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Abstract

Tournament solutions are frequently used to select winners from a set of alternatives based on
pairwise comparisons between them. Prior work has shown that several common tournament solu-
tions tend to select large winner sets and therefore have low discriminative power. In this paper, we
propose a general framework for refining tournament solutions. In order to distinguish between win-
ning alternatives, and also between non-winning ones, we introduce the notion of margin of victory
(MoV) for tournament solutions. MoV is a robustness measure for individual alternatives: For win-
ners, the MoV captures the distance from dropping out of the winner set, and for non-winners, the
distance from entering the set. In each case, distance is measured in terms of which pairwise com-
parisons would have to be reversed in order to achieve the desired outcome. For common tournament
solutions, including the top cycle, the uncovered set, and the Banks set, we determine the complexity
of computing the MoV and provide bounds on the MoV for both winners and non-winners. We then
reveal a number of structural insights on the MoV by investigating fundamental properties such as
monotonicity and consistency with respect to the covering relation. Furthermore, we provide experi-
mental evidence on the extent to which the MoV notion refines winner sets in tournaments generated
according to various stochastic models. Our results can also be viewed from the perspective of
bribery and manipulation.

1 Introduction

Tournaments serve as a practical tool for modeling scenarios involving a set of alternatives along with
pairwise comparisons between them. Perhaps the most common example of a tournament is a round-
robin sports competition, where every pair of teams play each other once and there is no tie in match
outcomes. Another application, typical especially in the social choice literature, concerns elections:
here, alternatives represent election candidates, and pairwise comparisons capture the majority relation
between pairs of candidates. In order to select the set of “winners” from a tournament, several methods,
known in the literature as tournament solutions, have been proposed. Given the ubiquity of tournaments,
it is hardly surprising that tournament solutions have drawn substantial interest from researchers in the
past few decades, including but not limited to those in the artificial intelligence community (e.g., Laslier,
1997; Woeginger, 2003; Hudry, 2009; Brandt et al., 2011; Brandt et al., 2014; Aziz et al., 2015; Mnich
et al., 2015; Ramamohan et al., 2016; Dey, 2017; Brandt et al., 2018; Han and van Deemen, 2019).

Although tournament solutions provide a rich supply of procedures for choosing tournament winners
according to various criteria, they often exhibit low discriminative power because the chosen winner
sets tend to be large. Indeed, previous work has shown that common tournament solutions such as the
top cycle, the uncovered set, the Banks set, and the minimal covering set almost never exclude any

*This paper unifies and expands earlier versions appearing in the Proceedings of the 34th AAAI Conference on Artificial
Intelligence [Brill et al., 2020] and the Proceedings of the 35th AAAI Conference on Artificial Intelligence [Brill et al., 2021].
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alternative in a random tournament [Fey, 2008, Scott and Fey, 2012], while the bipartisan set includes
on average half of the alternatives in the winner set [Fisher and Ryan, 1995].1,2 Given that the purpose of
tournament solutions is to distinguish between the alternatives, this naturally raises the question of how
tournament solutions can be refined in order to differentiate among the winners of a given tournament.

In this paper, we propose a general framework for refining tournament solutions and for distinguish-
ing among the winners—as well as among the non-winners—of a tournament. We introduce the concept
of margin of victory (MoV) for tournament solutions, which captures how close a winner is to dropping
out of the winner set, and by symmetry how close a non-winner is to entering the winner set. As we
discuss in Section 1.2, the concept of MoV is not new, but this is the first time it has been applied to tour-
nament solutions, to the best of our knowledge. For a given tournament and weights on the tournament
edges, we define the MoV of a winner as the minimum total weight of edges whose reversals take it out
of the winner set. Analogously, the MoV of a non-winner is defined as the negative of the minimum
total weight of edges whose reversals bring it into the winner set. An important special case is when the
edges are unweighted: in this case, the problem reduces to finding the minimum number of edges to be
reversed in order to take a winner out of the winner set or bring a non-winner into it.

The edge weights in our MoV framework can be interpreted in a number of different ways. Gen-
erally speaking, they represent the strength of the edges or the cost that one incurs by reversing them.
In an election, a weight may reflect the proportion of voters who agree with the corresponding pairwise
comparison, while in a sports competition, it may indicate the gap between the two teams in the match
result. Alternatively, our refinements can also be viewed through the lens of bribery and manipulation,
another topic of recent interest in the artificial intelligence community (see, e.g., the book chapter by
Faliszewski and Rothe [2016]). In this context, the weights express the amount of bribe that a manipu-
lator needs to pay in order to reverse a pairwise comparison; the recipients of the bribe are voters in the
case of an election and teams or referees in the case of a sports competition. While the MoV for winners
is useful for refining tournament solutions, the MoV for non-winners is more relevant in the context of
bribery and manipulation, as the desired goal is often to ensure that a certain alternative is a winner.

1.1 Our Results

We investigate a wide range of aspects of the MoV notion with respect to four common tournament
solutions—the Copeland set (CO), the top cycle (TC ), the uncovered set (UC ), and the Banks set
(BA)—as well as k-kings, a natural class of solutions that lie between the top cycle and the uncovered
set. The definitions of these tournament solutions, as well as other formal definitions and notations, can
be found in Section 2.

We begin in Section 3 by determining the complexity of computing the MoV for both winners and
non-winners for each tournament solution, in both the unweighted and weighted settings. For winners,
we show that the problem can be solved in polynomial time for CO , TC , and UC but is NP-hard
for BA, whereas for k-kings, we demonstrate an interesting distinction between the cases k = 3 and
k ≥ 4: the former case is tractable even in the weighted setting, while the latter is already intractable in
the unweighted setting. On the other hand, although the same complexity results hold for non-winners
as for winners with respect to CO , TC , and BA, we exhibit differences concerning UC and k-kings.
For these latter tournament solutions, computing the MoV for non-winners is NP-hard in the weighted
setting but can be done in subexponential time in the unweighted setting.

In the remaining sections, we focus on the unweighted setting, starting in Section 4 with bounds on
the MoV. For each tournament solution, we derive tight or asymptotically tight lower and upper bounds,

1These results assume that tournaments are chosen from the uniform distribution. Brandt and Seedig [2016] and Saile and
Suksompong [2020] relaxed this assumption and studied the discriminative power of tournament solutions when tournaments
are generated according to different stochastic models.

2Brandt et al. [2018] showed that any tournament solution satisfying the property of stability, including the top cycle and
the bipartisan set, chooses at least half of the alternatives on average.
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MoV for Winners MoV for Non-Winners

unweighted weighted unweighted weighted

Copeland (CO) P (3.1) P (3.1) P (3.6) P (3.6)
Top Cycle (TC ) P (3.3) P (3.3) P (3.10) P (3.10)
Uncovered Set (UC ) P (3.3) P (3.3) nO(logn) (3.7) NP-hard (3.8)
3-kings P (3.3) P (3.3) P (4.2) NP-hard (3.9)
k-kings (for k ≥ 4) NP-hard (3.4) NP-hard (3.4) P (4.2) NP-hard (3.9)
Banks set (BA) NP-hard (3.5) NP-hard (3.5) NP-hard (3.11) NP-hard (3.11)

Bounds on MoV

lower bound upper bound

Copeland (CO) −(n− 2) (4.3) bn/2c (4.1)
Top Cycle (TC ) −1 (4.2) bn/2c (4.1)
Uncovered Set (UC ) −dlog2 ne (4.4) bn/2c (4.1)
k-kings (for k ≥ 3) −1 (4.2) bn/2c (4.1)
Banks set (BA) −dlog2 ne (4.4) bn/2c (4.1)

Table 1: Overview of our results in Sections 3 and 4, with n denoting the number of alternatives in the tournament.
The computational results for Copeland (first row of top table) also follow from Faliszewski et al. [2009]; for
completeness, we give proofs tailored to our setting. The numbers in parentheses refer to the corresponding
theorem or corollary numbers.

which tell us how many pairwise comparisons we may need to reverse in order to bring an alternative
into or take it out of the winner set. In particular, for all tournament solutions, the MoV for winners
can be as high as bn/2c but no higher, where n denotes the number of alternatives in the tournament.
Lower bounds on the MoV value of non-winners, on the other hand, depend on the tournament solution
in question: Turning a non-winner into a winner may require a linear number of reversals for CO and
a logarithmic number for UC and BA, while a single edge reversal is always sufficient for TC and
k-kings. Our results in Sections 3 and 4 are summarized in Table 1.

Next, in Section 5, we turn to the axiomatic approach and examine structural properties of the MoV.
We define consistency axioms with respect to two important features of tournaments: the covering rela-
tion and the outdegrees of the alternatives. We prove that the MoV values of all considered tournament
solutions are consistent with the covering relation, thereby showing that our notion is aligned with an
important strength indicator of the alternatives. In order to establish this result, we introduce a new
property for tournament solutions called transfer-monotonicity, which may be of independent interest.
On the other hand, we demonstrate that only TC and CO have MoV functions that exhibit some form
of consistency in view of the outdegrees (a.k.a. Copeland scores) of the alternatives. We argue that this
can be viewed as a positive result, since it shows that several tournament solutions take more structure of
the tournament into account than simply the outdegrees. Additionally, we present a simple formula for
the MoV of TC and k-kings for k ≥ 4 which holds with high probability; this implies that even though
the computation problem for k-kings is NP-hard (as we show in Section 3), an efficient heuristic exists.

Finally, in order to better understand how the MoV of various tournament solutions behave in prac-
tice, we conduct computer experiments using tournaments generated randomly according to six well-
studied stochastic models. Our results and analyses, along with a link to the code for our implementation,
can be found in Section 6.
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1.2 Further Related Work

Despite their origins in social choice theory, tournament solutions have found applications in a large
number of areas including game theory [Fisher and Ryan, 1995], webpage ranking [Brandt and Fischer,
2007], dueling bandit problems [Ramamohan et al., 2016], and philosophical decision theory [Pod-
gorski, 2020]. As is the case for social choice theory in general, early studies of tournament solutions
were primarily based on the axiomatic approach. With the rise of computational social choice in the
past fifteen years or so, tournament solutions have also been thoroughly examined from an algorithmic
perspective. For an overview of the literature, we refer the reader to the surveys by Laslier [1997], Hudry
[2009], Brandt et al. [2016a], and Suksompong [2021].

