are much more discriminative than results for
the uniform distribution suggest [43].
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a. LRSIN demands that a be chosen in at least one of T and T a while LRSOUT requires that a be

chosen in at most one of T and T a. We thus obtain the following consequences.

• A tournament solution satisfying LRSIN chooses on average at least half of the alternatives.

• A tournament solution satisfying LRSOUT chooses on average at most half of the alternatives.

• A tournament solution satisfying LRS chooses on average half of the alternatives.

Hence, the well-known fact that BP chooses on average half of the alternatives [67] follows from

Theorem 7.6.5. Also, all coarsenings of BP such as MC , UC , and TC satisfy LRSIN by virtue of

Lemma 7.6.2. On the other hand, since these tournament solutions are all different from BP , they

choose on average more than half of the alternatives and hence cannot satisfy LRSOUT .

These results already hint at BP being perhaps a “most discriminating” stable tournament

solution. In order to make this precise, we formally define the discriminative power of a tournament

solution. For two tournament solutions S and S′, we say that S is more discriminating than S′ if

there is a natural number n such that the average number of alternatives chosen by S is lower than

that of S′ over all labeled tournaments of order n. Note that this definition is very weak because

we only have an existential, not a universal, quantifier for n. It is therefore even possible that two

tournament solutions are more discriminating than each other. However, this only strengthens the

following results. Combining Theorems 7.6.3 and 7.6.5 immediately yields the following theorem.

Theorem 7.6.6. A stable tournament solution satisfies LRS if and only if there is no more dis-

criminating stable tournament solution.

Proof. First consider the direction from left to right. Let S be a tournament solution that satisfies

LRS . Due to the observations made above, S chooses on average half of the alternatives. Since any

stable tournament solution satisfies LRSIN by Theorem 7.6.3, it chooses on average at least half of

the alternatives and therefore cannot be more discriminating than S.

Now consider the direction from right to left. Let S be a most discriminating stable tournament

solution. Again, since any stable tournament solution satisfies LRSIN , S chooses on average at least

half of the alternatives. On the other hand, BP is a stable tournament solution that chooses on

average exactly half of the alternatives. This means that S must also choose on average half of the

alternatives, implying that it also satisfies LRSOUT and hence LRS .

Corollary 7.6.7. There is no more discriminating stable tournament solution than BP. In partic-

ular, there is no stable refinement of BP.

Given Corollary 7.6.7, a natural question is whether every stable tournament solution that sat-

isfies mild additional properties such as monotonicity is a coarsening of BP . We give an example in

Appendix C.4 which shows that this is not true.
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Finally, we provide two axiomatic characterizations of BP by leveraging other traditional prop-

erties. These characterizations leverage the following lemma, which entails that, in order to show

that two stable tournament solutions that satisfy LRS are identical, it suffices to show that their

roots are contained in each other.

Lemma 7.6.8. Let S and S′ be two stable tournament solutions satisfying LRS. Then dSe ⊆ dS′e
if and only if S = S′.

Proof. Suppose that dSe ⊆ dS′e, and consider any tournament T . We will show that S(T ) ⊆ S′(T ).

If S′(T ) = T , this is already the case. Otherwise, we have S′(S′(T )∪{a}) = S′(T ) for each a 6∈ S′(T ).

By definition of the root function, dS′e(S′(T ) ∪ {a}) = S′(T ). Since the root function excludes at

most one alternative from any tournament, we also have dSe(S′(T )∪{a}) = S′(T ) by our assumption

dSe ⊆ dS′e. Hence S(S′(T ) ∪ {a}) = S′(T ) as well. Using γ̂ of S, we find that S(T ) = S′(T ). So

S(T ) ⊆ S′(T ) for every tournament T . However, since S and S′ satisfy LRS , and therefore choose

on average half of the alternatives, we must have S = S′.

Finally, if S = S′, then clearly dSe = dS′e and so dSe ⊆ dS′e.

Theorem 7.6.9. BP is the only tournament solution that satisfies stability, monotonicity, regular-

ity, composition-consistency, and LRS.

Proof. Let S be a tournament solution satisfying the five aforementioned properties. Since S and BP

are stable and satisfy LRS , by Lemma 7.6.8 it suffices to show that dSe ⊆ dBPe. This is equivalent

to showing that when dBPe excludes an alternative from a tournament, then dSe excludes the same

alternative. In other words, we need to show that when BP excludes exactly one alternative a, then

S also only excludes a.

Let T be a tournament in which BP excludes exactly one alternative a. As defined in Sec-

tion 7.4, BP(T ) corresponds to the support of the unique Nash equilibrium of G(T ). Laffond et

al. [93] and Fisher and Ryan [68] have shown that this support is always of odd size and that

the equilibrium weights associated to the alternatives in BP(T ) are odd numbers. Hence, using

composition-consistency of BP and the fact that the value of a symmetric zero-sum game is zero,

T can be transformed into a new (possibly larger) tournament T1 = (A,�) by replacing each alter-

native except a with a regular tournament of odd order such that T1|A\{a} is regular. Moreover, in

T1, |D(a)| > |A|
2 .

We will now show that a 6∈ S(T1). Since S is monotonic, it suffices to prove this when we

strengthen a arbitrarily against alternatives in T1 until |D(a)| = |A|+1
2 .

Let X = D(a) and Y = D(a), and let T2 be a tournament obtained by adding a new alternative b

to T1 so that X � {b} � Y and a � b. Note that T2 is again a regular tournament, so S(T2) = A∪{b}.
In particular, b ∈ S(T2).

Let T3 = (T2)b be the tournament obtained from T2 by reversing all edges incident to b. By

LRSOUT , we have b 6∈ S(T3). If it were the case that a ∈ S(T3), then it should remain chosen when
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Figure 7.5: Illustration of the proof of Theorem 7.6.9. Circled alternatives are contained in the
choice set S(·). Alternatives circled with a dashed line are not contained in the choice set S(·).

we reverse the edge between a and b. However, alternative a in the tournament after reversing the

edge is isomorphic to alternative b in T3, and so we must have b ∈ S(T3), a contradiction. Hence

a 6∈ S(T3). Since S satisfies stability and thus α̂, we also have a 6∈ S(T1), as claimed. See Figure 7.5

for an illustration.

Now, α̂ and regularity of S imply that S(T1) = S(T1|A\{a}) = A\{a}. Since S satisfies

composition-consistency, we also have that S returns all alternatives except a from the original

tournament T , completing our proof.

Based on Theorems 7.6.6 and 7.6.9, we obtain another characterization that does not involve

LRS and hence only makes use of properties previously considered in the literature.

Corollary 7.6.10. BP is the unique most discriminating tournament solution that satisfies stability,

composition-consistency, monotonicity, and regularity.

Proof. Suppose that a tournament solution S satisfies stability, composition-consistency, monotonic-

ity, and regularity and is as discriminating as BP . By Theorem 7.6.3, S satisfies LRSIN . Since S

chooses on average half of the alternatives, it satisfies LRSOUT and hence LRS as well. Theorem 7.6.9

then implies that S = BP .

The only previous characterization of BP that we are aware of was obtained by Laslier [98, The-

orem 6.3.10] and is based on a rather contrived property called Copeland-dominance. According to

Laslier [98, p. 153], “this axiomatization of the Bipartisan set does not add much to our knowledge of

the concept because it is merely a re-statement of previous propositions.” Corollary 7.6.10 essentially

shows that, for most discriminating stable tournament solutions, Laslier’s Copeland-dominance is

implied by monotonicity and regularity.

We now address the independence of the axioms used in Theorem 7.6.9.

Remark 7.6.11. LRS is not implied by the other properties. In fact, the trivial tournament solution

satisfies stability, composition-consistency, monotonicity, and regularity.

Remark 7.6.12. Monotonicity is not implied by the other properties. In fact, the tournament

solution that returns BP(T ), where T is the tournament in which all edges in T are reversed, satisfies

stability, composition-consistency, regularity, and LRS.
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The question of whether stability, composition-consistency, and regularity are independent in the

presence of the other axioms is quite challenging. We can only provide the following partial answers.

Remark 7.6.13. Neither stability nor composition-consistency is implied by LRS, monotonicity,

and regularity. In fact, there is a tournament solution that satisfies LRS, monotonicity, and regu-

larity, but violates stability and composition-consistency (see Appendix C.3).

Remark 7.6.14. Neither regularity nor composition-consistency is implied by stability and mono-

tonicity. In fact, there is a tournament solution that satisfies stability and monotonicity, but violates

regularity and composition-consistency (see Appendix C.4).

Brandt et al. [42] brought up the question whether stability implies regularity (under mild as-

sumptions) because all stable tournaments solutions studied prior to this paper were regular.14

Remark 7.6.14 shows that this does not hold without making assumptions that go beyond mono-

tonicity.

Given the previous remarks, it is possible that composition-consistency and regularity are not

required for Theorem 7.6.9 and Corollary 7.6.10. Indeed, our computer experiments have shown that

the only stable and monotonic tournament solution satisfying LRS for all tournaments of order up

to 7 is BP . This may, however, be due to the large number of automorphisms in small tournaments

and composition-consistency and regularity could be required for larger tournaments. It is also

noteworthy that the proof of Theorem 7.6.9 only requires a weak version of composition-consistency,

where all components are tournaments in which all alternatives are returned due to automorphisms.

Since stability is implied by Samuelson’s weak axiom of revealed preference or, equivalently, by

transitive rationalizability, Corollary 7.6.10 can be seen as an escape from Arrow’s impossibility

theorem where the impossibility is turned into a possibility by weakening transitive rationalizability

and (significantly) strengthening the remaining conditions (see also [41]).

7.7 Conclusion and Future Work

In this chapter, we provide several insights on the structure of stable choice functions and tourna-

ment solutions. We show that every stable choice function is generated by a unique simple choice

function and completely characterize which simple choice functions give rise to stable choice func-

tions. Furthermore, we exhibit the first concrete tournament in which the tournament equilibrium

set fails to be stable and provide a characterization of the bipartisan set that uses only properties

previously proposed in the literature.

An intriguing question that remains after our work is whether it is possible to strengthen our

characterization of the bipartisan set. In particular, one potential strengthening of Corollary 7.6.7 is

14We checked on a computer that the stable tournament solution T̊C (see [33, 34]) satisfies regularity for all
tournaments of order 17 or less.
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that the bipartisan set is the unique inclusion-minimal tournament solution that satisfies stability,

composition-consistency, monotonicity, and regularity. Indeed, the only other tournament solutions

we are aware of that satisfy all four properties are the trivial tournament solution and the minimal

covering set, both of which are coarsenings of the bipartisan set. If this strengthening were to hold,

it would provide a more compelling characterization of the bipartisan set.



Chapter 8

Who Can Win a

Single-Elimination Tournament?

8.1 Introduction

In this chapter, we continue our study of methods for choosing the best alternatives from a tour-

nament. One common way to select a winner among multiple alternatives is by using a single-

elimination (SE) tournament, also known as a knockout tournament, a sudden death tournament, an

Olympic system tournament, or a binary-cup election. In a SE tournament, pairs of alternatives are

matched according to an initial seeding, the winners of these pairs advance to the next round, and

the losers are eliminated after a single loss. Play continues according to the seeding until a single

alternative, the winner, remains. While SE tournaments can be organized for political candidates or

other types of alternatives, they are especially popular in sports competitions, both among fans due

to their exciting “do-or-die” nature and among tournament organizers due to their efficiency.1 In

contrast to a round-robin tournament, which requires Θ(n2) matches to be played between n players

and will be our subject of study in the next chapter, the winner of a SE tournament is decided

after a total of n − 1 matches. In tournaments like the NCAA March Madness or the US Open

Tennis Championships, which involve more than 64 teams each, the difference between a linear and

quadratic number of matches is quite pronounced.

