
Fair Division of Indivisible Items: 
Asymptotics and Graph-Theoretic 

Approaches 

Ayumi Igarashi   and Warut Suksompong  
1 University of Tokyo, Japan 
2 University of Oxford, UK 

IJCAI 2019 Tutorial (Part 2) August 10th, 2019 

1 2

Some slides credit from Dominik Peters



• Office allocation: Allocate a connected set 
of rooms to each research group.

How can we divide?

A B C

Fair division of a graph



• Land division: Allocate a connected set of 
regions to each country.

How can we divide?

A B C D

Fair division of a graph



• Scheduling: Allocate a connected set of  
time slots to each agent.

A B C

How can we divide?

Discrete version of cake [0,1]

Fair division of a graph
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Model [Bouveret et al. 2017]
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• An undirected graph G=(V,E)

• A set of agents N = {1,2,…,n}

• A non-negative additive utility function u :V -> R

u (X) = Σ   u (v)i iv in X



Model
•  A connected allocation is a mapping assigning 

each player to a disjoint connected subset of 
the vertices. 

A B



Classical fairness notions
• A connected allocation is envy-free if  

no one envies others:  
u (i’s bundle) ⩾ u (j’s bundle) for all i,j in Ni j

A B

u  (A’ s bundle)　　⩾A A u  (B’s bundle)　　⩾B u  (A’ s bundle)Bu  (B’s bundle)



Classical fairness notions
• A connected allocation is proportional if  

each player receives value ⩾ his proportional share:  
u (i’s bundle) ⩾ u (V)/n for all i in N i i

A B

u  (A’ s bundle)　　⩾A u  (B’s bundle)　　⩾B u  (V)/ 2Bu  (V)/ 2

i

A



Existence of EF and Prop
• Proportional/envy-free contiguous allocation of  

a cake [0,1] exists with divisibilities.

Existence Complexity

Envy-freeness ✔  
[Stromquist, 1980]

no finite protocol 
[Stromquist,  2008]

Proportionality ✔

[Dubins and Spanier, 1961]
polytime

[Dubins and Spanier, 1961]



• Proportional/envy-free allocation may not exist  
with indivisibilities → Relaxations?

Consider an instance of two players and one item.

Approximate fairness



• Proportional/envy-free allocation may not exist  
with indivisibilities → Relaxations?

• Budish (2011) proposed the following two concepts: 

Maximin share (MMS)

Envy-freeness up to one good (EF1)

Approximate fairness



• Proportional/envy-free allocation may not exist  
with indivisibilities → Relaxations?

• Budish (2011) proposed the following two concepts: 

Maximin share (MMS)

Envy-freeness up to one good (EF1)

Envy-freeness

Prop EF1

MMS
Relations between  
fairness concepts

Approximate fairness



Maximin share
• Maximin share [Budish, 2011]: the best utility each agent 

would receive if she had to cut and choose the last. 
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Maximin share
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• Maximin share [Budish, 2011]: the best utility each agent 
would receive if she had to cut and choose the last. 



Maximin share
Maximin share (MMS) : u (i’s bundle) ⩾ MMS  for all i in N  
MMS = max { min u (Pj) | P1,…,Pn: a connected partition of G } 
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Unrestricted setting: MMS
Identified special condition on the existence of 
MMS. Extensive experiments did not find any 
counter example [Bouveret and Lemaître, 2014].  

Intricate counter example with a number of 
goods exponential in the number of players 
[Procaccia and Wang, 2014] 

Reduced the number of goods to linear in the 
number of players [Kurokawa et al., 2016].



Moving-knife algorithm  
[Bouveret et al. 2017]

• Moving-knife procedures that achieve proportionality in 
cake-cutting produce MMS, when the graph is a path. 

A B C

shout!
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Moving-knife algorithm  
[Bouveret et al. 2017]

• Moving-knife procedures that achieve proportionality in 
cake-cutting produce MMS, when the graph is a path. 
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Moving-knife algorithm  
[Bouveret et al. 2017]

• Moving-knife procedures that achieve proportionality in 
cake-cutting produce MMS, when the graph is a path. 
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1 1 1 1 1 2 0 3

1 1 1 4 0 1 1 1

Maximin share for the reduced instance does not decrease. 