While our work is the first to consider a MoV concept for tournament solutions (to the best of our
knowledge), a related notion with the same name has been extensively explored in the context of voting.
Unlike in our setting, where the MoV serves the purpose of distinguishing among alternatives, in voting
the MoV is typically used to measure the robustness of election outcomes [Cary, 2011, Magrino et al.,
2011, Xia, 2012, Dey and Narahari, 2015]. As such, the notion there is defined for election outcomes as a
whole rather than for individual alternatives; the same holds for the robustness measure of Shiryaev et al.
[2013]. MoV continues to be a popular concept in recent research, for example in the context of sports
modeling [Kovalchik, 2020], election control [Castiglioni et al., 2020], and political and educational
districting [Stoica et al., 2020, Boehmer et al., 2021].

A long line of work has investigated various forms of bribery and manipulation in tournaments. This
includes manipulating the tournament bracket to help a certain candidate win the tournament [Vu et al.,
2009, Vassilevska Williams, 2010, Chatterjee et al., 2016, Kim et al., 2017, Ramanujan and Szeider,
2017, Aziz et al., 2018, Gupta et al., 2019] and bribing players to lose matches intentionally [Russell
and Walsh, 2009, Kim and Vassilevska Williams, 2015, Mattei et al., 2015, Konicki and Vassilevska
Williams, 2019]. In particular, Russell and Walsh [2009] considered a model where only a given subset
of edges can be reversed while other edges are assumed to be fixed—this constitutes a special case of
our weighted setting, with sufficiently high weights on fixed edges. In the context of bribery in voting,
Faliszewski et al. [2009] considered a “microbribery” setting in which voters can be bribed to change
individual pairwise comparisons between candidates, even if this results in intransitive preferences of
the voter. This corresponds to our weighted setting, with weights given by pairwise majority margins.

A closely related problem is finding possible (resp., necessary) winners of partially specified tour-
naments: Given a tournament with some missing edges, the goal is to determine whether a certain
alternative can be a winner for some (resp., all) completions of the tournament [Aziz et al., 2015]. We
observe that both variants can be reduced to computing the MoV in the weighted setting, by considering
an arbitrary completion of the partial tournament and making the original edges prohibitively expensive
to reverse. Yang and Guo [2017] studied this setting from a parameterized complexity perspective; one
of their results (Theorem 3 in their paper) addresses a problem equivalent to the decision version of
computing the MoV with respect to the uncovered set.

Finally, a different framework for refining tournament solutions has been proposed by Kruger and
Airiau [2017]. Specifically, they considered refinements of tournament solutions based on their binary
tree representations. Their approach can only be applied to solutions that admit such a representation,
and moreover, different representations may yield different refinements. In contrast, our MoV frame-
work can be used for arbitrary tournament solutions and does not depend on representation issues.

2 Preliminaries

A tournament T = (V,E) is a directed graph such that there is exactly one directed edge between every
pair of vertices. The vertices of a tournament T , denoted V (T ), are often referred to as alternatives
or nodes. Let n = |V (T )|. The set of directed edges of T , denoted E(T ), represents an asymmetric
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and connex dominance relation on the set of alternatives. An alternative x is said to dominate another
alternative y if (x, y) ∈ E(T ) (i.e., there is a directed edge from x to y). When the tournament is clear
from the context, we often write x � y to denote (x, y) ∈ E(T ). By definition, for each pair x, y
of distinct alternatives, either x dominates y (x � y) or y dominates x (y � x), but not both. The
dominance relation can be extended to sets by writing X � Y if x � y for all x ∈ X and y ∈ Y . A set
X ⊆ V (T ) is called a dominating set in T if every alternative outside of X is dominated by at least one
alternative in X .

For a given tournament T and x ∈ V (T ), the dominion of x, denoted by D(x), is defined as the set
of alternatives y such that x � y. Similarly, the set of dominators of x, denoted by D(x), is defined as
the set of alternatives y such that y � x. The outdegree of x is denoted by outdeg(x) = |D(x)|, and the
indegree of x by indeg(x) = |D(x)|. For any x ∈ V (T ), it holds that outdeg(x) + indeg(x) = n− 1.
An alternative x ∈ V (T ) is said to be a Condorcet winner in T if it dominates every other alternative
(i.e., outdeg(x) = n− 1), and a Condorcet loser in T if it is dominated by every other alternative (i.e.,
outdeg(x) = 0). See Figure 1 for an example tournament. A tournament is called regular if all of its
alternatives have the same outdegree. A regular tournament exists for every odd size, but not for any
even size.

a b c d e f

Figure 1: Tournament T with V (T ) = {a, b, c, d, e, f}. All omitted edges are assumed to point from right to left
(e.g., D(f) = {a, b, d, e} and a is a Condorcet loser in T ).

For U ⊆ V (T ), T |U denotes the restriction of T to U , and T−x is short for T |V (T )\{x}. For an edge
e = (x, y), we let e denote its reversal, i.e., e = (y, x). Similarly, for a set of edges R ⊆ E(T ), we
define R = {e : e ∈ R}.

2.1 Tournament Solutions

A tournament solution is a function that maps each tournament to a nonempty subset of its alternatives,
usually called the set of winners or the choice set. A tournament solution must not distinguish between
isomorphic tournaments; in particular, if there is an automorphism that maps an alternative x to another
alternative y in the same tournament, any tournament solution must either choose both x and y or neither
of them. The set of winners of a tournament T with respect to a tournament solution S is denoted by
S(T ). The tournament solutions considered in this paper are as follows:

• The Copeland set (CO) is the set of alternatives with the largest outdegree.

• The top cycle (TC ) is the (unique) smallest nonempty set B of alternatives such that B � V (T )\
B. Equivalently, TC is the set of alternatives that can reach every other alternative via a directed
path.

• The uncovered set (UC ), is the set of alternatives that are not “covered” by any other alternative.
An alternative x is said to cover another alternative y if D(y) ⊆ D(x). Equivalently, UC is the
set of alternatives that can reach every other alternative via a directed path of length at most two.

• The set of k-kings, for an integer k ≥ 3, is the set of alternatives that can reach every other
alternative via a directed path of length at most k.
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• The Banks set (BA) is the set of alternatives that appear as the Condorcet winner (i.e., maximal
element) of some transitive subtournament that cannot be extended.3

All of these tournament solutions satisfy Condorcet-consistency, meaning that whenever a Con-
dorcet winner exists, it is chosen as the unique winner. It is clear from the definitions that UC (the set
of “2-kings”) is contained in the set of k-kings for any k ≥ 3, which is in turn a subset of TC (the set of
“(n− 1)-kings”). Moreover, both CO and BA are contained in UC [Laslier, 1997].

For an edge e ∈ E(T ), denote by T e the tournament that results from T when reversing e. A
tournament solution S is said to be monotonic if for any edge e = (y, x) ∈ E(T ),

x ∈ S(T ) implies x ∈ S(T e).

In other words, a tournament solution is monotonic if a winner remains in the choice set whenever its
dominion is enlarged (while the dominion of no other alternative is enlarged). Equivalently, monotonic-
ity means that a non-winner remains outside of the choice set whenever it becomes dominated by an
additional alternative. All of the above tournament solutions are monotonic (see Proposition 5.4).

2.2 Margin of Victory

We now introduce the central notion of our paper. We define the margin of victory (MoV) for a win-
ning (resp., non-winning) alternative in terms of sets of edges whose reversals result in the alternative
becoming a non-winner (resp., winner). Edge sets with this property will be called destructive (resp.,
constructive) reversal sets. To formally define these concepts, we need additional notation. For a tour-
nament T and a set R ⊆ E(T ) of edges, we let TR denote the tournament that results from T when
reversing all edges in R, i.e., V (TR) = V (T ) and E(TR) = (E(T ) \R) ∪R.

Fix a tournament solution S and consider a tournament T . An edge set R ⊆ E(T ) is called a
destructive reversal set (DRS) for x ∈ S(T ) if x /∈ S(TR). Analogously, R is called a constructive
reversal set (CRS) for x ∈ V (T )\S(T ) if x ∈ S(TR).4 In general, destructive and constructive reversal
sets are not unique, and finding some DRS or CRS is usually easy. For example, for all Condorcet-
consistent tournament solutions S, a straightforward CRS for an alternative x /∈ S(T ) is given by
R = {(y, x) : y ∈ D(x)}. This is because x is a Condorcet winner in TR.

We furthermore assume that we are given a weight function w : E(T )→ R>0 that assigns a positive
weight w(e) > 0 to each edge e ∈ E(T ).5 The weight of an edge can be thought of as the cost that
is incurred by reversing the edge. The cost of a set R ⊆ E(T ) is w(R) =

∑
e∈R w(e). A natural

special case is the setting in which reversing is equally costly for all edges. In this unweighted setting,
we assume w(e) = 1 for all e ∈ E(T ), and finding a minimum cost reversal set reduces to finding a
reversal set of minimum cardinality.

We are ready to define the main concept of this paper.

Definition 2.1. For a tournament solution S, a tournament T , and a weight function w : E(T )→ R>0,
the margin of victory of an alternative x ∈ S(T ) is given by

MoVS(x, T ) = min{w(R) : R is a destructive reversal set for x in T},

and for an alternative x ∈ V (T ) \ S(T ), it is given by

MoVS(x, T ) = −min{w(R) : R is a constructive reversal set for x in T}.
3We say that an alternative x ∈ V (T ) \ V (T ′) extends a transitive subtournament T ′ if x dominates all alternatives in T ′.
4The terms “destructive” and “constructive” are borrowed from the literature on control and bribery in voting (e.g., Fal-

iszewski and Rothe, 2016), where the goal is either to prevent a given candidate from winning (destructive control/bribery) or
to make a given candidate a winner (constructive control/bribery).

5We forbid zero-weight edges for technical reasons. Their existence can be imitated by setting their cost to a small ε > 0.
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a b c d e f

MoVUC (x, T ) −2 −1 1 1 1 2
minimum DRS/CRS {(f, a), (d, a)} {(f, b)} {(c, f)} {(d, c)} {(e, d)} {(f, e), (f, b)}

Table 2: MoV values and minimum reversal sets with respect to UC for the tournament T in Figure 1.

By definition, MoVS(x, T ) is positive if x ∈ S(T ), and negative otherwise.6 In the unweighted
setting, all MoV values are (positive or negative) integers.

Example 2.2. Consider the tournament T in Figure 1. It can be verified that UC (T ) = {c, d, e, f}. For
the unweighted setting, Table 2 gives the MoV values for this tournament with respect to the uncovered
set, together with examples of minimum destructive or constructive reversal sets.

Note that minimum reversal sets are generally not unique, and that a minimum reversal set for an
alternative x may exclusively consist of edges not incident to x (e.g., {(f, e)} is a minimum CRS for b
in Example 2.2).

3 Computing the Margin of Victory

In this section, we study the complexity of computing the MoV for both winners and non-winners.