While the efficiency of SE tournaments is desirable, the winner of a given SE tournament can

depend significantly on the initial seeding. A series of works [12, 76, 85, 97, 111, 140, 141, 158, 159]

has investigated how easily the winner of SE tournaments can be manipulated simply by adjusting

the seeding of the tournament. Formally, the problem is called the tournament fixing problem (TFP),

or the agenda control problem for balanced knockout tournaments. In TFP, we are given a set of

1For this reason, we will use the term “player” instead of “alternative” for the rest of this chapter.

98
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players, a tournament relation between players (for each pair of players, who would win in a head-

to-head matchup), and a player of interest; then, we are asked the following question: is there a

seeding to a balanced SE tournament where our player of interest wins? TFP is known to be NP-

hard [12], with the best-known algorithm running in 2npoly(n) time [85]. Thus, unless P = NP,

it is in general intractable to determine which players can win a SE tournament. Nevertheless, a

number of works on TFP have produced “structural results” which argue that for certain classes of

instances, one can find a winning seeding for our player of interest in polynomial (and often linear)

time [85, 140, 158]. These structural results suggest that in many practical settings, the winner of a

SE tournament is susceptible to manipulation, because many players have winning seedings that can

be found efficiently. In addition, under reasonable probabilistic models for generating tournaments,

these structural results have been shown to occur with high probability [140, 158], further suggesting

that the worst-case hardness results may not apply to real-world instances. In other words, in many

actual tournaments, it is feasible for SE tournament organizers to rig the outcome of the competition.

Experiments have investigated this finding in practical settings [125].

In this chapter, we improve our understanding of conditions on the input tournament and player

of interest that are sufficient for the player to be a SE winner. Many previous structural results

involve the notion of a king, or a player that has distance at most 2 to every other player in

the domination graph. In Section 8.3, we present a vast generalization of many of the known

structural results involving kings, showing that essentially any “combination” of the known sufficient

conditions for a king to be a SE winner is also sufficient for the king to be a winner (Theorem 8.3.1).

Additionally, we extend the work on 3-kings (i.e., players who have distance at most 3 to every other

player in the domination graph), introduced by Kim and Vassilevska Williams [85], and give a new

set of sufficient conditions for a 3-king to win a SE tournament (Theorem 8.3.2).

In Section 8.4, we apply these and other known structural results to understand the relationship

between SE winners and the winners according to other tournament solutions. In particular, The-

orem 8.4.1 shows that the players selected by a number of well-studied tournament solutions are

also SE winners. Another class of tournament solutions of interest was introduced by Laslier [98]

as a natural extension of the Copeland set. In these “iterative matrix solutions”, we consider the

tournament matrix A (corresponding to the adjacency matrix of the underlying tournament graph);

a player is included in the kth iterative matrix solution if they have the maximum number of “wins”

in Ak. We give a new interpretation of this solution and use it to show that for sufficiently large

tournaments, the players in the iterative matrix solutions will also be SE winners (Theorem 8.4.4).

In Section 8.5, we investigate probabilistic models for generating random tournaments and the

resulting structure of such tournaments. In particular, we start by giving an improved result for

tournaments generated by the Condorcet Random (CR) Model. The CR Model assumes an un-

derlying order to players, where stronger players generally win against weaker players and are only

upset with some small probability p. We demonstrate that in tournaments generated by the CR
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Model, even when the probability of upset p is Θ(lnn/n), with high probability every player in the

tournament will have a winning seeding that can be discovered efficiently (Theorem 8.5.1). This

upset rate p is optimal (up to constant factors) because a player needs to win log n matches in order

to win a SE tournament.2 Our result greatly improves on the previous best result by Vassilevska

Williams [158], who proved an analogous claim for p ∈ Ω(
√

lnn/n). In light of this optimal result

for the CR Model, we propose a new generative model for tournaments that aims to remove the

structure which arises from assuming an underlying order of players and a consistent noise parame-

ter. Despite the fact that the model may produce tournaments with largely arbitrary structure, we

show a result similar to previous results on the CR Model (Theorem 8.5.2).

All of our results are constructive. In particular, we demonstrate that certain conditions are

sufficient for a player to be a SE winner by giving algorithms, running in polynomial time, that

output a seeding under which the player wins.

8.2 Preliminaries

We assume in this chapter that all SE tournaments are balanced and played amongst a power of two,

n = 2k for some k ≥ 0, players. The basic definitions and notation on tournaments and tournament

solutions are introduced in Section 2.2. Our notation in this chapter differs slightly in that we

view the tournament as a graph, and denote by V the set of players and E the set of edges in the

tournament. For i, j ∈ V , we sometimes write (i, j) ∈ E to mean i � j. Recall that the set of kings

corresponds to the uncovered set of a tournament; it is known that this is equivalent to the set of

players that have distance at most 2 to every other player [137]. Similarly, a 3-king is a player who

have distance at most 3 to every other player.

We now provide brief descriptions of tournament solutions that we consider in this chapter in

addition to those introduced in Sections 2.2 and 7.4; for more details, we refer to [34, 98].

• The Copeland set is the set of players of maximum out-degree in the tournament.

• The Markov set can be thought of as the set of players who win the most matches, in expecta-

tion, in a “winner-stays” tournament, where play proceeds by repeatedly selecting a random

player to play the previous winner.

• The Slater set of a tournament T is the set of players that are maximal elements in the strict

linear orders that can be obtained from T by inverting as few edges as possible, i.e., in the

strict linear orders that have the maximum number of edges in common with T .

2Any logarithm written without a base in this chapter is assumed to have base 2.
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8.3 Structural Results

A number of results are known about conditions under which a player is guaranteed to be a SE

winner [85, 141, 158]. Many of these results concern players who are kings. In particular, Vassilevska

Williams [158] showed that a “superking”—a king v such that every player in Nin(v) loses to at least

log n players from Nout(v)—is always a SE winner. On the other hand, Stanton and Vassilevska

Williams [140] showed a generalization they call a “king of high out-degree”—that is, a king with

out-degree k who loses to fewer than k players that have out-degree greater than k—is always a

SE winner. In this section, we generalize these results by combining their respective conditions.

Moreover, we further explore the notion of 3-kings that was considered by Kim and Vassilevska

Williams [85] and present an alternative condition under which a 3-king can win a SE tournament.

Before we proceed to the results, we make some remarks on the strength of the king condition.

While the ability to reach any other player in the tournament in at most two steps might seem like

a strong condition (which would limit the usefulness of our results), it is in fact not as strong as

it may look at first sight. Indeed, every tournament contains a king, and in particular any player

with the maximum number of wins in the tournament is always a king. In addition, if we generate

a tournament by choosing the direction of each edge independently and uniformly at random, it is

known that the set of kings is equal to the entire set of players with high probability [65].

Theorem 8.3.1. Consider a tournament T = (V,E) where K ∈ V is a king. Let A = Nout(K)

and B = V \(A ∪ {K}) = Nin(K). Suppose that B is a disjoint union of three (possibly empty) sets

H, I, J such that

1. |H| < |A|;

2. inA(i) ≥ log |V | for all i ∈ I (i.e., outA(i) ≤ |A| − log |V | for all i ∈ I);

3. out(j) ≤ |A| for all j ∈ J .

Then K is a SE winner, and we can compute a winning seeding for K in polynomial time.

Note that the superking result [158] corresponds to the special case where H = J = ∅, while

the “king of high out-degree” result [140] corresponds to the special case where I = ∅. Hence

Theorem 8.3.1 is much stronger than previous results in the sense that each player in B only has to

satisfy one of the three “reasons” why it is not strong, instead of having to adhere to any particular

one.

Proof. We proceed by induction, arguing that we can construct a seeding where, in each round, the

three properties listed above and the condition that K is a king are maintained as invariants. We

will first take care of the cases where the tournament is small. If |V | = 1 or 2, B is empty and the

result is clear.



CHAPTER 8. WHO CAN WIN A SINGLE-ELIMINATION TOURNAMENT? 102

Suppose that |V | = 4. If |A| ≥ 2, the result follows from [140]. Otherwise |A| = 1, and H = I = ∅
and |J | ≤ 1, which contradicts |V | = 4.

Suppose now that |V | ≥ 8. If |A| ≤ 2, then |H| ≤ 1, I = ∅, and |J | ≤ 3, which contradicts

|V | ≥ 8. If I = ∅, H ∪ J = ∅, or |A| ≥ |V |/2, the result follows from [140] and [158]. Hence we may

assume from now on that |V | ≥ 8, 3 ≤ |A| < |V |/2, I 6= ∅, and H ∪ J 6= ∅.
We will present an algorithm to compute a winning seeding for K. The algorithm matches the

players for the first round of the tournament in such a way that the leftover tournament after the

first round also satisfies the conditions of the theorem. The description of the algorithm is as follows.

1. Perform a maximal matching M1 from A to H.

2. Since |H| < |A|, we have A\M1 6= ∅. Perform a maximal matching M2 (which might be an

empty matching) from A\M1 onto I ∪ J .

3. If A was not fully used in the two matchings, match an arbitrary unused player in A with K.

Else, choose an arbitrary player a ∈ A ∩M2 and rematch it to K.

4. Perform arbitrary matchings within A,H, and I ∪ J .

5. If there are leftover players, there must be exactly two of them; match them to each other.

We prove the correctness of the algorithm by showing that the four invariants are maintained by

the algorithm. Let V ′, A′, B′, H ′, I ′, J ′ denote the subsets of V,A,B,H, I, J that remain after the

iteration.

1. |H ′| < |A′|. We will show that |H ′| ≤ |H|/2 and |A′| ≥ |A|/2. The claim follows since

|H| < |A|. If H = ∅, then |H ′| < |A′| holds trivially, so we may assume that H is nonempty.

At least one player in H is used in the matching M1, so we have |H ′| ≤ |H|/2. We will show

that the matching M1∪M2 consists of at least two pairs. Since there can be at most two pairs

in the matching provided by the algorithm in which a player in A is beaten by a player outside

of A (i.e., the pair in which a player in A is matched to K and the pair in which a player in A

is matched in the final step of the algorithm for leftover nodes), it will follow that |A′| ≥ |A|/2.

If M1 consists of at least two pairs, we are done. Suppose that M1 consists of exactly one

pair. Since |V | ≥ 8, each player in I is beaten by at least three players in A. (Recall that I

is nonempty.) One of these players is possibly used in M1, and one is possibly used to match

with K, but that still leaves at least one player in A that beats a player in I. Hence M1 ∪M2

consists of at least two pairs, as desired.

2. inA′(i) ≥ log |V ′| for all i ∈ I. Let i ∈ I ′. Since M2 is a maximal matching, every player that

contributes to the in-degree of i in A survives the iteration, except possibly the player that is

rematched to K. Hence the in-degree of i in A′ is at least log |V | − 1 = log(|V |/2).
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3. out(j) ≤ |A′| for all j ∈ J ′. The condition is equivalent to outB′(j) < inA′(j). Let j ∈ J ′.
We have either inA′(j) = inA(j) or inA′(j) = inA(j)− 1, where the latter case occurs exactly

when a player in A that beats j is rematched to K. In the former case we immediately obtain

outB′(j) < inA′(j). In the latter case, A has been fully used in the two matchings before one

player is rematched to K. This means that j eliminates another player in B, and it follows

that outB′(j) ≤ outB(j)− 1 < inA(j)− 1 = inA′(j).