MMS existence
•Theorem [Bouveret et al. 2017] MMS exists on trees 

and can be computed in polynomial time.  

Discrete version of 
last diminisher

Cut a minimal subtree guaranteeing MMS for some player. 
→ Recurse on the remaining instance. 



• Theorem [Bouveret et al. 2017] MMS may not exist  
on a single cycle of 8 vertices with 4 players.

v1
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v8v1 v2 v3 v4 v5 v6 v7 v8

1 4 4 1 3 2 2 3
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MMS existence

Create two types of players whose MMS partitions  
intersect with each other. 



MMS: other work
• Lonc and Truszczynski [2018]: 

1/2-approximation for MMS in the case of cycles.   

• Igarashi and Peters [2019]: 
A connected allocation satisfying MMS and Pareto-
optimality exists when the graph is a tree. 

NP-hard to compute even with binary additive 
valuations and even on a path.  
→ polytime solvable for non-nested valuations. 



MMS: open questions

• The complexity of deciding the existence of  
a connected MMS. 

• Existence of a connected MMS allocation of 
goods and bads.

 Related works [Aziz et al., 2019; Bouveret et al. 2019]

 Checking whether a given allocation is MMS is 
polytime solvable for a cycle. 

• Complete characterisation of graphs  
guaranteeing MMS. 



Envy-freeness up to one good

• Envy-freeness need not exist —> Relaxations?

• Budish [2011]: Envy-freeness up to one good

• For each i,j in N there is a good o* in j’s bundle with 

u ( i’s bundle ) ⩾ u ( j’s bundle  {o*} )i i

EF1 A B



Envy-freeness up to one good

u ( i’s bundle ) ⩾ u ( j’s bundle  {o*} )i i

Not EF1 A B

• Envy-freeness need not exist —> Relaxations?

• Budish [2011]: Envy-freeness up to one good

• For each i,j in N there is a good o* in j’s bundle with 



Envy-freeness up to one good

Theorem [Bilò et al. 2019; (a) and (d) appear also in Oh et al. 2019]. 
EF1 exists on a path 

(a) when there are 2 agents (cut-and-choose); or

(b) when there are 3 agents (Stromquist's procedure); or

(c) when there are 4 agents (Sperner's lemma); or

(d) when valuations are identical (≈ leximin)

Without connectivity constraints, EF1 always exists

Envy-graph algorithm [Lipton et al., 2004]

Round-robin procedure [Caragiannis et al., 2016]

Maximum Nash welfare [Caragiannis et al., 2016]



 EF1 for two agents

Divisible cake:

1. Alice divides the cake into  
two equally-valued pieces

2. Bob chooses preferred  
piece and receives it

3. Alice receives other piece

Bob Alice

• Discrete version of cut and choose protocol



 EF1 for two agents

v is an agent i’s lumpy tie if  

≽

≼

and

v

v

v

• Discrete version of cut and choose protocol

i

i



 EF1 for two agents

This works for all graphs with Hamiltonian path
— any others?

v

Alice selects her lumpy tie v and hides it

Bob selects either the left or right piece

Alice receives v and the remaining piece

This is EF1.

• Discrete version of cut and choose protocol



 EF1 for two agents
• Theorem [Bilò et al. 2019] 

For every connected graph G, the followings are equivalent:  
(1) G admits a bipolar numbering.  
(2) G guarantees EF1 for two agents. 

P����. Clearly, the protocol returns a connected allocation. �e returned allocation satis�es
EF1: Bob does not envy Alice up to item �j , since Bob receives his preferred bundle among L(�j )
and R(�j ). Also, by (3.1), Alice does not envy Bob, since Alice either receives the bundle L(�j )[ {�j }
which she weakly prefers to Bob’s bundle R(�j ), or she receives the bundle R(�j ) [ {�j }, which she
weakly prefers to Bob’s bundle L(�j ). ⇤

Proposition 3.1 implies that an EF1 allocation always exists on a path. It immediately follows
that an EF1 allocation exists for every traceable graph G: simply use the discrete cut-and-choose
protocol on a Hamiltonian path of G; the resulting allocation must be connected in G. In fact, the
discrete cut-and-choose protocol works on a broader class of graphs: We only need to require that
the vertices of the graph can be numbered in a way that the allocation resulting from the discrete
cut-and-choose protocol is guaranteed to be connected. Since the protocol always partitions the
items into an initial and a terminal segment of the sequence, such a numbering needs to satisfy the
following property.