3.1 Margin of Victory for Winners

For winners, we are given a tournament T , a weight function w : E(T )→ R+, a tournament solution S,
and an alternative x ∈ S(T ); the task is to compute MoVS(x, T ). Clearly, a polynomial-time algorithm
for the weighted setting also applies to the unweighted setting, while a hardness result in the unweighted
setting implies one for the weighted setting. We remark that in all cases where we provide a polynomial-
time algorithm (i.e., table entries “P” in Table 1), our algorithm not only determines the MoV value, but
also finds a minimum DRS (or CRS when considering non-winners in Section 3.2).

3.1.1 Copeland

The MoV for Copeland has already been studied (under different names) in slightly different settings
[Faliszewski et al., 2009, Russell and Walsh, 2009]. In particular, Theorem 3.7 of Faliszewski et al.
[2009] implies that the MoV for Copeland winners can be computed efficiently whenever the weights
correspond to pairwise majority margins resulting from a preference profile. For completeness, we
provide a (simpler) proof tailored to our setting.7

Theorem 3.1. Computing the MoV of a CO winner in the weighted setting can be done in polynomial
time.

Proof. Let x be the CO winner for which we want to compute the MoV. Consider a fixed minimum
destructive reversal set R with T being the tournament before and TR the tournament after the edge
reversals, and let y be an alternative with higher outdegree than x in TR. We claim that R contains

6The only exception is the degenerate case where S selects all alternatives for all tournaments of some size n; in this case
we define MoVS(x, T ) = ∞ for all alternatives x and all tournaments T of that size. For ease of exposition, we will assume
for the rest of the paper that the degenerate case does not occur, but all of our results still hold even when this case occurs.

7For the unweighted case, a greedy approach suffices to compute the MoV of a Copeland winner. This case is not particu-
larly interesting, however, as it can be easily verified that MoVCO(x, T ) = 1 for all x ∈ CO(T ) whenever |CO(T )| > 1.
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outgoing edges of x and ingoing edges of y only. Assume for contradiction that an edge that is neither
outgoing of x nor ingoing to y is included in R. Then, deleting this edge from R does not increase the
outdegree of x or decrease the outdegree of y in TR, a contradiction to the minimality of R.

The above observation directly implies a simple polynomial-time procedure to compute a minimum
destructive reversal set: Iterate over all y ∈ V (T ) \ {x} and compute the cost of a minimum reversal set
that makes the outdegree of y higher than x. Up to the choice of the edge (x, y), which we handle by a
case distinction, we can do so by greedily choosing outgoing edges of x and ingoing edges of y of lowest
cost until y has higher outdegree than x. Among all choices of y, we select one inducing minimum cost.

To see the correctness of this algorithm, note that, after we fixed y and decided that (x, y) 6∈ R,
reversing an edge outgoing of x or ingoing to y reduces the difference |D(x)| − |D(y)| by 1, and y has
higher outdegree than x exactly when this difference becomes negative. The same argument holds for
the case that (x, y) ∈ R.

3.1.2 Uncovered Set, k-Kings and Top Cycle

The problems of computing the MoV for UC , k-kings, and TC are not only closely related to each other
but also to the theory of network flows. Since UC can be interpreted as 2-kings and TC as (n − 1)-
kings, we only refer to k-kings and assume that k can be chosen from {2, . . . , n − 1}. A DRS for x is
then an edge set R such that x has distance greater than k to at least one alternative y in TR.

Finding a minimum DRS is closely related to finding `-length bounded s-t-cuts of minimum ca-
pacity. In the latter problem, we are given a directed network G = (V,E) with a capacity function
u : E → R+, two distinguished nodes s, t ∈ V , and a length bound ` ∈ N. An edge set C ⊆ E
is an `-length bounded s-t-cut if all s-t-paths in (V,E \ C) have length greater than `. The set C is
a minimum `-length bounded s-t-cut if it minimizes the sum of the capacities of edges in C. When
` ≥ |V (G)| − 1, the problem is equivalent to the standard minimum cut problem and can be solved
via linear programming due to the well known max-flow min-cut theorem [Ford and Fulkerson, 1956].
However, for general ` ∈ N, Adámek and Koubek [1971] showed that a generalization of this theorem
does not hold. More recently, Baier et al. [2010] proved that finding a minimum `-length bounded s-
t-cut is NP-hard for ` ∈ {4, . . . , n1−ε} for fixed ε > 0, even if capacities are uniform. By contrast,
for ` ≤ 3, Mahjoub and McCormick [2010] presented a polynomial-time algorithm which reduces the
problem to a standard cut problem. In the following, we show how we can extend and apply these results
to our setting.

Despite its similarity to our problem (which can be observed by setting G = T , u(e) = w(e), ` = k,
and s = x), the problem described above differs from our problem in three ways. First, the node to be
disconnected from, in this case t, is specified; second, edges are removed instead of reversed; and third,
the graph is not restricted to be a tournament. For ease of presentation, we define a new problem which
lies between MoV for k-kings and minimum `-length bounded s-t-cuts.

For a network G = (V,E), we say that C ⊆ E is an `-length bounded s-cut if it is an `-length
bounded s-t-cut for some t ∈ V \ {s}. We say that C is a minimum `-length bounded s-cut if it is a
minimum `-length bounded s-t-cut and minimizes the capacity among all t ∈ V \ {s}. Computing a
minimum `-length bounded s-cut can be reduced to computing a minimum `-length bounded s-t-cut by
iterating over all t ∈ V \ {s}. For brevity, we sometimes refer to `-length bounded s-cuts and `-length
bounded s-t-cuts as `-bounded s-cuts and `-bounded s-t-cuts, respectively.

The following lemma formalizes the connection between length bounded cuts and DRSs for k-kings.
We define Px,y(k) to be the set of x-y-paths in tournament T of length at most k.

Lemma 3.2. For each k ∈ {2, . . . , n − 1}, a set R ⊆ E(T ) is a minimum DRS for x with respect to
k-kings if and only if R is a minimum k-length bounded x-cut in T .

Proof. Fix k ∈ {2, . . . , n − 1}. The proof is divided into two parts. First, we show that every destruc-
tive reversal set for k-kings is also a k-bounded x-cut of equal cost, and second, we prove that every
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minimum k-bounded x-cut is also a destructive reversal set of equal cost. This suffices to prove the
claim.

Let R ⊆ E(T ) be a DRS for x. Assume for contradiction that R is not a k-bounded x-cut. Recall
that we assume x to be a k-king in T . Hence, for every y there exists a path Py ∈ Px,y(k) such that
Py ∩ R = ∅ and therefore x can reach every y in the tournament TR in at most k steps, a contradiction
to the assumption that R is a DRS. We conclude that R is a k-bounded x-cut.

x y

e1 e2 e3 e`

P0

P`

Q
(1)
`

Q
(2)
1

P1

Figure 2: Illustration of a situation in which Lemma 3.2 would be violated. The path P that occurs after the
reversal of edges in R is illustrated by straight edges, where edges that were reversed are dashed. Paths Qi

containing exactly one reversed edge, namely ei, are depicted by bended, curled arrows.

For the second part we show a slightly stronger statement, namely that for every y, every minimum
k-bounded x-y-cut is also a DRS of equal cost. Clearly it follows that every minimum k-bounded x-cut
is a DRS of equal cost. Let R ⊆ E(T ) be a minimum k-bounded x-y-cut for some y ∈ V (T ) \ {x}.
We will show that all paths from x to y in TR have length strictly greater than k, which suffices to prove
the claim. Assume for contradiction that there exists an x-y-path P in TR with |P | ≤ k. Recall that R
is the reversed counterpart of R and note that P ∩R 6= ∅, since otherwise this contradicts our choice of
R and y. Let {e1, . . . , e`} := P ∩ R such that ei appears before ej in P if and only if i < j. We label
the connected components of P \R such that P0 is the subpath of P from x to the tail of edge e1, P` is
the subpath from the head of e` to y, and for i ∈ {1, . . . , `− 1}, Pi is the subpath starting at the head of
ei and ending at the tail of ei+1. Note in particular that Pi can be empty. For every ei, recall that ei is its
non-reversed counterpart from the original tournament T . We define Qi to be the set of x-y-paths in T
which contain edge ei and are not longer than k. We claim that for every ei (i ∈ {1, . . . , `}), there exists
at least one path Qi ∈ Qi with Qi ∩R = {ei}. Indeed, if this is not the case, then since w(ei) > 0, the
set R \ {ei} would be a feasible k-bounded x-y-cut of smaller cost, a contradiction to the minimality of
R. See Figure 2 for an illustration of the situation.

From the existence of Qi (i ∈ {1, . . . , `}), we derive the existence of x-y-paths which appear in
both T and TR and therefore need to be longer than k. To this end, we define Q(1)

i to be the first part of
Qi from x to the tail of edge ei, and denote by Q(2)

i the second part of Qi, i.e., the part from the head of
ei to y.

It is easy to see that P0∪̇Q(2)
1 , Q(1)

` ∪̇P` as well as Q(1)
i ∪̇Pi∪̇Q

(2)
i+1 for each i ∈ {1, . . . , ` − 1} are

edge progressions from x to y, i.e., sequences of edges leading from x to y which might use nodes and
edges multiple times. In particular, these multisets contain x-y-paths which do not intersect with R and
therefore exist in both T and TR. We obtain

|P0|+ |Q(2)
1 | > k (1)

|Q(1)
` |+ |P`| > k (2)

|Q(1)
i |+ |Pi|+ |Q

(2)
i+1| > k ∀ i ∈ {1, . . . , `− 1}. (3)
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On the other hand, we know that |P | ≤ k and |Qi| ≤ k for all i ∈ {1, . . . , `}, which means that

∑̀
i=0

|Pi|+ ` ≤ k (4)

|Q(1)
i |+ 1 + |Q(2)

i | ≤ k ∀ i ∈ {1, . . . , `}. (5)

Summing up inequalities (1)–(3) and inequalities (4)–(5) results in

k(`+ 1)
(1)−(3)
<

∑̀
i=0

|Pi|+
∑̀
i=1

(|Q(1)
i |+ |Q

(2)
i |)

<
∑̀
i=0

|Pi|+
∑̀
i=1

(|Q(1)
i |+ |Q

(2)
i |) + 2`

(4),(5)

≤ k(`+ 1),

a contradiction.