4. K is a king. Let b ∈ B′. If b ∈ H ′, then since M1 is a maximal matching, b is beaten by

some player in A′. If b ∈ I ′, then since the second invariant is maintained, b is beaten by some

player in A′. Otherwise b ∈ J ′. Since the third invariant is maintained, b beats at most |A′|−1

players in A′, and hence b is also beaten by some player in A′ in this case.

Hence the four invariants are maintained, and the algorithm correctly computes a winning seeding

for K.

Thus, we have shown a very general result about kings that holds in tournaments on n players

for any power of two n, answering an open problem posed by Stanton and Vassilevska Williams [141]

to provide more general structural results that hold independently of the size of the tournament.

(Some earlier results only hold for large n.)

Next, we consider the weaker notion of a 3-king. Prior work presented a set of conditions under

which a 3-king is a SE winner [85]. One of their conditions is that there exists a perfect matching

from the set of players that are reachable in exactly two steps from the 3-king K onto the set of

players that are reachable in exactly three steps from K. Here, we present a different set of conditions

that does not include the requirement of a perfect matching.

Theorem 8.3.2. Consider a tournament T = (V,E) where K ∈ V is a 3-king. Let A = Nout(K),

B = Nout(A) ∩Nin(K), and C = Nin(K)\B. Suppose that the following three conditions hold:

1. |A| ≥ |V |2 ;

2. A � B;

3. |B| ≥ |C|.

Then K is a SE winner, and we can compute a winning seeding for K in polynomial time.

Proof. If |V | = 1, 2, or 4, the result is clear. For |V | ≥ 8, first perform a maximal matching from

B to C and match K to an arbitrary player in A, and then pair off players within A. If |A| is odd,

then A ∪ {K} matches evenly. Else, match the remaining a ∈ A to some b ∈ B. We pair off players

within each of B,C arbitrarily, and match the remaining pair between B and C if needed. After the

round, |A| ≥ |V |4 . Since the matching from B to C is nonempty, we still have that |B| ≥ |C| after

the iteration. Moreover, since we applied a maximal matching, each player in C is still beaten by
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some player in B. Thus, the required conditions are maintained as invariant, and we can efficiently

compute a winning seeding for K.

It would be interesting to investigate the extent to which we can weaken the strong second

condition that all players in A beat all players in B. It should be noted that if any of the three

conditions is removed, the theorem no longer holds. In particular, if the second condition is dropped,

a counterexample by Kim and Vassilevska Williams [85] shows that for any constant ε > 0, there is

a tournament on n players where K is a 3-king who win against (1 − ε)n players but cannot win a

SE tournament. Given that the notion of a 3-king is significantly weaker than that of a king (recall

that kings who beat at least |V |/2 players are SE winners), it seems reasonable to conjecture that a

strong assumption such as the second condition (or the conditions seen in [85]) may be required to

prove structural results for 3-kings.

8.4 Single-Elimination Winners and Tournament Solutions

In this section, we investigate the relationship between the set of SE winners and some traditional

tournament solutions. Like tournament solutions, the ability to win a SE tournament provides us

with a criterion with which we can distinguish between stronger and weaker players in a tournament.

Theorem 8.4.1. A player chosen by the Copeland set, the Slater set, or the Markov set is a SE

winner. A player in the bipartisan set with the highest Copeland score is also a SE winner.

Proof. All four tournament solutions are contained in the uncovered set, meaning that a player from

any of these sets is a king. Therefore, using a special case of Theorem 8.3.1 (or an earlier result

of Vassilevska Williams [158]), it suffices to show that such a player wins against at least half of

the remaining players. For the Copeland set this is trivial, while Laslier [98] and Laffond et al. [94]

showed that any player in the Slater set, and any player in the bipartisan set with the highest

Copeland score, beat at least half of the players. Next, we show that players from the Markov set

win against at least half of the players.

Recall that the Markov set is defined to be the set of players of maximum probability in the

stationary distribution of the Markov chain defined by the normalized Laplacian matrix Q = (qij)n×n

of the Markov chain of the tournament, where qij = 1/n if vi beats vj (0 otherwise) and qii =

out(vi)/n. Assume that the first player is in the Markov set. It follows that the probability associated

with the first player in the eigenvector p = (pi)n×1 corresponding to the eigenvalue 1 is maximal.
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Assume for contradiction that q11 <
1
2 . We then have

p1 = q11p1 + q12p2 + · · ·+ q1npn

≤ q11p1 + q12p1 + · · ·+ q1np1

= 2q11p1

< p1,

a contradiction.

It is not true that any player in the bipartisan set is always a SE winner. Indeed, consider a

transitive tournament with at least four players, with the slight modification that the weakest player

beats the strongest player. Then the former player is included in the bipartisan set even though she

only beats one player and cannot be a SE winner.

Another family of tournament solutions is introduced by Laslier [98] as “iterative matrix solu-

tions”. Consider the tournament adjacency matrix A = (aij), in which aij = 1 if i beats j, and 0

otherwise. The Copeland score is given by A1. For any positive integer k, we consider Ak1 and

include the player(s) with the maximum resulting score in our kth iterative tournament solution.

There is a natural interpretation of iterative matrix solutions as the number of paths of length k

starting from each player. Any player in an iterative matrix solution belongs to the uncovered set.

In other words, if the player v is covered by some w (i.e., w � {v} ∪Nout(v)), then v cannot be in

the iterative matrix solution. Indeed, if v is covered by w, then the first steps of the paths starting

from w form a superset of the first steps of the paths starting from v. On the other hand, it is not

the case that any player in an iterative matrix solution always beats at least half of the remaining

players, as shown by the following example.

Consider k = 2 and the tournament with player set V = A ∪ B ∪ {x}, where A ≈ rn and

B ≈ (1 − r)n with 1
2 < r < 1√

3
. Suppose that A � x � B � A, and A and B are close to regular.

The Copeland scores of a ∈ A, b ∈ B, x are rn
2 ,

(1+r)n
2 , (1 − r)n, respectively. It follows that the

iterative matrix scores of a, b, x are r2n2

4 , (1+r2)n2

4 , (1−r2)n2

2 . This implies that x has the maximum

iterative matrix score but beats fewer than half of the remaining players.

Nevertheless, we will show that for large enough tournaments, players in an iterative matrix

solution are always SE winners. First we need the following two lemmas, the second of which

immediately follows from the first.

Lemma 8.4.2. In a tournament with n players, the minimum possible number of k-paths is
(
n
k+1

)
.

Proof. In a transitive tournament, each subset of size k + 1 gives rise to exactly one k-path. On

the other hand, by a simple inductive argument, each subset of size k + 1 gives rise to at least one

k-path that goes through all k + 1 players. The result follows immediately.
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Lemma 8.4.3. In a tournament with n players, a player with the maximum number of k-paths

originating from it is the origin of at least 1
n

(
n
k+1

)
k-paths.

We are now ready to prove the theorem.

Theorem 8.4.4. For any fixed k, there exists a constant Nk such that for any tournament of size

at least Nk, a player with the maximum number of k-paths originating from it is a SE winner.

Proof. Let v be a player with the maximum number of k-paths originating from it, and let A and

B be the sets of players who lose to v and who beat v, respectively. From Lemma 8.4.3, v is the

origin of at least 1
n

(
n
k+1

)
≥ nk

2(k+1)! k-paths for large enough n. Hence it must have out-degree at

least n
2(k+1)! . In other words, |A| ≥ n

2(k+1)! .

If the number of players in B with in-degree from A less than log n is less than |A|, we can

apply Theorem 8.3.1. Otherwise, there are at least |A| ≥ n
2(k+1)! players in B with in-degree from

A less than log n. Call this set H, and consider a player h ∈ H. Since h beats all but at most log n

players in A, we can compare the number of k-paths originating from v with the number of k-paths

originating from h by removing the common k-paths. The remaining number of k-paths originating

from v is at most log n ·nk−1, while by Lemma 8.4.3 again, a player in H with the maximum number

of k-paths within H is the origin of at least O(nk) k-paths, since |H| is linear in n. This contradicts

the assumption that v has the maximum number of k-paths originating from it.

8.4.1 The Strength of Kings

Since results concerning SE winners often involve the assumption that a player is a king in the given

tournament, one might hope that there is a strong relation between SE winners and the uncovered

set. For example, it could be that a constant fraction of players in the uncovered set must be SE

winners, or vice versa. This is not the case, however, as the following theorem shows.

Theorem 8.4.5. Let r ∈ (0, 1). There exists a tournament such that the proportion of players in the

uncovered set that are SE winners is less than r and the proportion of SE winners that are contained

in the uncovered set is also less than r.

Proof. Consider a tournament with player set V = A ∪B ∪ {x, y} such that

• x � y,B

• y � B,A

• B � A

• A � x.



CHAPTER 8. WHO CAN WIN A SINGLE-ELIMINATION TOURNAMENT? 107

The uncovered set is A ∪ {x, y}.
Let |A| = k and |B| = n. If k < log n, then players in A do not win enough matches to become

a SE winner. Hence the proportion of players in the uncovered set that are SE winners is at most
2
k+2 .

On the other hand, suppose that B is a regular tournament with all players isomorphic. By

symmetry, if one player in B is a SE winner, then all of them are. In order for a player in B to be a

SE winner, players x and y need to be eliminated. But this can easily be done in two rounds, with x

beating y in the first round and a player in A beating x in the second round. Hence the proportion

of SE winners that are contained in the uncovered set is at most 2
n+2 .

Taking k and n large enough with k < log n, we obtain the desired result.

8.5 Generative Models for Tournaments

Recall the Condorcet Random (CR) Model, studied by Braverman and Mossel [44], Vassilevska

Williams [158], and Stanton and Vassilevska Williams [140]. In the CR Model, we assume that

there is an underlying order of the players, and that, in general, stronger players win against weaker

players; however, with some small probability p < 1/2, the weaker player upsets the stronger player.

In the corresponding tournament graph, we say that for two players i, j such that i occurs before

j in the ordering, (i, j) ∈ E with probability 1 − p and (j, i) ∈ E otherwise. A number of results

are known about which players are SE winners in tournaments drawn from the CR Model. When

p ∈ Ω(
√

lnn/n), then with high probability, every player in the tournament is a superking, and

therefore a SE winner [158]. In fact, even when p ≥ C lnn/n, roughly the first half of players are

SE winners, and more generally if p = C · 2i lnn/n, then roughly the first 1 − 1/2i+1 fraction of

players are SE winners [140]. Previous work has also studied various generalizations of the CR

Model [85, 140].

In this section, we present improved results on tournaments generated by the standard CR Model.

We show that with high probability, every player in a CR tournament is a SE winner, even with the

noise p = Θ(lnn/n) (with no dependence on the player’s rank).

Theorem 8.5.1. Let C ≥ 64 be a constant and p ≥ C lnn/n. Let T be a tournament generated by

the CR Model with noise parameter p on n > nC players (for some constant nC). With probability

1− 1/Ω(n2), every player has an efficiently-computable winning seeding over T .

Note that this result is asymptotically optimal, as a player must have at least log n wins to be

able to win a SE tournament. If p = o(lnn/n), then with high probability, the weakest player will

not be able to win a SE tournament, regardless of the seeding. The case where p ≥ C
√

lnn/n is

covered by Vassilevska Williams [158], who showed that every player in such a tournament is a SE

winner.
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We give a sketch of the proof before proceeding to the full proof. First, we argue that the weakest

player w will win against more than k log n players in the first half, for some constant k. We will

think of “swapping” k log n of these losers, which we call S, from the first half with some arbitrary

set of players from the second half (so that these losers become some of the strongest players over

the second half). Then, we argue that at least one player v that w beats will be in the first n/6

players. This player, with high probability, will be a king over the first half of players, who wins

against more than half of the players; thus, by [158], this player will be a SE winner over the first

half of players. Next, we argue that for some arbitrary player u in the weaker half of players, at

least log n players from the k log n that were swapped to the second half will beat u. We then take

a union bound over the players in the second half, and argue that w will be a superking over the

second half, and again by [158], a SE winner over the second half. Thus, w will be a SE winner over

the entire tournament by winning over the weaker half, while v wins against the stronger half, and

w wins against v in the final round. We take a union bound over all players to arrive at the desired

result.