De�nition 3.2. A bipolar numbering of a graph G is an ordered sequence (�1,�2, . . . ,�m) of its
vertices such that for every j 2 [n], the sets L(�j ) [ {�j } and R(�j ) [ {�j } are both connected in G.

An equivalent de�nition (which is the standard one) says that a numbering is bipolar if for every
j 2 [n], the vertex �j has a neighbor that appears earlier in the sequence, and a neighbor that
appears later in the sequence. Bipolar numberings are used in algorithms for testing planarity
and for graph drawing. Every Hamiltonian path induces a bipolar numbering, but there are also
non-traceable graphs that admit a bipolar numbering, see Figure 1 for examples.
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Fig. 1. Non-traceable graphs with bipolar numberings.

P���������� 3.3. When there are n = 2 agents, then the discrete cut-and-choose protocol run on a
bipolar numbering of G yields an EF1 allocation.

P����. �e discrete cut-and-choose protocol always returns an allocation whose bundles are
either initial or terminal segments of the ordered sequence (�1,�2, . . . ,�m). By de�nition of a
bipolar numbering, such an allocation is connected. �e argument of Proposition 3.1 shows that
the allocation satis�es EF1. ⇤

It is clear that the discrete cut-and-choose protocol cannot be extended to graphs other than
those admi�ing a bipolar numbering. However, it could be that a di�erent protocol is able to
produce EF1 allocations on other graphs. In the remainder of this section, we prove that this is not
the case: for n = 2 agents, a connected graph G guarantees the existence of an EF1 allocation if
and only if it admits a bipolar numbering. �is completely characterizes the class of graphs that
guarantee EF1 existence in the two-agent case.4

4Note that no non-trivial disconnected graph guarantees EF1 for two agents: If G is disconnected, take a connected
component C with at least two vertices. Let both agents have additive valuations that value each item in C at 1, and value
items outside of C at 0. �en, in a connected allocation, all items in C must go to a single agent, since the other agent needs
to receive items from another connected component. �is induces envy in the other agent that is not bounded by one good.
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EF1 for more agents. 

By Sperner's lemma, EF2 always exists [Bilò et al. 2019]

Existence extends to graphs with Hamiltonian path

Existence does not require additive valuations

Theorem [Bilò et al. 2019; (a) and (d) appear also in Oh et al. 2019]. 
EF1 exists on a path 

(a) when there are 2 agents (cut-and-choose); or

(b) when there are 3 agents (Stromquist's procedure); or

(c) when there are 4 agents (Sperner's lemma); or

(d) when valuations are identical (≈ leximin)



Sperner’s Lemma

A combinatorial analog of the 
Brouwer/Kakutani fixed point 
theorem



Sperner’s Lemma

: )

Sperner’s Lemma
1. Color the corners 

with distinct colors. 
2. Color every vertex 

of edge with the 
two colors of the 
endpoints. 

→ a colorful triangle. 



Sperner’s Lemma and EF1

�us, the allocation returned by any of the steps satis�es EF1.
Our algorithm can be implemented in O(m) time: Each of steps 2, 3, and 4 will be executed at

mostm times (since ` and r can only be incrementedm times). Each step execution only needs
constant time: In each step, we need to check which agents shout, and this can be done in a constant
number of queries to agents’ valuations; also, in Step 4 we need to calculate the lumpy ties of the
agents, but this can be done in amortized constant time, since during the execution of the algorithm,
the position of each agent’s lumpy tie can only move to the right. Finally, when enough agents
shout, we can clearly compute and return the �nal allocation in O(m) time. ⇤