We remark that the implication from right to left in Lemma 3.2 holds only for minimum k-bounded
x-cuts and not for general k-bounded x-cuts. In Figure 3 we give an example where a k-bounded x-cut
does not correspond to a DRS for k-kings. In the illustrated unweighted tournament, x is a 3-king and
the edge set C = {b, e, c} is a 3-bounded x-y-cut and, hence, a 3-bounded x-cut. However, C is not a
DRS as its reversal creates a new x-y-path of length three (namely, (a, e, d)) and all other nodes are also
still reachable in three steps.

x y

a

b

c

d

e

Figure 3: Example showing that the implication of Lemma 3.2 does not hold for general k-length bounded x-cuts.
The edge set {b, e, c} is a 3-length bounded x-cut, but not a DRS for x with respect to 3-kings.

Since there exist polynomial-time algorithms for computing minimum `-length bounded s-t-cuts in
general networks for ` ≤ 3 and ` = n− 1 [Mahjoub and McCormick, 2010, Ford and Fulkerson, 1956],
Lemma 3.2 immediately yields polynomial-time algorithms for the minimum `-length bounded s-cut
problem in our tournament setting for ` ∈ {2, 3, n− 1}.

Corollary 3.3. Computing the MoV of a UC winner, a 3-king, or a TC winner in the weighted setting
can be done in polynomial time.

Next, we show that the tractability turns into an intractability as we move from k = 3 to k ≥ 4, in
both the unweighted and weighted settings. Our hardness result is obtained by carefully adjusting the
proof of Baier et al. [2010] showing that approximating minimum `-length bounded cuts for ` ≥ 4 in
general networks is NP-hard; we summarize our adjustments after the proof sketch. The full proof is
rather involved and therefore deferred to Appendix A.

Theorem 3.4. For any constant k ≥ 4, computing the MoV of a k-king in the unweighted setting is NP-
hard. For any constant ε > 0, the problem is still NP-hard when we restrict to non-constant k ≥ n1−ε.
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v

u

Nv
v1 v2 v3

v1 v2 v3 v4

x y

Nv

Nu

x

e1

e2
y

`v

mv

rv

`u

mu

ru

Figure 4: Illustration of the construction used in the proof of Theorem 3.4 for the case k = 4. For any undirected
graph G (left image), a tournament T is constructed by introducing node gadgets and edge gadgets as follows.
A node gadget Nv consists of four nodes v1, v2, v3, v4 and three “supernodes” v1, v2, v3, where the latter are
tournaments themselves. The center image shows the node gadget for node v. An edge gadget for e = {u, v}
consists of two nodes e1, e2 and edges connecting the node gadgets of u and v; see the right image. Nodes x and
y are connected to all node gadgets as illustrated. All omitted edges point “backwards” (from right to left) and the
direction of vertical edges, if not specified, can be chosen arbitrarily.

Proof sketch. At a high level, we reduce from vertex cover; see Figure 4 for the construction for k =
4. Lemma 3.2 implies that determining the MoV of node x with respect to 4-kings is equivalent to
computing the cost of a 4-bounded minimum x-cut. The key part of the proof is to show that, for any
c ≤ |V (G)|, there exists a vertex cover in G of size c if and only if there exists a 4-bounded x-cut in T
of size c+ |V (G)|. For the direction from left to right, a vertex cover U can be translated to a 4-bounded
x-y-cut by including edges `v and rv (depicted by red dashed edges) whenever v ∈ U (depicted by a
red dashed node) and mv otherwise. For the other direction, we argue that any 4-bounded x-cut of size
c + |V (G)| can be translated to a 4-bounded x-y-cut which includes only edges of the type `v, rv and
mv and has smaller or equal size. Reversing the previously described transformation gives us a vertex
cover of size c. The proof is then extended to k > 4.

Our proof of Theorem 3.4 is strongly based on the proof of Baier et al. [2010] that computing the
size of minimum `-length bounded s-t-cuts is NP-hard for ` ∈ {4, . . . , bn(1−ε)c}, where n is the size of
the length bounded cut instance constructed in the reduction and ε > 0 can be arbitrarily small. In the
following we discuss the main adjustments required for the proof to work in our setting.

First, note that the minimum `-length bounded s-t-cut problem does not require the graph to be a
tournament, which is why we needed to alter the construction by introducing backwards and vertical
edges. This increased the number of paths significantly.

Second, the problem discussed by Baier et al. [2010] specifies two nodes s and t which ought to be
separated, while our problem specifies only one node x which should be separated from some node in
V (T ) \ {x}. To address this difference, we introduced supernodes to help guarantee that all x-z-cuts
for z ∈ V (T ) \ {x, y} are significantly more expensive than a minimum x-y-cut. In this way, we ensure
that the node y needs to be separated from x. The introduction of supernodes in turn leads to a different
extension of the node gadget for k > 4.

3.1.3 Banks Set

Deciding whether an alternative x is contained in the Banks set of a tournament T , and hence deciding
whether MoVBA(x, T ) > 0, is NP-complete [Woeginger, 2003]. Our next result shows that determining
MoVBA(x, T ) is computationally intractable even if we know that x is a Banks winner in tournament T .

Theorem 3.5. Computing the MoV of a BA winner in the unweighted setting is NP-hard.
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D(x)
x

D(x)

T

y z

Figure 5: Illustration of the tournament T ′ constructed in the proof of Theorem 3.5.

Proof. We reduce from the NP-hard problem of determining whether an alternative is contained in the
Banks set [Woeginger, 2003]. Take any instance of that problem, which consists of a tournament T and
one of its alternatives x. Add two alternatives y, z so that y dominates onlyD(x)∪{z}, and z dominates
only D(x). Call the resulting tournament T ′ (see Figure 5). Observe that x ∈ BA(T ′): the transitive
subtournament T |{x,y} cannot be extended, since no alternative dominates both x and y. We claim that
MoVBA(x, T ′) = 1 if and only if x 6∈ BA(T ).

First, assume that x 6∈ BA(T ). We show that R = {(x, y)} is a DRS for x. Consider any transitive
subtournament in T ′′ = (T ′)R with x as the maximal element. This tournament cannot include y, but
may include z. Since x 6∈ BA(T ), there exists an alternative w in T that dominates all alternatives in the
subtournament. In particular, since w ∈ D(x), w also dominates z. Hence the transitive subtournament
can be extended by w, implying that x 6∈ BA(T ′′).

Assume now that x ∈ BA(T ). We claim that MoVBA(x, T ′) > 1. Since x ∈ BA(T ), there exists a
transitive subtournament in T with x as the maximal element that cannot be extended by any alternative
in T . Moreover, since x dominates both y and z, this subtournament cannot be extended by y or z.
Unless we reverse an edge in T or the edge (x, z), this subtournament still cannot be extended. If we
reverse the edge (x, z), the transitive subtournament T |{x,y} cannot be extended. Else, if we reverse an
edge in T , the transitive subtournament T |{x,y,z} cannot be extended. Hence, there is no DRS for x of
size one, as claimed.

3.2 Margin of Victory for Non-Winners

In this subsection, we consider the problem of computing the MoV for non-winners.

3.2.1 Copeland

Similarly to the winner case, the results of Faliszewski et al. [2009] already imply that the MoV for
non-winners can be computed in polynomial time. For completeness, we remark that a greedy algorithm
suffices for our unweighted setting, and present a network flow approach for the weighted case.

Theorem 3.6. Computing the MoV of a CO non-winner in the weighted setting can be done in polyno-
mial time.

Proof. We aim to compute the MoV of a Copeland non-winner x. Any member of the Copeland set
needs to have an outdegree of at least d(n − 1)/2e. We iterate over all c ∈ {d(n − 1)/2e, . . . , n} and
compute the minimum cost of making x a Copeland winner given that the outdegree of all Copeland
winners is c after the reversals. To this end, we construct a network G where V (G) = E(T ) ∪ V (T ) ∪
{s, t}, with E(T ) being the edge set of the tournament T . We will specify the edges of G later.

We consider a slightly non-standard definition of a network in which edges have associated costs as
well as capacities and nodes have balances. This definition allows us to search for “b-flows” of minimum
cost and is discussed in detail, e.g., by Korte and Vygen [2012]. Informally speaking, the balance of
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−n(n− 1)/2

(u, v)

0

(u, y)

0
u

0

v

0

y

0

x

c

t

n(n− 1)/2− c

0

w(u, v)0

w(u, y)

E(T ) V (T )

Figure 6: Illustration of the construction used in the proof of Theorem 3.6. Each node has two labels, i.e., its name
below and its balance above the corresponding circle. The cost of an edge is notated above its associated arrow
and capacities of edges are omitted.

a node corresponds to the amount of flow this node absorbs (or rather produces, in case of a negative
value) and a b-flow is a flow which respects the induced constraints. We define the balances in our
network construction as follows:

bv =


−n(n− 1)/2 if v = s;

c if v = x;

n(n− 1)/2− c if v = t;

0 else.

There exists an edge from e ∈ E(T ) to v ∈ V (T ) if and only if v is one of the endnodes of the edge e
in the tournament graph T . The edge (e, v) has cost 0 if v is the tail of edge e; otherwise its cost is equal
to the cost of reversing e in the tournament graph. All of these edges have capacity 1. In addition, there
exist edges from s to each node in E(T ) with zero cost and capacity 1, as well as edges from each node
in V (T ) \ {x} to t with zero cost and capacity c.

We claim that from an integral b-flow inG with capacity threshold c, we can construct a constructive
reversal set for x of equal cost such that x is a Copeland winner with outdegree c in TR, and vice versa.
Consider the illustration of the construction in Figure 6, in which the nodes are arranged in four levels,
where the first level contains the source s, the second-level nodes correspond to the edges in T , the third-
level nodes correspond to the nodes in T , and the last level contains the sink t. The nodes in the second
layer have two outgoing edges in the network, representing the choices between keeping the direction
of the corresponding edge in T as it currently is and reversing the edge in the tournament. Any feasible
integral flow can only send flow along one of the edges.

More precisely, given an integral b-flow, the reversal set R is determined by the edges pointing from
the second to the third layer with non-zero cost and flow value 1. The amount of flow that reaches a node
in the third level corresponds exactly to the outdegree of this node in the tournament TR. Since edges
from the third to the fourth level have capacity c, a feasible flow guarantees that any node in V (T ) has
outdegree at most c. Moreover, the node x has a balance of c and therefore it has outdegree exactly c in
TR. Hence, R is a constructive reversal set with cost equal to the cost of the flow. The other direction
follows due to similar arguments.

Integral b-flows of minimum cost can be found in polynomial time, for example by the minimum
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mean cycle-cancelling algorithm [Klein, 1967, Goldberg and Tarjan, 1989].8 After repeating the con-
struction for all c ∈ {d(n−1)e/2, . . . , n}, we choose a constructive reversal set with minimum cost.