The detailed proof follows.

Proof of Theorem 8.5.1. Let C ≥ 64 be a constant and C lnn/n ≤ p ≤ C
√

lnn/n. First, note that

we expect w to win against C
2 lnn = C ln 2

2 log n players in the first half. Next, we can show that

with high probability, w wins against more than C ln 2
4 log n players. Let k = C ln 2

4 . We have

Pr[w wins against > k log n players in the first half]

≥ 1− exp

(
− (k log n)2

4k log n

)
= 1− exp

(
−k log n

4

)
= 1− exp

(
−C ln 2 log n

16

)
= 1− 1/nC/16.

We also argue that with probability at least 1−1/nC/6, w wins against some player v in the first

n/6 players:

Pr[w wins against some v ∈ [1, n/6]]

= 1− (1− p)n/6

≥ 1− (1− (C lnn/6)/(n/6))n/6

≥ 1− exp(−C lnn/6)

= 1− 1/nC/6,
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where the inequality follows from the approximation (1− a/x)x ≤ e−a for a > 0.

In what follows, we will imagine swapping a set of k log n players, called S, whom w wins against

from the first half (excluding v) with k log n arbitrary players from the second half. This allows us

to argue about the “first half” and the “second half” of players independently. We will argue that

v is a SE winner over the new “first half” of players, and that the inclusion of k log n strong players

whom w beats makes w a superking over the new “second half”.

First, we argue that it is likely that v, whose rank is at most n/6, will be a SE winner over the

first half. In particular, with high probability, v will be a king over the first half of players who wins

against at least n/4 players. Note that we expect v to win against at least n/3 · (1− p) + pn/6− 1 ≥
n/3−C

√
n lnn/6− 1 players from the first half. The out-degree of v is given by a random variable,

which is the sum of independent random variables, so we can bound the probability that out(v) < n/4

using the Chernoff bound (Lemma 2.3.1):

Pr[out(v) ≥ n/4] ≥ 1− exp

(
−

(n/12− C
6

√
n lnn− 1)2

2(n/3− C
6

√
n lnn− 1)

)
> 1− 1/n4,

where the last inequality is a very loose bound on this probability that takes effect for sufficiently

large n.

Next, we consider the probability that v is a king over the first half, conditioned on its high

out-degree. We take a union bound over all possible players who did not lose against v, and show

that it is unlikely that any of these players beats every single player whom v beats.

Pr[v is a king over the first half | out(v) ≥ n/4]

≥ 1−
n/4−1∑
i=1

(1− p)out(v)

≥ 1− n/4 · (1− p)n/4

≥ 1− n/4 · exp(−C lnn/4)

≥ 1− 1/4nC/4−1,

Finally, we argue that with high probability, w will be a superking over the second half of players.

Consider some other u from the second half of players. The expected number of players from S who

beat u is ≥ k log n · (1 − p) = k log n − kC log3/2 n√
n

≥ (k − 1) log n for sufficiently large n. Applying
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the Chernoff bound (Lemma 2.3.1) again, we obtain the following bound.

Pr[u loses to fewer than log n players from S]

≤ exp

(
− ((k − 2) log n)2

2(k − 1) log n

)
= exp

(
− (k2 − 4k + 4)

2(k − 1)
log n

)
= n

−
(
k2−4k+4

2 ln 2·(k−1)

)
.

Then, to guarantee that every u in the second half loses to at least log n players whom w beats, we

take a union bound over the n/2 players. For any k > 11, this probability will be ≤ 1/n3.

The overall probability that w beats a sufficiently strong king over the first half of players is at

least the following:

1− 1/nC/6 − 1/n4 − 1/4nC/4−1 ≥ 1− 2/n4.

Thus, the probability that w wins against k log n players from the (true) first half, wins against some

strong king v over the first half, and is a superking over the second half, is at least the following:

1− 1/nC/16 − 2/n4 − 1/n3 ≥ 1− 2/n3.

Since w is the weakest player of the tournament, the probability that any other player is a SE winner

can only be greater. Taking a union bound over all players, we conclude that with probability at

least 1− 1/Ω(n2), every player in the tournament will be a SE winner.

8.5.1 Generalizing the Condorcet Random Model

As the prior claims demonstrate, in the standard CR Model, every player is a SE winner with high

probability, even when upsets occur at an asymptotically minimal rate. While this result indicates

the depth of our understanding of conditions under which a player is a SE winner, it also suggests

that the assumption that tournaments are drawn from a CR Model—where the noise parameter p

is fixed for all matchups—may be too rigid, incidentally providing structure that may not exist in

practical settings. Prior work [140] proposed a Generalized CR Model, where for two players i < j,

j upsets i with probability p ≤ p(i, j) ≤ 1/2, for some globally specified p. But even this model

asserts that the probability of upsets for every edge must occur within the range of [p, 1/2]. We aim

to relax our restrictions even further in order to disrupt this inherent structure in the CR Model.

Consider the following generative model, which is parameterized by a noise factor p < 1/2 and

a participation factor ∆ ≤ 1/2. The tournament on n players is generated as follows: pick any

set of pairs of players E′ satisfying the condition that each player appears in at least (1/2 + ∆)n

such pairs; then, for every pair {u, v} ∈ E′, pick (u, v) with probability pu,v ∈ [p, 1 − p], and (v, u)
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otherwise. The probabilities pu,v can be arbitrary as long as they are in [p, 1 − p]. The remaining

edges between players may be set arbitrarily. In this new model, many typical arguments used in

analyzing CR tournaments, including those used in the proof of Theorem 8.5.1, which hinge on the

precise definition of the CR Model, break down.

Note that unlike the CR Model, the new model does not start with an underlying ordering of

players; however, such an ordering can easily be emulated. For instance, to emulate the CR Model,

simply choose an ordering σ, set ∆ = 1/2, and for all u, v such that σ(u) < σ(v), sample (u, v) with

probability 1− p. That said, because the model does not start with an explicit ordering, it is much

more versatile. Moreover, because only a (1/2 + ∆) fraction of the edges are determined randomly,

known structures can be (adversarially) hard-coded into the resulting graphs. In this sense, any

results that we can show about tournaments generated from this model are extremely general and

will apply broadly. Despite this generality, we are able to give a statement for our model mirroring

that of Vassilevska Williams [158] for the CR Model.

Theorem 8.5.2. Let p > c
√

logn
2∆n for some c > 5. Then with probability > 1 − 1/Ω(n(c−5)/2 ln 2),

every player in a tournament T sampled from the aforementioned model has an efficiently-computable

winning seeding over T .

The proof of Theorem 8.5.2 is similar to the proof of the analogous statement about the CR

Model found in [158]. It argues that with high probability, every player in the tournament is a

superking.

Proof. Let p = c
√

logn
2∆n . We will argue that with high probability all nodes in a randomly sampled

tournament are superkings, so by [158] they will be SE winners. Let T = (V,E) be a randomly

sampled tournament. We will bound the probability that v ∈ V is not a superking, namely, the

probability that there exists some u ∈ V \ {v} such that u loses to fewer than logn players whom v

beats.

Let u ∈ V \{v}. Let Av be the set of players w for which the edge between v and w was sampled

randomly with probability in the range [p, 1 − p]. Define Au analogously. We let W = Av ∩ Au be

the players whose relation is sampled randomly for both v and u. We can lower bound the size of

this intersection as |W | ≥ (1/2 + ∆)n − 1 + (1/2 + ∆)n − 1 − (n − 2) = 2∆n. Now, note that the

expected number of edges from v into W is the sum of the probabilities that (v, w) is an edge for

each w ∈W , and thus is at least 2∆np. Applying the Chernoff bound (Lemma 2.3.1), we can bound
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the probability that this set of edges into W is smaller than c log n/p = 2∆np/c:

Pr

[
number of edges from v into W ≤ 2∆np

c

]
≤ exp

(
−(1− 1/c)2∆np

)
= exp

(
−(1− 1/c)2c

√
∆n log n/2

)
= 2−Ω(

√
n logn).

Now, we condition on the assumption that v beats at least c log n/p players from W . Note that

each of these players beat u with probability ≥ p, so we expect ≥ c log n of these players to beat

u. Thus, using the Chernoff bound (Lemma 2.3.1) again, we can bound the probability that u does

not lose to at least log n of these players:

Pr[number of edges from W into u ≤ log n]

≤ exp
(
−(1− 1/c)2c log n/2

)
= n−(1−1/c)2c/2 ln 2.

Letting C = (1−1/c)2c/2 ln 2−2, by a union bound over v’s opponents, the probability that v is

not a superking is at most 2−Ω(
√
n logn) +n−C−1. Applying another union bound over all players, the

probability that some player is not a superking is at most 2Ω(
√
n logn) +n−C ≤ O(n−C). Hence with

probability 1 − 1/Ω(nC), all players are superkings. The result then follows from the assumption

that C ≥ (c− 5)/2 ln 2.

8.6 Conclusion and Future Work

In this chapter, we establish results that shed light on the manipulability of SE tournaments. We

show that the winner of such a tournament can be fixed when the underlying tournament graph

satisfies a rather general set of conditions, and apply our results to understand the relationship

between SE winners and other common tournament solutions. We also investigate probabilistic

models for generating random tournaments and prove asymptotic bounds on the probabilities that

allow all players to be SE winners in the resulting tournament.

It is worth noting that our results, as well as those of several works cited in this chapter, are

based on a model where we know with certainty which player would win if two players were to

meet. This strong assumption is not satisfied by most tournaments in practice. As we mentioned

earlier, however, TFP is already NP-hard under this deterministic model [12]. As a result, in a

generalization where we are given the probability distribution of the pairwise match outcomes, we

cannot hope to obtain a finite approximation of the maximum winning probability for each player.
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Nevertheless, it might still be interesting to see whether we reach similar conclusions, either in the

form of structural or probabilistic results, in models that more closely reflect tournaments in the

real world.



Chapter 9

Scheduling Asynchronous

Round-Robin Tournaments

9.1 Introduction

Besides a single-elimination tournament, another popular format for organizing sports competitions

is a round-robin tournament, also known as an all-play-all tournament. In a round-robin tournament,

every pair of players play each other a fixed number of times during the competition. Since every

player competes with every other player, the winner of a round-robin tournament is usually thought

of as depending much less on luck than that of a single-elimination tournament. A series of work

has investigated how to schedule a round-robin tournament when different notions are central to

the organizers’ consideration. One line of research has focused on time-relaxed tournaments, which

takes into account the issue of time off between games involving the same player [87, 88, 130], while

another has considered fairness issues [45, 46, 156, 162]. We refer the interested reader to a survey

by Rasmussen and Trick [122] and a book by Anderson [8] for more details on the literature.

In this chapter, we study the problem of scheduling asynchronous round-robin tournaments, i.e.,

round-robin tournaments in which no two games take place at the same time. There are a number of

reasons why it might be desirable to schedule all games at different times. Indeed, this tournament

format allows spectators to follow all the games live, and the organizers can maximize revenue while

having to organize the same number of games. Tournaments may even need to be asynchronous if

there is only one venue where a game can take place. An example of an asynchronous round-robin

tournament is the 2012 Premier League Snooker in England, in which five players in the group stage

play a total of ten games in ten different weeks (albeit in ten different venues as well).