5 EF2 EXISTENCE FOR ANY NUMBER OF AGENTS
For two or three agents, we have seen algorithms that are guaranteed to �nd an EF1 allocation on
a path (and on traceable graphs). Both algorithms were adaptations of procedures that identify
envy-free divisions in the cake-cu�ing problem. For the case of four or more agents, we face a
problem: there are no known procedures that �nd connected envy-free division in cake-cu�ing if
the number of agents is larger than three. However, in the divisible se�ing, a non-constructive
existence result is known: Su [1999] proved, using Sperner’s lemma, that for any number of agents,
a connected envy-free division of a cake always exists. One might try to use this result as a black
box to obtain a fair allocation for the indivisible problem on a path: Translate an indivisible instance
with additive valuations into a divisible cake (where each item corresponds to a region of the cake),
obtain an envy-free division of the cake, and round it to get an allocation of the items. Suksompong
[2017] followed this approach and showed that the result is an allocation where any agent i’s envy
ui (A(j)) � ui (A(i)) is at most 2umax, where umax is the maximum valuation for a single item.

In this section, rather than using Su’s [1999] result as a black box, we directly apply Sperner’s
lemma to the indivisible problem. �is allows us to obtain a stronger fairness guarantee: We show
that on paths (and on traceable graphs), there always exists an EF2 allocation.5 An allocation is EF2
if any agent’s envy can be avoided by removing up to two items from the envied bundle. Again, we
only allow removal of items if this operation leaves a connected bundle. For example, on a path,
if agent i envies the bundle of agent j, then i does not envy that bundle once we remove its two
endpoints. �e formal de�nition for general graphs is as follows.

De�nition 5.1 (EF2: envy-freeness up to two outer goods). An allocation A satis�es EF2 if for any
pair i, j 2 N of agents, either |A(j)| 6 1, or there are two goods u,� 2 A(j) such that A(j) \ {u,�} is
connected and ui (A(i)) > ui (A(j) \ {u,�}).

;, ;,abcd ;,a,bcd ;,ab, cd ;,abc,d ;,abcd, ;

a, ;,bcd a,b, cd a,bc,d a,bcd, ;

ab, ;, cd ab, c,d ab, cd, ;

abc, ;,d abc,d, ;

abcd, ;, ;

Fig. 4. Connected partitions form a subdivided simplex

Let us �rst give a high-level illustration
with three agents of how Sperner’s lemma
can be used to �nd low-envy allocations.
Given a path, say P = (a,b, c,d), the fam-
ily of connected partitions of P can naturally
be arranged as the vertices of a subdivided
simplex, as in Figure 4 on the right. For each
of these partitions, each agent i labels the cor-
responding vertex by the index of a bundle
from that partition that i most-prefers. For
example, the top vertex will be labelled as “in-
dex 1” by all agents, since they all most-prefer
the le�-most bundle in (abcd, ;, ;). Now,

5To see that EF2 is a stronger property than bounding envy up to 2umax, consider a path of four items and two agents with
additive valuations 1–10–2–1. �e allocation (1, 10–2–1) is not EF2, but the �rst agent has an envy of 12 < 20 = 2umax.
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EF1: open question

• Characterisation of graphs that guarantee EF1 
allocation beyond 2 agents. 

• The complexity of finding an EF2 allocation. 

• The complexity of finding an EF1 allocation with 
binary additive valuations. 



Fair division over a social network
• Envy-freeness requires that no agent envies any other 

agent. In many situations, agents often do not even 
know each other. 

• Local envy-freeness [Abebe et al. 2017, Bei et al. 2017] : 
No agent envies his/her neighbor in a social network. 

Graphs represent envy-relations. 



• Envy-freeness requires that no agent envies any other 
agent. In many situations, agents often do not even 
know each other. 

• Local envy-freeness [Abebe et al. 2017, Bei et al. 2017] : 
No agent envies his/her neighbor in a social network. 

• Divisible items [Abebe et al. 2017, Bei et al. 2017] 

• Indivisible items  
[Bredereck et al., 2018] 

Fair division over a social network



• Combination of two models?  
Given a connected allocation, one can induce a social 
network. 

A

B

C

D

A

B

D

C

• Local fairness?  
EF1, MMS, etc. 

Local fairness
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