3.2.2 Uncovered Set, k-Kings, and Top Cycle

To get a non-winner x into the uncovered set, we need its dominion to be a dominating set in T−x.
Since a tournament with n vertices always has a dominating set of size dlog2 ne [Megiddo and Vishkin,
1988], we do not need to reverse more than dlog2 ne edges. This also means that there exists an nO(logn)

algorithm for finding the minimum number of necessary edge reversals, as we can try all combinations
of at most dlog2 ne vertices to add to the dominion of x. Megiddo and Vishkin [1988] also proved that
the problem of finding a dominating set of minimum size in a tournament, which we call MINIMUM

DOMINATING SET, is unlikely to admit a polynomial-time algorithm: the existence of such an algo-
rithm would have unexpected implications on the satisfiability problem9 We present a reduction from
MINIMUM DOMINATING SET to the problem of computing the MoV for UC non-winners, which means
that the latter problem is also unlikely to admit an efficient algorithm. Our reduction is similar to the one
used by Yang and Guo [2017, Theorem 3] to show a parameterized complexity result for the decision
version of the problem.

Theorem 3.7. Computing the MoV of a UC non-winner in the unweighted setting is at least as hard as
MINIMUM DOMINATING SET.

Proof. Consider an instance of MINIMUM DOMINATING SET given by a tournament T . Define a new
tournament T ′ by adding an alternative x /∈ V (T ) to T , and by making x a Condorcet loser in T ′. We
claim that −MoVUC (x, T ′) is equal to the minimum size of a dominating set in T . For any dominating
set in T , we obtain a constructive reversal set for x in T ′ consisting of the edges between x and all
members of the set. On the other hand, consider a CRS R for x in T ′. Suppose that R contains an edge
(z, y) with x 6∈ {z, y}, such that y � z in T ′R. The only alternative that this reversal can help x reach in
two steps is z. In this case, we can instead include (z, x) in R and maintain the property that x can reach
all other alternatives in at most two steps. Hence there is always a minimum CRS that only contains
edges incident to x. The alternatives involved in this CRS besides x form a dominating set in T .

In the unweighted setting, minimum CRSs with respect to k-kings (k ≥ 3) are single edges (see
Theorem 4.2) and hence can be found efficiently. In the weighted setting, we show hardness for UC and
k-kings and tractability for TC .

Theorem 3.8. Computing the MoV of a UC non-winner in the weighted setting is NP-hard.

Proof. Given an instance of SET COVER with a universe of size r and a collection of s sets, we construct
a tournament with alternatives x, y and alternative sets A,B, where |A| = s and |B| = r. The edges are
given as follows (see also Figure 7):

• A � x � y � A;

• B � {x, y};

• Each alternative in A dominates the corresponding subset of B in the SET COVER instance, and
is dominated by the remaining alternatives in B.

8The minimum mean cycle-cancelling algorithm computes integral b-flows if b and the capacities in the network are inte-
gers, which is the case in our setting.

9Papadimitriou and Yannakakis [1996] proved that MINIMUM DOMINATING SET is complete with respect to the class
LOGSNP, which lies between P and NP. Moreover, although the problem is unlikely to be NP-hard, Downey and Fellows
[1995] showed that it is W[2]-hard with respect to the number of reversed edges.

14



x

y

A

B

Figure 7: Illustration of the construction used in the proof of Theorem 3.8.

The edges within A and B are arbitrary. The edges between A and x have cost 1, while the remaining
edges have cost n2, where n denotes the number of vertices in the constructed tournament.

The chosen costs imply that a miminum CRS will only contain edges between A and x. Since x
already reaches all alternatives of A in two steps via y, it only needs to reach all vertices of B in two
steps via A in order to be a UC winner. Therefore, the minimum cost of a CRS is exactly the size of a
minimum set cover.

Theorem 3.9. For any constant k ≥ 3, computing the MoV of a non-k-king in the weighted setting
is NP-hard. For any constant ε > 0, the problem is still NP-hard when we restrict to non-constant
k ≥ (1− ε)n.

Proof. The proof is divided into two parts. First, we introduce the reduction for any constant k ≥ 3.
Second, we argue that, for any ε > 0, we can still carry out the reduction even when we restrict ourselves
to the problem in which k ≥ (1− ε)n.

We use a similar reduction as for UC . Instead of having a single alternative y, we add k − 1
alternatives y1, . . . , yk−1 such that

• x � y1 � · · · � yk−1 � A;

• yi � x for i ≥ 2;

• yj � yi for j ≥ i+ 2;

• A � {x, y1, . . . , yk−2};

• B � {x, y1, . . . , yk−2, yk−1};

• Each alternative in A dominates the corresponding subset of B in the SET COVER instance, and
is dominated by the remaining alternatives in B.

The edges withinA andB are arbitrary. The edges betweenA and yk−2 have cost 1, while the remaining
edges have cost n2.

The choice of edge costs implies that a minimum CRS only contains edges between A and yk−2.
Since x already reaches all alternatives ofA in k steps via y1, . . . , yk−1, it only needs to reach all vertices
of B in k steps via y1, . . . , yk−2, A in order to be part of the uncovered set. Therefore, the minimum
cost of a CRS is exactly the size of a minimum set cover.

It remains to argue that even if we restrict ourselves to the problem with k ≥ (1− ε)n, for any fixed
ε > 0, we can still carry out the above reduction in polynomial time. Let ε > 0 be given and let r be
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the size of the universe and s be the number of sets in the SET COVER instance. We define nk to be the
number of nodes in the tournament which we construct for a given k. More precisely, it holds that

nk = k + s+ r.

Choose the smallest k ∈ N≥3 such that

k ≥ (s+ r)

(
1− ε
ε

)
.

This is still polynomial in s and r, and implies that

k = (1− ε)
(
k +

ε

1− ε
k

)
≥ (1− ε)(k + s+ r) = (1− ε)nk,

concluding the proof.

Theorem 3.10. Computing the MoV of a TC non-winner in the weighted setting can be done in poly-
nomial time.

Proof. Consider a partition of T into strongly connected components. These components form a linear
order with all vertices in an earlier component dominating all vertices in a later component. Call the
components T1, . . . , Tk according to the linear order, and assume that x belongs to Tr. Since x /∈
TC (T ) = V (T1), we have r ≥ 2. Construct a tournament T ′ with vertices v1, . . . , vr. For 1 ≤ i <
j ≤ r − 1, add a directed edge vj � vi with cost equal to the minimum cost of an edge between an
alternative in Ti and an alternative in Tj . For 1 ≤ i ≤ r− 1, add a directed edge vr � vi with cost equal
to the minimum cost of an edge between an alternative in Tr ∪ Tr+1 ∪ · · · ∪ Tk and an alternative in Ti.

We claim that the shortest path distance from vr to v1 in T ′ equals the minimum cost of a CRS for x
in T . Take any shortest path from vr to v1. For each edge on this path, we reverse a corresponding edge
in T with the same cost. This allows x to reach all components corresponding to vertices on this path,
including T1. Note that x can already reach the components Tr+1, . . . , Tk even before the reversals.
Moreover, the remaining components are directly reachable from T1, and therefore x can also reach
them.10 Hence we can bring x into TC using no more cost than that of the shortest path. On the other
hand, any CRS for x must have the effect that x can reach an alternative in T1. This gives rise to a path
from vr to v1 in T ′ with no greater cost.

Computing strongly connected components of T can be done in time linear in the input size using
Tarjan’s algorithm or Kosaraju’s algorithm, and finding the shortest path can be done in polynomial time
using Dijkstra’s algorithm. Therefore our algorithm runs in polynomial time.

3.2.3 Banks Set

For Banks non-winners, we present an analogous result as in the winner case: even if we know that x
has a negative MoV in tournament T , determining MoVBA(x, T ) is intractable.

Theorem 3.11. Computing the MoV of a BA non-winner in the unweighted setting is NP-hard.

Proof. We reduce from the NP-hard problem of determining whether an alternative is contained in the
Banks set [Woeginger, 2003]. Take any instance of that problem, which consists of a tournament T and
one of its alternative x. Add two alternatives y, z so that y dominates D(x)∪{x, z} but is dominated by
D(x), while z dominates all alternatives in T . Call the resulting tournament T ′ (see Figure 8). Observe

10An exception to this is if we reverse an edge vp � v1, and both Tp and T1 are singletons. However, in this case x can
reach Tp via the shortest path.
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Figure 8: Illustration of the construction used in the proof of Theorem 3.11.

that x 6∈ BA(T ′): any transitive subtournament with x as the maximal element cannot contain y, and
can therefore be extended by z. Hence, MoVBA(x, T ′) < 0. We claim that MoVBA(x, T ′) = −1 if and
only if x ∈ BA(T ).

First, assume that x ∈ BA(T ). This means x is the maximal element of a transitive subtournament
T ′′ of T that cannot be extended by any alternative in T . Reverse the edge (x, y), and insert y into T ′′ at
the position after x. The resulting subtournament cannot be extended by any alternative in T , nor can it
be extended by z because y � z. Hence x ∈ BA(T ′) after the reversal.

Assume now that x 6∈ BA(T ), and suppose for contradiction that MoVBA(x, T ′) = −1. Notice
that x is covered by both y and z, so in order to get x into BA(T ′), we need to either strengthen x,
or weaken both y and z. The latter option cannot be accomplished with one reversal, so the reversal
needs to strengthen x. If it strengthens x against another alternative in T , x is still covered by z. If it
strengthens x against z, x is still covered by y. Hence the reversal must strengthen x against y. Consider
any transitive subtournament T ′′ after the reversal with x as the maximal element. The tournament T ′′

cannot contain z, but may contain y. However, since y has the same dominion as x in T , an alternative
that extends T ′′−y, which must exist because x 6∈ BA(T ), necessarily extends T ′′. This yields the desired
contradiction.

4 Bounds on the Margin of Victory

For the rest of the paper, we will focus on the unweighted setting. In this section, we establish bounds
on the MoV values for both winners and non-winners. Before we proceed to the bounds, we remark
that there are at least two insights that one could draw from these bounds. First, tournament solutions
with a low absolute value of MoV bound yield manipulability guarantees; indeed, if the absolute value
of the MoV bound is low, then a manipulator can always obtain the desired outcome by reversing a
small number of edges regardless of the tournament instance. Second, knowing these bounds is useful
for understanding the actual MoV for specific tournaments. For example, one can calculate the “rel-
ative/normalized MoV” by dividing the actual MoV value by the bound. The resulting ratio provides
a measure of how far away an alternative is from winning or losing; in contrast to the standard MoV
measure, the relative MoV also enables us to make comparisons between tournaments of different sizes.

4.1 Winners

We show that for all considered tournament solutions, one may need to reverse up to bn/2c edges to
take a winner out of the winner set, but no more.