When scheduling an asynchronous round-robin tournament, the organizers may desire properties

that improve the quality and fairness of the tournament. Unlike in single-elimination tournaments,
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for which the organizers can significantly impact the outcome of the tournament by setting up a

bracket of their choice,1 the set of games to be played in a round-robin tournament cannot be

changed. Nevertheless, the order in which the games are played can still be an important factor in

a round-robin tournament. For example, when players have a longer rest between games, they are

more likely to have a relaxing rest and perform at their full potential in the next game. On the

other hand, if some player has a long rest going into a game while her opponent has just played her

previous game, the former player could have a significant advantage. Another desirable property of a

schedule is that at any point during the tournament, all players should have played roughly the same

number of games. This prevents the advantage of knowing too many results involving other players

and the possibility of collusion. We define measures that capture all of these properties, and exhibit

schedules that perform (close to) optimally with regard to these measures. In particular, we show

that the schedule generated by the well-known “circle design” performs well with respect to all three

measures when the number of players is even, but not so well when the number of players is odd. We

also propose a different schedule that performs optimally with respect to all three measures when

the number of players is odd. We hope that this schedule will be of practical interest to organizers

of asynchronous round-robin tournaments.

A related problem that is worth mentioning is the problem of finding balanced tournament

designs, which has been considered by some prior work [21, 75, 128]. In the setting of balanced

tournament designs, it is assumed that there exist external factors that make some games different

from others, and it is desirable that players receive roughly the same effect from these external

factors. For instance, the tournament might involve games during different times of the day or at

different venues. Since some players may be more familiar with playing in the morning than in the

evening, or with playing at one venue than another, the aim of a balanced tournament design is

to eliminate or minimize the potential advantage by scheduling players to play as evenly across the

different times and venues as possible. By contrast, in our setting there is no inherent difference

between games. Indeed, a reasonable example to keep in mind throughout this chapter is that the

games of the tournament are scheduled on consecutive days, one game per day, at a single venue.

A summary of our results can be found in Table 9.1.

9.2 Preliminaries

We assume that the tournament in consideration is a single round-robin tournament, i.e., every pair

of players play each other exactly once. As we will mention in Section 9.5, however, several of our

results can be generalized to arbitrary round-robin tournaments as well.

Let n denote the number of players in the tournament. We divide the games of the tournament

into r rounds of g games, where the first round comprises the first g games, the second round the

1See Chapter 8.
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Circle method,
n even

Any schedule,
n even

Circle method,
n odd

Any schedule,
n odd

Guaranteed rest time (n− 4)/2 ≤ (n− 4)/2 (n− 5)/2 ≤ (n− 3)/2
Games-played difference
index

1 ≥ 1 2 ≥ 1

Rest difference index 1 if n = 4; 2 if
n ≥ 6

≥ 1 (n+ 1)/2 ≥ 1

Table 9.1: Summary of our results. All bounds are known to be attainable except that for the rest
difference index when n is even. See also Section 9.5 for further discussion.

next g games, and so on. The parameters r and g depend on n and are given by

g =
⌊n

2

⌋
,

r = 2 ·
⌈n

2

⌉
− 1 =

n if n is odd;

n− 1 if n is even.

A player is said to play in slot i in a round if she plays the ith game of that round. We emphasize that

in asynchronous tournaments, rounds do not carry any particular meaning in the implementation of

the tournament and are defined merely for the convenience of our analysis.

A single round-robin tournament consists of
(
n
2

)
= n(n−1)

2 games. Each player plays n−1 games,

and we have the identity

r · g =
(

2 ·
⌈n

2

⌉
− 1
)
·
⌊n

2

⌋
=
n(n− 1)

2
.

A well-known method for scheduling a round-robin tournament, described for instance by Hasel-

grove and Leech [75], is called the circle design. The method works as follows. Assume first that n

is even. We arrange the players into two rows of n/2 players in such a way that the two rows align

player by player. The games in the first round correspond to the pairs of players that are aligned in

this arrangement. For asynchronous tournaments, we read the games from left to right. To generate

the games in the next round, we keep the top-left player fixed and rotate the remaining players one

step counterclockwise. (It is also possible to rotate the remaining players one step clockwise, but

this results in the same schedule as rotating counterclockwise under appropriate renaming of the

players.) We perform the rotation n − 2 times to generate the games in all n − 1 rounds. If n is

odd, we simply pretend that the top-left player is a dummy player, and whichever player is matched

to that player “sits out” the round (i.e., gets a bye in that round). The first three rounds for the

tournaments with n = 10 and n = 11 are shown in Figures 9.1 and 9.2, respectively.

We now define three measures of a schedule for an asynchronous tournament that concern the

quality and fairness of the tournament. The first measure, guaranteed rest time, considers the
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1 2 3 4 5
10 9 8 7 6

1 10 2 3 4
9 8 7 6 5

1 9 10 2 3
8 7 6 5 4

Figure 9.1: The first three rounds generated by the circle design for a tournament with n = 10.

1 2 3 4 5
10 9 8 7 6

11 1 2 3 4
9 8 7 6 5

10 11 1 2 3
8 7 6 5 4

Figure 9.2: The first three rounds generated by the circle design for a tournament with n = 11.
Note that one player “sits out” each round (i.e., gets a bye in that round).

minimum amount of time that the schedule allows players to take a rest before their next game.

Definition 9.2.1. The guaranteed rest time of a schedule for an asynchronous tournament is the

maximum integer b such that in the schedule, any two games involving a player is separated by at

least b games not involving that player.

A schedule with a high guaranteed rest time is desirable, as it allows players to take a long rest

and prepare themselves for the next game. The higher the guaranteed rest time, the more likely we

will see players perform at their full potential in the tournament.

The next two measures, the games-played difference index and the rest difference index, reflect

the fairness of the schedule.

Definition 9.2.2. The games-played difference index of a schedule for an asynchronous tournament

is the minimum integer p such that at any point in the schedule, the difference between the number

of games played by any two players is at most p.

It is evident that for any tournament with at least three players, the games-played difference

index is at least 1. A schedule with a low games-played difference index ensures that all players have

played roughly the same number of games at any point during the tournament. This prevents the

advantage that some players may have if they know the results of too many games involving other

players. Indeed, with this knowledge the players can adjust their strategy to achieve their desired

position in the tournament and may even conspire with one another to do so.

Definition 9.2.3. The rest difference index of a schedule for an asynchronous tournament is the

minimum integer d such that for any game in the schedule, if one player has not played in i1

consecutive games since her last game and the other player has not played in i2 consecutive games

since her last game, then |i1− i2| ≤ d. (To handle the situation in which a player is playing her first

game of the tournament, we assume that all players are involved in an imaginary game that takes

place one slot before the first game of the schedule.)

It is again evident that for any tournament with at least three players, the rest difference index

is at least 1. A schedule with a low rest difference index guarantees that the two players involved in

a game have approximately the same amount of rest time going into the game.
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9.3 Even Number of Players

In this section, we assume that the tournament in consideration consists of an even number of

players. We will show that under this assumption, the schedule generated by the circle design fares

extremely well with respect to all of the measures introduced in Section 9.2. Since the round-robin

tournament with two players consists of a single game, we will only consider n ≥ 4.

We begin by showing an upper bound on the guaranteed rest time.

Proposition 9.3.1. Let n ≥ 4. Any schedule for a tournament with n = 2k players has guaranteed

rest time at most k − 2.

Proof. Assume for the sake of contradiction that the guaranteed rest time is at least k − 1. This

means that all players play at most once in any k consecutive games. Since there are 2k players,

each player plays exactly once in the first round. Hence the first game in the second round must

involve the same two players as the first game in the first round, a contradiction.

Next, we analyze the schedule generated by the circle design.

Proposition 9.3.2. Let n ≥ 4. The schedule generated by the circle design for a tournament with

n = 2k players has guaranteed rest time k − 2, games-played difference index 1, and rest difference

index 2 if n ≥ 6 and 1 if n = 4.

Proof. We verify each of the measures separately.

• Guaranteed rest time: Note that each player plays exactly once in every round. Since the slot

of a player is shifted by at most 1 from one round to the next, and each round consists of k

slots, the player has a rest of at least k − 2 games. On the other hand, a player whose slot is

shifted to the left has a rest of exactly k − 2 games.

• Games-played difference index : Since each player plays exactly once in every round, all of the

players have played the same number of games at the end of each round. It follows that the

index is 1.

• Rest difference index : One can directly verify that the index is 1 if n = 4. Assume now that

n ≥ 6, and consider the second slot in the second round. One of the players in that slot is

shifted from the third slot in the first round and the other player from the first slot in the first

round. Hence the index is at least 2. On the other hand, the slot of a player is shifted by at

most 1 from one round to the next, so the index is exactly 2.

We have verified all three measures.

Propositions 9.3.1 and 9.3.2 together imply that the schedule generated by the circle design has

an optimal guaranteed rest time and an optimal games-played difference index. Moreover, the rest
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1 3 1 2 1 4 1 2 5 1 2 3 2 3 4
2 4 5 6 3 5 6 3 6 4 5 6 4 5 6

1 3 5 1 1 3 1 2 1 2 3 2 2 4 4
2 4 6 3 5 6 6 4 4 6 5 3 5 6 5

Figure 9.3: Two schedules with rest difference index 1 for a tournament with n = 6.

difference index can be improved by at most 1. We now show that unless n = 4, it is impossible to

simultaneously obtain a guaranteed rest time of k−2 and games-played difference and rest difference

indices of 1.

Theorem 9.3.3. Let n ≥ 6. No schedule for a tournament with n = 2k players has guaranteed rest

time k − 2, games-played difference index 1, and rest difference index 1.

Proof. Assume for the sake of contradiction that such a schedule exists. We first claim that in the

schedule, each player plays exactly once in every round. This can be shown by induction on the

number of rounds. Suppose that each player plays exactly once in every round up to round i ≥ 0.

In round i+ 1, if some player plays twice, then some other player does not play at all, contradicting

the fact that the games-played difference index is 1. Hence each player also plays exactly once in

round i+ 1, completing the induction.

Suppose now that in the first round, players 1 and 2 play in the first game, players 3 and 4 in the

second, and players 5 and 6 in the third. Since the guaranteed rest time is k−2, the first game in the

second round can only involve players from the first two games in the first round. Assume without

loss of generality that player 1 and 3 play in that game. Similarly, the second game in the second

round can only involve players from the first three games in the first round. The game cannot be

played between player 4 and one of players 5 and 6, since the game involving player 2 in the second

round would violate the rest difference index condition. Hence the game is played between players

2 and 4.

By the same reasoning, the first game in the third round must be played by players 1 and 4, and

the second by players 2 and 3. But then no player can play against player 1 in the fourth round

without violating the rest difference index condition. Thus we have the desired contradiction.

Theorem 9.3.3 implies that if a schedule were to have rest difference index 1, it would have to

sacrifice either the guaranteed rest time or the games-played difference index. Nevertheless, it is

interesting to ask whether there exists for all even n a schedule with rest difference index 1. For

n = 6, two such schedules are shown in Figure 9.3. The first schedule also has an optimal guaranteed

rest time of 1, but makes the necessary sacrifice by having a games-played difference index of 2. On

the other hand, the second schedule is worse off in both measures, having guaranteed rest time 0

and games-played difference index 3.
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9.4 Odd Number of Players

In this section, we assume that the tournament in consideration consists of an odd number of players.

We will show that unlike in the case where the number of players is even, the schedule generated

by the circle design does not fare so well with respect to the measures introduced in Section 9.2.

Nevertheless, we will exhibit a different schedule that performs optimally with respect to all of the

measures.