Theorem 4.1. Let S ∈ {CO ,TC ,UC ,BA, k-kings}, where k ≥ 3. For any tournament T and any
x ∈ S(T ), we have MoVS(x, T ) ≤ bn/2c. Moreover, this bound is tight.

Proof. Since all of the tournament solutions considered are contained in TC , an upper bound for TC
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carries over to the other solutions as well. By analogous reasoning, it suffices to show the tightness of
the bound for BA and CO .

We first prove the upper bound. Let y be an arbitrary Copeland winner in T−x. Since T−x consists
of n − 1 alternatives, y dominates at least d(n − 2)/2e = dn/2e − 1 other alternatives. Hence, we can
make y a Condorcet winner in T by reversing at most (n− 1)− (dn/2e− 1) = bn/2c edges. Since TC
is Condorcet-consistent, bn/2c edge reversals suffice to take x out of TC .

Next, we show the lower bound for BA. Assume first that n is even, say n = 2`. Besides x, suppose
that T contains alternatives y1, . . . , y2`−1, which are placed around a circle in clockwise order. Each
alternative dominates the `− 1 following alternatives in clockwise order (e.g., y1 dominates y2, . . . , y`),
and all 2` − 1 alternatives are dominated by x. We claim that taking x out of the Banks set requires at
least bn/2c = ` edge reversals. Consider the 2`− 1 sets

{y1, y`}, {y2, y`+1}, . . . , {y`, y2`−1},
{y`+1, y1}, . . . , {y2`−1, y`−1}.

Note that each yi is contained in exactly two of these sets. For each set, we say that it is ‘good’ if the
only alternative that dominates both of the alternatives in the set is x, and ‘bad’ otherwise. Note that
the existence of a good set implies that x is a Banks winner, as the transitive subtournament consisting
of the good set and x cannot be extended by another alternative that dominates all alternatives in this
subtournament. Initially, all 2` − 1 sets are good. A reversal involving x and yi can turn at most two
good sets into bad sets (i.e., the two sets containing yi). Similarly, a reversal involving yi and yj , where
yj dominates yi after the reversal, can make at most two good sets bad (i.e., the two sets containing yi).
So after at most `− 1 reversals, at least one set is still good. This implies that there is no DRS of size at
most `− 1. Hence, MoVBA(x, T ) ≥ ` = bn/2c.

The case where n is odd can be handled similarly. Let n = 2` − 1. Construct a tournament with
alternatives x, y1, . . . , y2`−1 as before, and remove y2`−1. We claim that taking x out of the Banks set in
this tournament requires at least bn/2c = ` − 1 edge reversals. Consider 2` − 3 sets, starting with the
2` − 1 sets above and removing the two sets that contain y2`−1. Each yi is contained in at most two of
these sets. The previous argument can be applied to show that MoVBA(x, T ) ≥ `− 1 = bn/2c.

To conclude the proof, we show that the same tournaments as constructed above for BA also imply
the tightness of the bound bn/2c for CO . In order to make x a non-winner, we must reverse edges so
that another alternative y has a larger dominion than x. If n is even, then initially x dominates n − 1
alternatives while y dominates n/2− 1 alternatives, so |D(x)| − |D(y)| = (n− 1)− (n/2− 1) = n/2.
Each edge reversal decreases this difference by at most 1, except for the reversal of the edge (x, y),
which reduces the difference by 2. Hence, in order to make the difference negative, we need at least n/2
reversals. A similar argument applies for the case where n is odd, since we have |D(y)| ≤ (n − 1)/2,
and therefore |D(x)| − |D(y)| ≥ (n− 1)/2 = bn/2c.

4.2 Non-Winners

Next, we turn our attention to non-winners. For TC and k-kings with k ≥ 3, it is clear that reversing
one edge suffices to make any alternative x a winner. Indeed, we can simply reverse the edge between
x and an arbitrary alternative in the uncovered set of T−x. This ensures that x can reach every other
alternative via a directed path of length at most three.11

Theorem 4.2. Let S ∈ {TC , k-kings}, where k ≥ 3 is arbitrary. For any tournament T and any
x ∈ V (T ) \ S(T ), we have MoVS(x, T ) = −1.

For CO , as many as n− 2 edge reversals may be required.
11The statement for TC has also been shown by Yang [2017]; see the Claim in the proof of Theorem 9 in the extended

version of his paper.

18



Theorem 4.3. For any tournament T and any x ∈ V (T )\CO(T ), we have MoVCO(x, T ) ≥ −(n−2).
Moreover, this bound is tight.

Proof. With a budget of n− 2 reversals, we can make x dominate at least n− 2 alternatives. Moreover,
if the tournament initially contains a Condorcet winner, one of these reversals can be used to make x
dominate it, meaning that every alternative dominates at most n − 2 alternatives after the reversals.
Hence x becomes a Copeland winner.

To show tightness, consider a tournament where x is a Condorcet loser and there is a Condorcet
winner y. We have |D(y)| − |D(x)| = n − 1. Each edge reversal reduces this difference by at most
1, except for the reversal of the edge (x, y), which reduces the difference by 2. In order for x to be a
Copeland winner, this difference must be nonpositive. It follows that we need at least n− 2 reversals, as
claimed.

Finally, we show that for UC and BA, reversing O(log n) edges can bring any alternative into the
winner set.

Theorem 4.4. Let S ∈ {UC ,BA}. For any tournament T and any x ∈ V (T ) \ S(T ), we have
MoVS(x, T ) ≥ −dlog2 ne. Moreover, this bound is asymptotically tight.

Proof. Since BA ⊆ UC , it suffices to establish the bound for BA and the tightness for UC . We
first prove the bound for BA, by considering a tournament T and iteratively constructing a CRS for
an alternative x /∈ BA(T ). Let T ′ be a transitive subtournament of T that initially contains only the
alternative x, and let B be the set of alternatives that dominate all alternatives in T ′. Let ` = |B|,
and let y be a Copeland winner of the tournament T |B . Note that y dominates at least d(` − 1)/2e
other alternatives in B as well as x. We reverse the edge between x and y, insert y into the transitive
tournament T ′ at the position after x, and update the set B. Since y is added to T ′, y and all alternatives
dominated by y are no longer in B. Also, no new alternative is added into B. Hence the size of B
reduces to at most `− 1− d(`− 1)/2e = b(`− 1)/2c. Since |B| ≤ n− 1 at the beginning, the size of
B becomes 0 after at most dlog2 ne reversals, at which point x ∈ BA(T ).

To show the asymptotic tightness for UC , assume that x is a Condorcet loser and T−x is a tournament
for which any dominating set has size Ω(log n); such a tournament is known to exist [Erdős, 1963,
Graham and Spencer, 1971]. Let R ⊆ E(T ) be a CRS for x with respect to UC . Observe that if there
is an edge (y, z) ∈ R such that x 6∈ {y, z}, then by replacing (y, z) with (y, x) (or simply removing
(y, z) if (y, x) already belongs to R), the resulting set R′ is still a CRS for x. Moreover, |R′| ≤ |R|.
Therefore we may assume that all edges in R are incident to x; let these edges be (y1, x), . . . , (y|R|, x).
Since x ∈ UC (TR), the set {y1, . . . , y|R|} necessarily forms a dominating set in T−x. It follows that
|R| ∈ Ω(log n), as desired.

5 Structural Results

Our results so far have shed light on the computational properties and bounds for the MoV notion. In this
section, we improve our understanding of the MoV from an axiomatic perspective by providing a number
of results relating the MoV to structural properties of the tournament in question. In particular, we
identify conditions on tournament solutions ensuring that the corresponding MoV values are consistent
with the covering relation (Section 5.1), and examine the relationship between MoV values and Copeland
scores (Sections 5.2 and 5.3). We also consider monotonicity of the MoV in Section 5.4. Some of our
results are summarized in Table 3.
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cover-cons. strong degree-cons. degree-cons. equal-degree-cons.

MoVCO 3 7 3 7

MoVTC 3 3 3 3

MoVUC 3 7 7 7

MoVk-kings 3 7 7 7

MoVBA 3 7 7 7

Table 3: Consistency properties of the margin of victory for the considered tournament solutions.

5.1 Cover-Consistency

Recall from Section 2 that an alternative x covers another alternative y if D(y) ⊆ D(x). In particular,
this implies that x dominates y (as otherwise x ∈ D(y)). The covering relation, which forms the basis
for defining the uncovered set UC , is transitive and has a close connection to Pareto dominance in voting
settings [Brandt et al., 2016b].

Intuitively, if x covers y, there is a strong argument that x is preferable to y. We show that for all of
the tournament solutions that we consider, their corresponding MoV values are indeed consistent with
this intuition.

Definition 5.1. For a tournament solution S, we say that MoVS is cover-consistent if, for any tourna-
ment T and any alternatives x, y ∈ V (T ), x covers y implies MoVS(x, T ) ≥ MoVS(y, T ).

We introduce a new property for tournament solutions that will be useful for showing the cover-
consistency of MoV functions; the property may be of independent interest in the general study of
tournament solutions.

Definition 5.2. A tournament solution S is transfer-monotonic if for any edges (y, z), (z, x) ∈ E(T ),

x ∈ S(T ) implies x ∈ S(T ′),

where T ′ is the tournament obtained from T by reversing edges (y, z) and (z, x).

In other words, if an alternative x is chosen, then it remains chosen when an alternative z is “trans-
ferred” from the dominion D(y) of another alternative y to the dominion D(x) of x.

We show that monotonicity and transfer-monotonicity together imply cover-consistency of the mar-
gin of victory.

Lemma 5.3. If a tournament solution S is monotonic and transfer-monotonic, then MoVS satisfies
cover-consistency.

Proof. Let S be a monotonic and transfer-monotonic tournament solution, and suppose that alternative
x covers another alternative y in a tournament T . We will show that MoVS(x, T ) ≥ MoVS(y, T ).

If x ∈ S(T ) and y 6∈ S(T ), the statement holds trivially since MoVS(x, T ) > 0 > MoVS(y, T ).
Suppose for contradiction that x 6∈ S(T ) and y ∈ S(T ). Consider the tournament T ′ obtained from
T by reversing the edge (x, y) as well as edges (x, z), (z, y) for each z ∈ D(x) \ (D(y) ∪ {y}). By
monotonicity and transfer-monotonicity, y ∈ S(T ′). However, tournaments T and T ′ are isomorphic,
and there is an isomorphism that maps x ∈ T to y ∈ T ′. Since x 6∈ S(T ), we must have y 6∈ S(T ′), a
contradiction.

The remaining two cases are x, y ∈ S(T ) and x, y 6∈ S(T ); both can be handled in an analogous
manner, so let us focus on the latter case. It suffices to show that given any CRS for y of minimum size,
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Figure 9: Illustration of the construction used in the proof of Lemma 5.3.

we can construct a CRS of smaller or equal size for x. Let Ry be a CRS for y of minimum size; we will
construct a CRS Rx for x such that |Rx| ≤ |Ry|.

Let A = V (T ) \ {x, y}, and partition A into three sets A1 = D(y), A2 = D(x) \ (D(y) ∪ {y}),
and A3 = D(x); see Figure 9 for an illustration. For any edge in Ry between two alternatives of A,
we add the same edge to Rx. We do not add the edge (x, y) regardless of whether it is present in Ry.
Each remaining edge in Ry is between an alternative in A and one of x, y. Note that (y, a) 6∈ Ry for any
a ∈ A—otherwise, by monotonicity, removing such an edge would keep Ry a CRS for y, contradicting
the minimality of Ry.

For each a ∈ A, we add further edges to Rx as follows.

• For a ∈ A1:

– If (x, a) ∈ Ry, add (y, a) to Rx.

• For a ∈ A2:

– If (x, a) ∈ Ry but (a, y) 6∈ Ry, add (x, a) to Rx.

– If (x, a) 6∈ Ry but (a, y) ∈ Ry, add (a, y) to Rx.

• For a ∈ A3:

– If (a, x) ∈ Ry, add (a, y) to Rx.

– If (a, y) ∈ Ry, add (a, x) to Rx.

Clearly, |Rx| ≤ |Ry|, and we have y ∈ S(TRy) by definition of Ry. From TRy , we reverse the edge
(x, y) if it is present, and for a ∈ A2 such that both (x, a), (a, y) 6∈ Ry, we reverse (x, a) and (a, y).
Let T ′ be the resulting tournament. By monotonicity and transfer-monotonicity, we have y ∈ S(T ′).
However, one can verify that there exists an isomorphism from T ′ to TRx that maps x to y, y to x, and
every other alternative a to itself. Since y ∈ S(T ′), we must have x ∈ S(TRx), meaning that Rx is
indeed a CRS for x.

In Appendix B.1, we show that neither monotonicity nor transfer-monotonicity can be dropped from
the condition of Lemma 5.3. This also means that neither of the two properties implies the other.

We now show that all tournament solutions we consider in this paper satisfy both monotonicity and
transfer-monotonicity, thereby implying that their MoV functions are cover-consistent.

Proposition 5.4. CO , UC , TC , k-kings, and BA satisfy monotonicity.

Proof. It is already known that CO , UC , TC , and BA are monotonic [Laslier, 1997, Brandt et al.,
2016a]; hence, it remains to establish the monotonicity of k-kings. Let x be a k-king in tournament T ,
and suppose that T ′ is the tournament obtained by reversing an edge (y, x). Since any path of length at
most k from x to another alternative in T cannot contain the edge (y, x), the same path is also present
in T ′. Hence x is also a k-king in T ′.

Proposition 5.5. CO , UC , TC , k-kings, and BA satisfy transfer-monotonicity.
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Proof. We start with CO . If x ∈ CO(T ) and edges (y, z) and (z, x) are reversed, then the outdegree of
x increases by 1, that of y decreases by 1, while all other alternatives have the same outdegree as before.
Hence x is in the Copeland set of the new tournament.

Next, we turn to k-kings. Let x be a k-king in tournament T , and suppose that T ′ is the tournament
obtained by reversing edges (y, z) and (z, x). Consider a path of length at most k from x to another
alternative w in T ; this path cannot contain the edge (z, x). If the path does not contain the edge (y, z),
then the same path also exists in T ′. Else, the path has the form x→ · · · → y → z → · · · → w, where
possibly z = w. We may then shorten this path to x → z → · · · → w in T ′, meaning that x can also
reach w in at most k steps in T ′. The proofs for UC and TC proceed in a similar manner.

Finally, let x ∈ BA(T ), and consider an inclusion-maximal transitive subtournament with x as the
Condorcet winner. Define T ′ as in the previous paragraph. Since (z, x) ∈ E(T ), z does not belong to the
subtournament, so all edges of the subtournament are intact in T ′. Since the subtournament is inclusion-
maximal in T , no alternative different from z extends it in T ′. Moreover, since (x, z) ∈ E(T ′), z cannot
extend the subtournament in T ′ either. It follows that the subtournament is inclusion-maximal in T ′, and
therefore x ∈ BA(T ′).

Lemma 5.3 and Propositions 5.4 and 5.5 together imply the following:

Theorem 5.6. For each S ∈ {CO ,TC ,UC , k-kings,BA}, MoVS satisfies cover-consistency.

In light of Theorem 5.6, one may wonder whether a stronger property, in which x covers y implies
the strict inequality MoVS(x) > MoVS(y), can also be achieved. However, the answer is negative for
all Condorcet-consistent tournament solutions, including all solutions that we consider. Indeed, in a
transitive tournament x � y � z of size 3, such a solution only selects x. But since all three alternatives
are chosen when they form a cycle (due to symmetry), both y and z can be brought into the winner set
by reversing only one edge, so MoVS(y) = −1 = MoVS(z) even though y covers z.

5.2 Degree-Consistency

Given a tournament solution S and a tournament T , the MoVS values yield a natural ranking (pos-
sibly including ties) of the alternatives in T , where alternative x is ranked higher than y whenever
MoVS(x, T ) > MoVS(y, T ). We are interested in how closely this ranking by MoV values resem-
bles the ranking by Copeland scores, according to which x is ranked higher than y if outdeg(x) >
outdeg(y).

Definition 5.7. For a tournament solution S, we say that MoVS satisfies

• degree-consistency if, for any tournament T and any alternatives x, y ∈ V (T ),
outdeg(x) > outdeg(y) implies MoVS(x, T ) ≥ MoVS(y, T );

• equal-degree-consistency if, for any tournament T and any alternatives x, y ∈ V (T ),
outdeg(x) = outdeg(y) implies MoVS(x, T ) = MoVS(y, T ); and

• strong degree-consistency if, for any tournament T and any alternatives x, y ∈ V (T ),
outdeg(x) ≥ outdeg(y) implies MoVS(x, T ) ≥ MoVS(y, T ).

It follows directly from the definitions that for any tournament solution S, MoVS satisfies strong
degree-consistency if and only if it satisfies both degree-consistency and equal-degree-consistency. Ob-
serve also that cover-consistency is implied by degree-consistency.

We remark that these properties are not necessarily desirable from a normative perspective: Whereas
the ranking implied by a strongly degree-consistent MoV function merely represents a coarsening of the
straightforward ranking by outdegree, we are often interested in tournament solutions that take more
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structure of the tournament into account and, as a consequence, have MoV functions that may violate
(equal-)degree-consistency. Indeed, since degree-consistent MoV functions are in line with Copeland
scores, their significance is somewhat limited and there would be little additional value derived from
the MoV computations, which in some cases are much more involved than simply calculating Copeland
scores.

5.2.1 Copeland Set

We start by showing that MoVCO satisfies degree-consistency but not equal-degree-consistency.

Proposition 5.8. MoVCO does not satisfy equal-degree-consistency.

Proof. We construct a counterexample with seven alternatives x, z, y1, y2, y3, y4 and y5; see Figure 10
for an illustration. Alternative z is the unique Copeland winner with an outdegree of 5, alternatives
x, y3, y4 and y5 have outdegree 3, and y1 and y2 have outdegree 2. We argue that, even though y3 and
x have the same outdegree, it holds that MoVCO(y3, T ) = −1 and MoVCO(x, T ) = −2. The former
holds since y3 can be made a Copeland winner by reversing the edge (y3, z). For x, however, there
does not exist an edge whose reversal simultaneously strengthens x and weakens z. Hence, we need to
reverse at least two edges, e.g., (x, y3) and (x, y4), in order to make x a Copeland winner.

x z

y4

y3
y2

y1
y5

Figure 10: Illustration of the example in the proof of Proposition 5.8. Missing edges point from right to left.

Proposition 5.9. MoVCO satisfies degree-consistency.

Proof. Let T be a tournament, x ∈ CO(T ), y ∈ V (T ) \ CO(T ), and δ = outdeg(x) − outdeg(y).
We claim that −δ ≤ MoVCO(y, T ) ≤ −(δ − 1). The left inequality follows from the fact that if we
reverse δ incoming edges into y, then y becomes a Copeland winner. For the right inequality, note that
each edge reversal decreases the difference outdeg(x)− outdeg(y) by at most 1; the only exception is
the edge (x, y), in which case the difference decreases by 2. Since the difference starts at δ and must be
nonpositive in order for y to become a Copeland winner, at least δ − 1 edges must be reversed.

Now, let v, w be arbitrary alternatives in T such that outdeg(v) > outdeg(w). We have w 6∈
CO(T ). If v ∈ CO(T ), then MoVCO(v, T ) > 0 > MoVCO(w, T ). Assume that v 6∈ CO(T ).
Considering an alternative u ∈ CO(T ), we have

MoVCO(v, T )−MoVCO(w, T ) ≥ −(outdeg(u)− outdeg(v)) + (outdeg(u)− outdeg(w)− 1)

= outdeg(v)− outdeg(w)− 1

≥ 0,

meaning that MoVCO is degree-consistent.
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5.2.2 Top Cycle

Next, we consider the top cycle. Recall that, for a given tournament T of size n, TC coincides with
k-kings for k = n − 1. In order to show that MoVTC satisfies strong degree-consistency, we need
Lemma 3.2 as well as the following lemma, which establishes a surprisingly succinct relation between
the sizes of the minimum cuts with respect to a pair of alternatives.12 For alternatives x, y, denote by
min-cutk(x, y) the size of a smallest k-bounded x-y-cut, and define min-cut(x, y) = min-cutn−1(x, y).

Lemma 5.10. Let T be a tournament and x, y ∈ V (T ). Then,

min-cut(x, y)−min-cut(y, x) = outdeg(x)− outdeg(y).

Proof. For ease of presentation, we divide the alternatives in V (T ) \ {x, y} into four sets:

• Dx consists of the alternatives dominated by x but not y;

• Dy consists of the alternatives dominated by y but not x;

• Dxy consists of the alternatives dominated by both x and y;

• D0 consists of the alternatives dominated by neither x nor y.

See Figure 11 for an illustration.

DxyDx Dy

x y

D0

Figure 11: Illustration of the construction used in the proof of Lemma 5.10.