The round-robin tournament with three players consists of three games, and any two schedules

of the three games are equivalent under renaming of the players, so we have no choice to make in

this case.

We begin by showing an upper bound of k − 1 for the guaranteed rest time of any schedule.

Proposition 9.4.1. Let n ≥ 3. Any schedule for a tournament with n = 2k + 1 players has

guaranteed rest time at most k − 1.

Proof. Consider the first k + 1 games of the tournament. Since they involve the participation of

2k + 2 players (counting multiplicity), the pigeonhole principle implies that some player plays at

least twice among those games. Such a player has a rest of at most k − 1 games.

Next, we analyze the schedule generated by the circle design. Even though this schedule does

not match the bound in Proposition 9.4.1, we will later exhibit a different schedule that does attain

the upper bound.

Proposition 9.4.2. Let n ≥ 5. The schedule generated by the circle design for a tournament with

n = 2k+1 players has guaranteed rest time k−2, games-played difference index 2, and rest difference

index k + 1.

Proof. We verify each of the measures separately.

• Guaranteed rest time: Note that each player plays at most once in every round. Since the slot

of a player is shifted by at most 1 from one round to the next, and each round consists of k

slots, the player has a rest of at least k − 2 games. On the other hand, a player whose slot is

shifted to the left has a rest of exactly k − 2 games.

• Games-played difference index : Since the player that sits out each round is distinct, the dif-

ference between the highest and lowest number of games played by a player at the end of each

round is 1. Each player plays at most once in every round, so the difference increases by at

most 1 during a round. Hence the index is at most 2.

On the other hand, consider the point after the first game in the third round has just finished.

The player that sat out the second round has played once, while a player involved in the first

game of the third round has played three times. It follows that the index is 2.
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1 3 1 2 4 1 2 3 1 2
2 4 5 3 5 3 4 5 4 5

Figure 9.4: The schedule as described in Theorem 9.4.4 with guaranteed rest time 1, games-played
difference index 1, and rest difference index 1 for a tournament with n = 5.

1 3 5 1 2 4 6 1 2 4 3 1 2 4 3 1 2 5 3 1 2
2 4 6 7 3 5 7 3 5 6 7 5 6 7 5 6 4 7 6 4 7

1 3 5 1 2 4 6 1 2 4 1 3 2 4 1 3 2 1 5 3 2
2 4 6 7 3 5 7 3 5 7 6 5 7 6 5 7 6 4 7 6 4

Figure 9.5: Two schedules with guaranteed rest time 2, games-played difference index 1, and rest
difference index 1 for a tournament with n = 7. The first schedule corresponds to the one described
in Theorem 9.4.4.

• Rest difference index : Consider the first slot in the third round. One of the players in that

slot was last involved in the first game of the first round, while the other player played in the

second slot of the second round. Hence the index is at least k + 1.

On the other hand, consider any two players involved in a game. If the two players also played

in the previous round, the difference in their rest time is at most k − 1. Otherwise, one of

the player sat out the previous round. This implies that the player played the first game of

the round before the previous round, while the other player played the second game of the

previous round. Hence the index is exactly k + 1.

We have verified all three measures.

We now show that if a schedule attains the upper bound on the guaranteed rest time, it will also

fare optimally with respect to the rest difference index.

Lemma 9.4.3. Let n ≥ 3. Any schedule for a tournament with n = 2k + 1 players with guaranteed

rest time k − 1 has rest difference index 1.

Proof. Suppose that a schedule for a tournament with 2k+ 1 players has guaranteed rest time k−1.

This means that any k consecutive games in the schedule are played by 2k distinct players.

We show that the rest difference index is 1. Consider an arbitrary game after the kth game.

This game cannot involve a player that played in one of the previous k − 1 games. Moreover, the

game cannot be played between the two players that played each other k games ago. Hence the only

possibility is that the game is played between the player that sat out the previous k games and one

of the two players that played k games ago. In particular, all 2k + 1 players appear in any block

of k + 1 consecutive games. This implies that the player that sat out the previous k games played

k + 1 games ago (if this game exists). Hence the rest difference index is 1, as desired.



CHAPTER 9. SCHEDULING ASYNCHRONOUS ROUND-ROBIN TOURNAMENTS 122

Proposition 9.4.1 and Lemma 9.4.3 do not carry much meaning on their own. Indeed, without an

example to show that the bounds can be achieved, it is difficult to tell how useful the bounds are. In

particular, the rest difference index of the schedule generated by the circle design (k+ 1) is quite far

from the bound we have so far (1). All of these observations raise the natural question of whether

there exist other schedules that perform better on some or all measures. The next theorem gives

the most satisfying answer possible to this question; it shows that there exists a schedule that fare

optimally—and strictly better than the circle-design schedule—with respect to all three measures.

Theorem 9.4.4. Let n ≥ 3. There exists a schedule for a tournament with n = 2k+ 1 players with

guaranteed rest time k − 1, games-played difference index 1, and rest difference index 1.

Proof. In light of Lemma 9.4.3, it suffices to show the existence of a schedule for a tournament with

2k+ 1 players with guaranteed rest time k− 1 and games-played difference index 1. We exhibit the

schedule by specifying the slot that the players play in each round. Slots are taken modulo k + 1,

and slot 0 means that a player sits out that round. The schedule is defined as follows.

• For 1 ≤ i ≤ k, player 2i − 1 is placed in slot i in the first 2i rounds. After that, the player

moves forward by one slot in each round.

• For 1 ≤ i ≤ k, player 2i is placed in slot i in the first round. The player moves forward by one

slot in each round until round 2k+ 3− 2i. After that, she stays in the same slot until the last

round.

• Player 2k + 1 is placed in slot bj/2c in the jth round.

The resulting schedules for the tournaments with n = 5 and n = 7 can be seen in Figures 9.4

and 9.5, respectively.

We show that the schedule is well-defined by demonstrating that every pair of players play each

other exactly once. We divide the verification into cases.

• For 1 ≤ i 6= j ≤ k, players 2i− 1 and 2j − 1 play each other in round i+ j.

• For 1 ≤ i 6= j ≤ k, players 2i and 2j play each other in round 2k + 3− i− j.

• For 1 ≤ i ≤ j ≤ k, players 2i − 1 and 2j play each other in round 1 if i = j and round

2k + 2 + i− j otherwise.

• For 1 ≤ i < j ≤ k, players 2i and 2j − 1 play each other in round j − i+ 1.

• For 1 ≤ i ≤ k, players 2i− 1 and 2k + 1 play each other in round 2i.

• For 1 ≤ i ≤ k, players 2i and 2k + 1 play each other in round 2k + 2− i.
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Next, we show that the guaranteed rest time is k− 1. If a player sits out a round between two of

her games, then the two games are separated by at least k other games. Otherwise, a player either

stays in the same slot or moves one slot forward in the next round. In both cases, the player has a

rest of at least k − 1 games in between.

Finally, we show that the games-played difference index is 1. At the end of each round, the

difference between the highest and lowest number of games played by a player is at most 1. The

players with a lower number of games played are exactly those that already sat out a round. Hence

it suffices to show that in any round, a player that already sat out a round appears no later than

a player that participated in every round. One can check that player 2k + 1, who sat out the first

round, appears no later than any player that did not sit out, and any other player that already sat

out appears no later than her. This completes the proof of the claim, and therefore the theorem.

The schedule described in Theorem 9.4.4 is not necessarily the unique schedule satisfying the

desired properties. Indeed, for n = 7, another schedule satisfying the desired properties is shown

in Figure 9.5. To see that the two schedules cannot be obtained from each other by permuting

the player indices, observe that the first two rounds of games uniquely determine the identity of

the players: player 1 plays in games 1 and 4, player 2 plays in games 1 and 5, player 3 plays in

games 2 and 5, and so on. Since the two schedules differ in the second game of the fourth round, no

permutation of player indices in one schedule results in the other schedule.

Now that Theorem 9.4.4 gives us a schedule that fare optimally on all three measures, we may

demand a stronger notion of fairness. In particular, while the rest difference index of 1 guarantees

that two players going into a game have roughly the same amount of rest, it seems fairer if all players

sometimes get a longer rest than their opponent and sometimes a shorter one than if some players

always get a longer rest than their opponent. Nevertheless, the following proposition shows that as

long as we insist on maximal guaranteed rest time, this goal cannot be achieved.

Proposition 9.4.5. Let n ≥ 3. For any schedule for a tournament with n = 2k + 1 players with

guaranteed rest time k − 1, there exists a player that has a longer rest time than her opponent in

every game after her first game.

Proof. Consider a schedule for a tournament with n = 2k + 1 players with guaranteed rest time

k− 1. As in the proof of Lemma 9.4.3, we find that any game after the kth game is played between

the unique player that sat out the previous k games and one of the two players that played k games

ago. This implies that if a player just played a game and still has more games left in the tournament,

then she will have a rest of either k − 1 or k games before her next game. Put differently using the

terminology in the proof of Theorem 9.4.4, a player either stays in the same slot or moves one slot

forward in the next round. Since the number of rounds, 2k + 1, is equal to the number of players,

each player sits out exactly one round.

Suppose that players 1 and 2 play each other in the first game of the tournament, and player 2
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has a rest of k games before her next game. We claim that player 2 moves one slot forward in every

round. It suffices to prove this claim in order to establish the theorem, since the claim implies that

player 2 has a longer rest time than her opponent in every game after her first game.

Assume for the sake of contradiction that player 2 stays in the same slot at some point during

the tournament. Consider the first instance in which this occurs. Since every player sits out exactly

one slot, the slot is not slot 0.

Suppose that player 2 repeats a slot in rounds i and i+ 1. This means that the player that plays

against player 2 in round i+ 1 (say, player t) played in the slot before player 2 in round i. Since the

two players play each other only once during the tournament, player t also played in the slot before

player 2 in round i − 1, round i − 2, and so on down to round 2. Hence player t sat out the first

round, played against player 1 in the first slot of the second round, and is in the slot ahead of player

1 in the third round. This implies that player 1 cannot “overtake” player t in the slot position for

the rest of the tournament. But since player t already sat out while player 1 did not, this means

that player 1 cannot sit out for the rest of the tournament, a contradiction.

9.5 Conclusion and Future Work

In this chapter, we define three measures that capture quality and fairness properties of a schedule for

an asynchronous round-robin tournament, and we exhibit schedules that perform (close to) optimally

with respect to all of these measures. Here we give some comments and directions for future work.

Several of our results can be generalized to arbitrary round-robin tournaments in which every

pair of players play each other a fixed number of times. Indeed, we can turn a single round-robin

tournament into an arbitrary round-robin tournament by duplicating each round a desired number of

times. This method preserves the guaranteed rest time and rest difference index, and for Proposition

9.3.2 it also preserves the games-played difference index. Moreover, Propositions 9.3.1 and 9.4.1 can

be generalized to arbitrary round-robin tournaments as well.

As mentioned in Section 9.3, an interesting open question is whether there exists a schedule

with rest difference index 1 when there are an even number of players. Such schedules are shown

in Figure 9.3 for the case n = 6. If the answer turns out to be affirmative, one could also ask for

a schedule with a “balanced” rest difference in the sense described before Proposition 9.4.5, i.e.,

players sometimes get a longer rest than their opponent and sometimes a shorter one. In addition,

one could ask for the optimal value of one measure when the remaining two are forced to achieve

their optimal values. From Proposition 9.3.2 and Theorem 9.3.3, we know that when the guaranteed

rest time and the games-played difference index achieve their optimal values, the minimum rest

difference index is 2. When the number of players is odd, it would be interesting to explore whether

it is possible to achieve a rest difference index of 1 with a balanced rest difference if we are willing

to sacrifice on other measures.
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Finally, it might be worth investigating the structure of “optimal” schedules: how many there are,

and whether they differ between themselves in some other meaningful way for the players. This could

potentially yield new insights into the fascinating study of scheduling round-robin tournaments.



Appendix A

Omitted Proofs from Chapter 3

A.1 Direct Proof of Theorem 3.3.1 for Two Agents

We give a proof of Theorem 3.3.1 for the case n = 2 that does not rely on Kneser’s conjecture.

Denote by �1 and �2 the preferences on S of the two agents. We establish the existence of a set of

size at most
⌊
m+2

2

⌋
that is agreeable to both agents; the tightness of the bound follows in the same

way as in our proof of Theorem 3.3.1 for any number of agents.

Assume first that m = 2k + 1 is odd. Suppose for contradiction that no subset of size at most

k+1 is agreeable to both agents. Let T ⊆ S be such that |T | = k. We begin by proving the following

claim.

Claim: If T �1 S\T , then

(T ∪ {x})\{x′} �1 ((S\T )\{x}) ∪ {x′}

for any x ∈ S\T and x′ ∈ T .

Proof of Claim: Suppose that T �1 S\T , x ∈ S\T , and x′ ∈ T . It follows from monotonicity

that T ∪ {x} �1 (S\T )\{x}. Since no subset of size k + 1 is agreeable to both agents, we have

(S\T )\{x} �2 T ∪ {x}. By monotonicity again, we have

((S\T )\{x}) ∪ {x′} �2 (T ∪ {x})\{x′}.

Using again the assumption that no subset of size k + 1 is agreeable to both agents, it follows that

(T ∪ {x})\{x′} �1 ((S\T )\{x}) ∪ {x′},

and our claim is proved. �

We now use our claim to obtain the desired contradiction. Assume without loss of generality that
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{x1, x2, . . . , xk} �1 {xk+1, xk+2, . . . , x2k+1}. Applying our claim repeatedly to move items between

the two sets, we find that

{xk+1, x2, . . . , xk} �1 {x1, xk+2, . . . , x2k+1},

{xk+1, xk+2, x3, . . . , xk} �1 {x1, x2, xk+3, . . . , x2k+1},

and so on, until finally

{xk+1, xk+2, . . . , x2k} �1 {x1, x2, . . . , xk, x2k+1}.

By monotonicity, we have {xk+1, xk+2, . . . , x2k+1} �1 {x1, x2, . . . , xk}, which contradicts our as-

sumption that {x1, x2, . . . , xk} �1 {xk+1, xk+2, . . . , x2k+1}.
Assume now that m = 2k is even. Let S′ be the set of all items in S except x1. We know from the

case ofm odd that there exists a subset T ⊆ S′ of size at most k such that T �1 S
′\T and T �2 S

′\T .

Since preferences are monotonic, we have that T ∪{x1} �1 S
′\T and T ∪{x1} �2 S

′\T . This means

that the set T ∪ {x1} of size at most k + 1 is our desired subset, completing the proof.

Note that this proof also yields a polynomial-time algorithm to compute an agreeable set of size

at most
⌊
m+2

2

⌋
that is agreeable to both agents. Assume that m = 2k+1 is odd; the case m even can

be handled similarly. Let T ⊆ S be an arbitrary subset of size k. If S\T �1 T and S\T �2 T , we are

done. Otherwise, assume without loss of generality that T �1 S\T , and choose arbitrarily x ∈ S\T
and x′ ∈ T . As in the proof of the claim, if T ∪ {x} �2 (S\T )\{x}, or if (S\T )\{x} �2 T ∪ {x} and

((S\T )\{x}) ∪ {x′} �1 (T ∪ {x})\{x′}, we are done. Hence we may assume as in the conclusion of

the claim that (T ∪ {x})\{x′} �1 ((S\T )\{x}) ∪ {x′}. This means that we can find an agreeable

subset by moving elements repeatedly between the two sets as in the continuation of the proof. Since

we need to move elements at most k times, our algorithm runs in polynomial time.

A.2 NP-hardness of Balanced 2-Partition

We show that Balanced 2-Partition is NP-hard via a reduction from 2-Partition, a well-known

NP-hard problem.

Lemma A.2.1. Balanced 2-Partition is NP-hard.

Proof. We reduce from 2-Partition, a problem in which a multiset B of positive integers is given

and the goal is to decide whether there exists a multiset T ⊆ B such that
∑
b∈T b =

∑
b∈B\T b.

2-Partition is known to be NP-complete (see, e.g., [70]).

Given a 2-Partition instance, we create a Balanced 2-Partition instance as follows. Let A

be the multiset containing all elements of B and |B| additional zeros. Clearly, the reduction runs
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in polynomial time. We show that B is a YES instance of 2-Partition if and only if A is a YES

instance of Balanced 2-Partition.

(YES Case) Suppose that B is a YES instance of 2-Partition, i.e., there exists T ⊆ B such that∑
b∈T b =

∑
b∈B\T b. Let S ⊆ A be the multiset containing all elements of T and |B|−|T | additional

zeros. Clearly, |S| = |B| = |A|/2 and
∑
a∈S a =

∑
b∈T b =

∑
b∈B b/2 =

∑
a∈A a/2, meaning that A

is a YES instance of Balanced 2-Partition as desired.

(NO Case) We prove the contrapositive; suppose that A is a YES instance of Balanced 2-

Partition. This means that there exists S ⊆ A of size |A|/2 = |B| such that
∑
a∈S a =

∑
a∈A\S a.

Let T be the subset of B containing all elements of B whose corresponding elements are included

in S. Clearly, we have
∑
b∈T b =

∑
a∈S a =

∑
a∈A\S a =

∑
b∈B\T b. Hence B is a YES instance of

2-Partition.
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Omitted Proofs from Chapter 4

B.1 Proof of Theorem 4.3.1

First we list the following well-known fact, which allows us to easily determine the mean of a random

variable from its cumulative density function.

Lemma B.1.1. Let X be a non-negative random variable. Then

E[X] =

∫ ∞
0

Pr[X ≥ x]dx.

To analyze the algorithm, consider any agent aij and any group Ai′ 6= Ai. We will first bound

the probability that uij(Gi′) > uij(Gi). To do this, for each good g ∈ G, define Bij,g as

Bij,g = uij(g) · 1

i = arg max
q=1,2,...,k

n′∑
p=1

uqp(g)

 ,
where 1

[
i = arg maxq=1,2,...,k

∑n′

p=1 uqp(g)
]

is an indicator random variable that indicates whether

i = arg maxq=1,2,...,k

∑n′

p=1 uqp(g). Similarly, define Ci
′

ij,g as

Ci
′

ij,g = uij(g) · 1

i′ = arg max
q=1,2,...,k

n′∑
p=1

uqp(g)

 .
Moreover, suppose that Dg has mean µg and variance σ2

g .

Notice that, with respect to agent aij , Bij,g is the utility that good g contributes to Ai whereas

Ci
′

ij,g is the utility that good g contributes to Ai′ . In other words, uij(Gi′) > uij(Gi) if and only

if
∑
g∈GBij,g <

∑
j∈M Ci

′

ij,g. To bound Pr [uij(Gi′) > uij(Gi)], we will first bound E [Bij,g] and
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E
[
Ci
′

ij,g

]
. Then, we will use the Chernoff bound to bound Pr

[∑
g∈GBij,g <

∑
j∈M Ci

′

ij,g

]
.

Observe that, due to symmetry, we can conclude that

E

uij(g) · 1

i′ = arg max
q=1,2,...,k

n′∑
p=1

uqp(g)

 = E

uij(g) · 1

i′′ = arg max
q=1,2,...,k

n′∑
p=1

uqp(g)


for any i′′ 6= i. Thus, we can now rearrange Ci

′

ij,g as follows:

E
[
Ci
′

ij,g

]
=

1

k − 1

∑
i′′ 6=i

E

uij(g) · 1

i′′ = arg max
q=1,2,...,k

n′∑
p=1

uqp(g)


=

1

k − 1

E

uij(g)
∑
i′′ 6=i

1

i′′ = arg max
q=1,2,...,k

n′∑
p=1

uqp(g)


=

1

k − 1

E

uij(g)

1− 1

i = arg max
q=1,2,...,k

n′∑
p=1

uqp(g)

 .

Hence, we have

E
[
Ci
′

ij,g

]
=

1

k − 1
(µg − E [Bij,g]) . (B.1)

Now, consider Bij,g. Again, due to symmetry, we have

E [Bij,g] =
1

n′

 n′∑
j=1

E

uij(g) · 1

i = arg max
q=1,2,...,k

n′∑
p=1

uqp(g)


=

1

n′
E

 n′∑
j=1

uij(g)

 · 1
i = arg max

q=1,2,...,k

n′∑
p=1

uqp(g)

 .
Let S denote the distribution of the sum of n′ independent random variables, each drawn from

Dg. It is obvious that
∑n′

p=1 uqp(g) is drawn from S independently for each q. In other words,

E [Bij,g] can be written as

E [Bij,g] =
1

n′
E [X1 · 1 [X1 = max{X1, X2, . . . , Xk}]] .

The expectation on the right is taken over X1, X2, . . . , Xk sampled independently from S.
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From symmetry among X1, X2, . . . , Xk, we can further derive the following:

E [Bij,g] =
1

n′
Pr [X1 = max{X1, X2, . . . , Xk}]E [X1 | X1 = max{X1, X2, . . . , Xk}]

=
1

n′k
E [X1 | X1 = max{X1, X2, . . . , Xk}]

=
1

n′k
E [max{X1, X2, . . . , Xk}] .

Consider the distribution of max{X1, X2, . . . , Xk}. Let us call this distribution Y. Notice that

E [max{X1, X2, . . . , Xk}] is just the mean of Y, i.e.,

E [Bij,g] =
1

n′k
E

Y∼Y
[Y ]. (B.2)

To bound this, let FS and FY be the cumulative density functions of S and Y respectively. Notice

that FY (x) = FS(x)k for all x. Applying Lemma B.1.1 to S and Y yields the following:

E
S∼S

[S] =

∫ ∞
0

(1− FS(x))dx,

and,

E
Y∼Y

[Y ] =

∫ ∞
0

(1− FS(x)k)dx.

By taking the difference of the two, we have

E
Y∼Y

[Y ] = E
S∼S

[S] +

∫ ∞
0

FS(x)
(
1− FS(x)k−1

)
dx.

To bound the right hand side, recall that S is just the distribution of the sum of n′ independent

random variables sampled according to Dg. Note that the third moment of Dg is at most 1 because

it is bounded in [0, 1]. Thus, by applying the Berry-Esseen Theorem (Lemma 2.3.3), we have∣∣∣∣∣FS(x)− Pr
y∼N (µgn′,σ2

gn
′)

[y ≤ x]

∣∣∣∣∣ ≤ CBE

σ3
g

√
n′
.

for all x ∈ R. When n′ is sufficiently large, the right hand side is at most 0.1.

Moreover, one can check that for every x ∈
[
µgn

′, µgn
′ + σg

√
n′
]
, we have Pry∼N (µgn′,σ2

gn
′)[y ≤

x] ∈ [0.5, 0.85]. Hence, FS(x) ∈ [0.4, 0.95] for every x ∈
[
µgn

′, µgn
′ + σg

√
n′
]
.
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Now, we can bound EY∼Y [Y ] as follows:

E
Y∼Y

[Y ] = E
S∼S

[S] +

∫ ∞
0

FS(x)
(
1− FS(x)k−1

)
dx

= µgn
′ +

∫ ∞
0

FS(x)
(
1− FS(x)k−1

)
dx

(Since FS(x)
(
1− FS(x)k−1

)
≥ 0) ≥ µgn′ +

∫ µgn
′+σg

√
n′

µgn′
FS(x)

(
1− FS(x)k−1

)
dx

≥ µgn′ +
∫ µgn

′+σg
√
n′

µgn′
(0.4)(0.05)dx

= µgn
′ + σg

√
n′/50

(Since σg ≥ σmin) ≥ µgn′ + σmin
√
n′/50.

Plugging the above inequality into equation (B.2), we can conclude that

E [Bij,g] =
1

n′k
E

Y ∈Y
[Y ] ≥ µg

k
+

σmin

50k
√
n′
.

From this and equation (B.1), we have

E
[
Ci
′

ij,g

]
=

1

k − 1
(µg − E [Bij,g]) ≤

1

k − 1

(
µg −

µg
k

)
=
µg
k
.

Now, define Zi
′

ij,g as Zi
′

ij,g = Ci
′

ij,g +
(
µg/k − E

[
Ci
′

ij,g

])
. Notice E

[
Zi
′

ij,g

]
= µg/k.

As stated earlier, uij(Gi′) > uij(Gi) if and only if
∑
g∈GBij,g <

∑
j∈M Ci

′

ij,g. Let SB =∑
g∈GBij,g, SC =

∑
g∈G C

i′

ij,g, SZ =
∑
g∈G Z

i′

ij,g and let δ = σmin
200µg

√
n′

. Notice that, since we as-

sume that the variance of Dg is positive, µg is also non-zero, which means that δ is well-defined.

Using the Chernoff bound (Lemma 2.3.1) on SB and SZ , we have

Pr[SB ≤ (1− δ)E[SB ]] ≤ exp

(
−δ2 E[SB ]

2

)
,

and,

Pr[SZ ≥ (1 + δ)E[SZ ]] ≤ exp

(
−δ2 E[SZ ]

3

)
.
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Moreover, when n′ is large enough, we have (1− δ)E[SB ] ≥ (1 + δ)E[SZ ]. Thus, we have

Pr[SB < SZ ] ≤ exp

(
−δ2 E[SB ]

2

)
+ exp

(
−δ2 E[SZ ]

3

)
≤ exp

(
−δ2mµg

2k

)
+ exp

(
−δ2mµg

3k

)
≤ 2 exp

(
−σ2

minm

120000kn′µg

)
(Since µg ≤ 1) ≤ 2 exp

(
−σ2

minm

120000n

)
.

Due to how Zi
′

ij,g is defined, we have Pr[SB < SZ ] ≥ Pr[SB < SC ] = Pr[uij(Gi′) > uij(Gi)].

Using the union bound for all agents aij and all groups Ai′ 6= Ai, the probability that the allocation

output by the algorithm is not envy-free is at most

2n(k − 1) exp

(
−σ2

minm

120000n

)
,

which is at most 1/m when m ≥ Cn log n for some sufficiently large C. This completes the proof of

the theorem.



Appendix C

Examples for Chapter 7

C.1 Examples for Remark 7.5.1

Brandt and Harrenstein [41, p. 1729] mention that α̂ and γ̂ are independent from each other in

the context of general choice functions. Here, we prove that the same holds even in the context of

tournament solutions.

Proposition C.1.1. There exists a tournament solution that satisfies α̂, but not γ̂.

Proof. Let S be a stable tournament solution. As mentioned in Section 7.3, dSe satisfies α̂. However,

it is easily seen that, unless S is trivial, dSe violates γ̂. Hence, the statement follows from the

existence of non-trivial stable tournament solutions (such as BP).

Proposition C.1.2. There exists a tournament solution that satisfies γ̂, but not α̂.

Proof. Let S be a stable tournament solution. Define the tournament solution S′ such that for each

tournament T = (A,�),

S′(T ) =

S(T ) if |A \ S(T )| > 1

A otherwise.

It can be shown that S′ satisfies γ̂, but may violate α̂. For the latter, let S = TC and consider a

transitive tournament ({a, b, c},�) such that a � b, b � c, and a � c. By definition, S′({a, b, c}) =

{a}, but S′({a, b}) = {a, b}.

C.2 Examples for Remark 7.5.3

BA satisfies local α̂, but B̂A = ME violates α̂ [42].
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Similarly, there exists a tournament solution S for which Ŝ is well-defined, but Ŝ is not stable.

For a stable tournament solution S, we have by definition that S = Ŝ and hence that Ŝ is also

stable. The following proposition shows that α̂ does not carry over from S to Ŝ even if S is simple

and Ŝ is well-defined.

Proposition C.2.1. There exists a simple tournament solution S satisfying α̂ such that Ŝ is well-

defined but Ŝ does not satisfy α̂.

Proof. Let S be the tournament solution that always chooses all alternatives, with two exceptions:

• If the tournament is of order 2, then S chooses only the Condorcet winner.

• If the tournament is the tournament T4 given in Figure C.1, then S chooses alternatives a, b,

and c.

a b

cd

Figure C.1: Tournament T4

Clearly, S is simple and satisfies α̂. Since Ŝ chooses alternatives a, b, and c from T4, but chooses

only the Condorcet winner from the transitive tournament of order 3, it does not satisfy α̂.

It remains to show that Ŝ is well-defined. One can check that every tournament contains an S-

stable set. Suppose for contradiction that some tournament T contains two distinct minimal S-stable

sets, which we denote by B and C. Then B and C are also S-stable in B ∪ C. If B is a singleton,

then B is the Condorcet winner in B∪C, which means C cannot be S-stable, a contradiction. Hence

both B and C are transitive tournaments of order 3, and 4 ≤ |B ∪ C| ≤ 6. One can check all the

possibilities of B ∪ C to conclude that this case is also impossible.

For the tournament solution S defined in the proof of Proposition C.2.1, we have that
̂̂
S is not

well-defined. Even though no tournament contains two distinct minimal Ŝ-stable sets, T4 does not

contain any Ŝ-stable set. This example also shows that for a tournament solution S′, Ŝ′ may fail

to be well-defined not because it allows two distinct minimal S′-stable sets in a tournament but

because some tournament contains no S′-stable set.

C.3 Examples for Remark 7.6.13

We show that there exists a tournament solution different from BP that satisfies LRS , monotonicity,

regularity, and Condorcet consistency.
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To this end, we define a new tournament solution called POS which chooses all alternatives with

positive relative degree. More precisely, an alternative is chosen by POS if it dominates strictly more

than half of the remaining alternatives, is not chosen if it dominates strictly less than half of the

remaining alternatives, and goes to a “tie-break” to determine whether it is chosen if it dominates

exactly half of the remaining alternatives.

For tournaments of even size, POS chooses exactly the alternatives that dominate at least (or

equivalently, more than) half of the remaining alternatives. Hence we do not need a tie-break for

tournaments of even size. The tie-breaking rule for tournaments of odd size 2n+ 1 is as follows: For

any (unlabeled) tournament T of order 2n and any partition of it into two sets B and C of size n,

consider two tournaments T1 and T2 of order 2n + 1. The tournament T1 contains T and another

alternative a that dominates B but is dominated by C, while the tournament T2 contains T and

another alternative a that dominates C but is dominated by B. If T1 or T2 is regular, POS chooses

a in that tournament and not in the other one. Otherwise, POS arbitrarily chooses a in exactly one

of T1 and T2.

Proposition C.3.1. POS satisfies LRS, monotonicity, and regularity.

Proof. We need to show that the tie-breaking rule in the definition of POS is well-defined. First, we

show that if we perform a local reversal on alternative a, we do not get an isomorphic tournament

with alternative a mapped to itself. Indeed, if a were mapped to itself, it would mean that no

tournament solution satisfies LRS , which we know is not true since BP satisfies LRS . Secondly, the

tournament obtained by performing a local reversal on an alternative in a regular tournament is not

regular. Hence we do not obtain a conflict within the tie-breaking rule.

It follows directly from the definition that POS satisfies LRS , monotonicity, and regularity.

The tournament T4 given in Figure C.1 shows that POS violates composition-consistency and α̂

(and hence stability).

Interestingly, BP (and all of its coarsenings) always intersect with POS while there exists a

tournament for which BA (and all of its refinements such as TEQ and ME ) do not overlap with

POS . This follows from results on the Copeland value by Laffond et al. [93, 95].

C.4 Examples for Remark 7.6.14

We construct a tournament solution that satisfies monotonicity and stability, but violates regularity

and composition-consistency.

Every tournament solution has to be regular on tournaments of order 5 or less because of non-

trivial automorphisms. Consider the tournament T7 shown in Figure C.2. T7 admits a unique

nontrivial automorphism that maps each of the six alternatives in the two 3-cycles to the next



APPENDIX C. EXAMPLES FOR CHAPTER 7 137

a b c

d e f

g

Figure C.2: Tournament T7. g � {a, b, c}, {d, e, f} � g, and all omitted edges point downwards.

alternative in its 3-cycle and maps alternative g to itself.1

Now, define the simple tournament solution S7, which always returns all alternatives unless the

tournament is T7 or it can be modified from T7 by weakening alternative g. In the latter case, S7

returns all alternatives except g.

We check that this definition is sound. First, we know that in T7, there is no automorphism that

maps alternative g to another alternative. When we weaken g, it is the unique alternative with the

smallest out-degree, and hence cannot be mapped by an automorphism to another alternative. Now,

the alternatives a, b, c form an orbit, and S7 excludes g whenever it is dominated by d, e, f (and has

any dominance relationship to a, b, c). This yields four non-isomorphic tournaments for which S7

excludes g.

Proposition C.4.1. Ŝ7 satisfies stability and monotonicity.

Proof. First, observe that S7 trivially satisfies local α̂ because S7 only excludes an alternative in

tournaments of order 7. By virtue of Theorem 7.3.4, it therefore suffices to show that Ŝ7 is well-

defined.

One can check that every tournament contains an S7-stable set. Let T6 denote the tournament

obtained by removing alternative g from T7. Suppose for contradiction that there exists a tournament

T that contains two distinct minimal S7-stable sets, which we denote by B and C. Then B and

C are also S7-stable in B ∪ C. Moreover, T |B must correspond to the tournament T6, and each

alternative in C\B either has the same dominance relation to B as the alternative g does to T6 or

has a dominance relation that is a weakening of g. The same statement holds for C. We consider

the following cases.

Case 1 : 10 ≤ |B ∪ C| ≤ 11. The tournament T |B has one of its alternatives corresponding to

alternatives d, e, and f in Figure C.2 outside of B∩C, and this alternative must dominate all of the

alternatives in C. Similarly, there exists an alternative in C\B that dominates all of the alternatives

in B. But this implies that some two alternatives dominate each other, a contradiction.

Case 2 : 7 ≤ |B ∪ C| ≤ 9. At least one of the two tournaments T |B and T |C must have all of

its alternatives corresponding to alternatives d, e, and f in Figure C.2 in the intersection B ∩ C,

1Note that (T7)g is the smallest tournament in which BA and UC differ [39].
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for otherwise we obtain a contradiction in the same way as in Case 1. Assume without loss of

generality that T |B has its alternatives corresponding to d, e, and f in the intersection. Hence three

alternatives in B ∩C that form a cycle dominate the same alternative in C. But this does not occur

in T6, a contradiction.

It follows from Theorem 7.5.2 that Ŝ7 satisfies monotonicity.

Clearly, Ŝ7 is not regular since it excludes an alternative from the regular tournament T7. More-

over, it is not a coarsening of BP since BP selects all of the alternatives in T7. Hence we have that

stable and monotonic tournament solutions are not necessarily coarsenings of BP .
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