Call a path from x to y an x-y-path. From the max-flow min-cut theorem [Ford and Fulkerson,
1956], the size of a minimum cut from x to y equals the maximum number of edge-disjoint x-y-paths
(and analogously for a minimum cut from y to x). Making use of this fact, we will argue about maximum
sets of edge-disjoint paths instead of minimum cuts. Let Px be the set of all paths of length one or two
from x to y. Similarly, let Qy be the set of all paths of length one or two from y to x.

Claim. There exists a maximum set of edge-disjoint x-y paths, P , such that Px ⊆ P , and a maximum
set of edge-disjoint y-x paths, Q, such that Qy ⊆ Q.

Proof of Claim. By symmetry, it suffices to prove the former statement. Let P be a maximum set of
edge-disjoint x-y paths. We show how we can alter P in an iterative manner so that Px ⊆ P holds at
the end while P remains a maximum set of edge-disjoint x-y paths.

If (x, y) ∈ E(T ), then also {x → y} ∈ P , since otherwise P cannot be maximum. Next, consider
some z ∈ Dx, and let F = {(x, z), (z, y)}. If there exists exactly one path in P containing an edge from
F , we replace this path by the path x → z → y. Else, if there exist two paths P1 and P2 containing an

12The lemma also follows from a more general statement by Bubboloni and Gori [2018, Prop. 16]. We thank Daniela
Bubboloni and Michele Gori for pointing this out to us.
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edge from F , then we can assume without loss of generality that P1 starts with the edge (x, z) and P2

ends with the edge (z, y). In this case, we replace P1 by x → z → y, and construct P2 by joining the
remaining parts of the two paths to go from x to y through z, possibly omitting any cycles that arise.
The newly created paths are edge-disjoint with respect to all other paths in P , and the number of paths
in P remains unchanged. At the end of this process, we have Px ⊆ P .

Using the Claim, we let P (resp.,Q) be a maximum set of edge-disjoint x-y-paths (resp., y-x-paths)
such that Px ⊆ P (resp., Qy ⊆ Q) holds. We next show that |P \ Px| = |Q \ Qy|. Suppose that this
is not the case, and assume without loss of generality that |P \ Px| > |Q \ Qy|. From P \ Px, we will
construct a set of edge-disjoint y-x paths,Q′, which is also edge-disjoint to all paths inQy and is of size
|Q′| = |P \ Px|, so that Qy ∪Q′ contradicts the maximality of Q.

To this end, let P ∈ P \ Px. Note that P is of the form x → v1 → · · · → v` → y for some
2 ≤ ` ≤ n − 2. Also, v1 ∈ Dxy, since otherwise P would intersect with a path in Px. For the same
reason, v` ∈ D0. Hence, (y, v1), (v`, x) ∈ E(T ) and therefore y → v1 → · · · → v` → x, where the
part between v1 and v` is the same as in P , is a y-x-path in T . We create Q′ by using this mirroring
argument for all paths in P \ Px. By construction, the paths in Q′ are edge-disjoint with respect to the
paths in Qy, so Q′ has the desired property. Hence, |P \ Px| = |Q \ Qy|.

Finally, we have

min-cut(x, y)−min-cut(y, x) = |P| − |Q|
= |Px|+ |P \ Px| − |Q \ Qy| − |Qy|
= |Px| − |Qy|
= outdeg(x)− outdeg(y),

as desired.

Theorem 5.11. MoVTC satisfies strong degree-consistency.

Proof. Fix a tournament T and let x, y ∈ V (T ) with outdeg(x) ≥ outdeg(y). First, we show
that x, y ∈ TC (T ) constitutes the only non-trivial case. Since all alternatives in TC (T ) dominate
all alternatives outside, it cannot be that x 6∈ TC (T ) and y ∈ TC (T ). If x, y 6∈ TC (T ), Theo-
rem 4.2 implies that MoVTC (x, T ) = −1 = MoVTC (y, T ). If x ∈ TC (T ) and y 6∈ TC (T ), then
MoVTC (x) > 0 > MoVTC (y).

Assume now that x, y ∈ TC (T ). Let R be a minimum DRS for x. By Lemma 3.2 with k = n− 1,
we know that R is a minimum x-t-cut for some t ∈ V (T ). We consider two cases. First, assume
that R is also a y-t-cut. Then, a minimum y-t-cut R′ ⊆ E(T ) satisfies |R′| ≤ |R|, proving that
MoVTC (x, T ) = |R| ≥ |R′| ≥ MoVTC (y, T ). For the second case, assume that R is not a y-t-
cut. Then, R needs to be an x-y-cut (since otherwise x can reach t via y), and therefore it must be a
minimum x-y-cut. By Lemma 5.10, since outdeg(x) ≥ outdeg(y), for a minimum y-x-cut R′ it holds
that |R| ≥ |R′|. Hence MoVTC (x, T ) = |R| ≥ |R′| ≥ MoVTC (y, T ).

5.2.3 Uncovered Set, k-Kings, and Banks Set

We now consider UC , BA, and k-kings, and show that these tournament solutions do not satisfy any of
the degree-consistency properties.

Proposition 5.12. MoVUC and MoVBA do not satisfy equal-degree-consistency.

Proof. We give a counterexample for both MoVUC and MoVBA at once. The example tournament T
contains seven alternatives, a, b, c, d, e, f, g, which all have the same outdegree. See Figure 12 for an
illustration.13

13This tournament has been previously considered by Brandt et al. [2018, Fig. 7].
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Figure 12: Illustration of the example in the proof of Proposition 5.12. Missing edges point from right to left.

We start by showing that this is a counterexample for MoVUC . Note that all alternatives are in the
uncovered set of this tournament. We claim that MoVUC (g, T ) = 2 while MoVUC (d, T ) = 1. The
former claim follows from Lemma 3.2 and the observation that g has exactly two edge-disjoint paths of
length at most two to every other alternative. For the latter, note that d→ b is the only path of length at
most two from d to b.

Next, we show that the counterexample holds for MoVBA as well. To this end, we show that
g, d ∈ BA(T ) and MoVBA(g, T ) > 1. Since BA(T ) ⊆ UC(T ) and therefore MoVBA(d, T ) ≤
MoVUC (d, T ) = 1, this suffices to proof the claim. Since the transitive subtournament consisting of
g, d, e cannot be extended, g ∈ BA(T ). Likewise, d ∈ BA(T ) because the subtournament consisting of
d, b, e cannot be extended.

It remains to argue that MoVBA(g, T ) > 1. Assume for contradiction that MoVBA(g, T ) = 1, i.e.,
there exists an edge whose reversal takes g out of the Banks set. Suppose first that g still dominates all
of d, e, f after the reversal. Then, since each of a, b, c is dominated by two of d, e, f in T , at least one of
the three transitive subtournaments with alternative set {g, d, e}, {g, e, f}, {g, f, d} cannot be extended.
The remaining case is that g no longer dominates all of d, e, f , meaning that an edge (g, x) is reversed
for some x ∈ {d, e, f}. Assume without loss of generality that x = d. In this case, the transitive
subtournament formed by g, e, f still cannot be extended, so MoVBA(g, T ) > 1. This concludes the
proof.

Proposition 5.13. MoVUC and MoVBA do not satisfy degree-consistency.

y4x z

y1
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y3

y5

y6

y7

Figure 13: Illustration of the example in the proof of Proposition 5.13. Missing edges point from right to left.

Proof. We give a counterexample for both MoVUC and MoVBA at once. The example tournament T
consists of nine alternatives, x, z, and yi for i = 1, . . . , 7. See Figure 13 for an illustration. Alternative x
dominates exactly y1, y2, y3 and y4, and alternative z dominates x, y2, y3 and y4. In general yi dominates
yj whenever i < j, with the exceptions that y7 dominates y5, and {y5, y6, y7} dominate {y1, y2, y3}.

We start by showing that this is a counterexample for MoVUC . First, observe that both x and y4
belong to UC (T ). Moreover, x has outdegree 4, and MoVUC (x, T ) = 1 by Lemma 3.2 since there is
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only one path of length at most two from x to z. On the other hand, y4 has outdegree 3, but its MoVUC

is 2. To see this, note that y4 can reach each alternative in {y5, y6, y7} both directly and through another
alternative in this latter set. Moreover, since y5, y6, y7 all dominate the remaining alternatives, y4 has
three disjoint paths of length two to each of these alternatives.

Next, we show that the counterexample holds for MoVBA as well. To this end we show that
x, y4 ∈ BA(T ) and MoVBA(y4, T ) > 1. Since BA(T ) ⊆ UC(T ) and therefore MoVBA(x, T ) ≤
MoVUC (x, T ) = 1, this suffices to establish the claim. In order to show that y4 ∈ BA(T ), we define
T56 to be the subtournament of T induced by the set {y4, y5, y6}. Analogously, we define T67 and T75.
It is easy to see that T56, T67 and T75 are all transitive and y4 is their maximum element. Moreover,
none of them can be extended by any other alternative, meaning that y4 ∈ BA(T ). In order to show that
x ∈ BA(T ), consider the subtournament induced by {x, y1, y2, y3, y4}, and observe that it cannot be
extended by any other alternative.

It remains to argue that MoVBA(y4, T ) > 1. Assume for contradiction that MoVBA(y4, T ) = 1
and let {(a, b)} be a destructive reversal set for y4, i.e., y4 6∈ BA(T ′), where T ′ is obtained from T
by reversing the edge (a, b). We perform a case distinction on the identity of a and b. First, consider
the cases where a, b ∈ {x, y1, y2, y3, y4, z} or a, b ∈ {y5, y6, y7}. Then, T ′56, T

′
67 and T ′75 (defined

analogously as for T ) are transitive subtournaments with maximal element y4 which cannot be extended.
Second, let one of a and b be from {x, y1, y2, y3, y4, z} while the other one is from {y5, y6, y7}, and
without loss of generality let {a, b}∩{y5, y6, y7} = {y5}. Then, the subtournament T ′67 is still transitive,
has y4 as a maximal element, and cannot be extended. It follows that y4 ∈ BA(T ′), a contradiction to
the assumption that {(a, b)} is a destructive reversal set. This concludes the proof.
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×(k − 2)

α = 5

β = 4

Figure 14: Illustration of the example in the proof of Proposition 5.14. Missing edges point from right to left. The
left image gives an overview of the example, while the right image shows a close-up of two “supernodes” of size
α = 5 and β = 4, respectively.

Proposition 5.14. MoVk-kings (for constant k ≥ 3) satisfies neither degree-consistency nor equal-
degree-consistency.

Proof. Let k ≥ 3 be a constant. We describe a family of examples which, after specifying two parame-
ters, allows us to disprove the degree-consistency as well as the equal-degree-consistency of MoVk-kings.
The high-level idea of the instance is as follows: There exist two alternatives, x and y, both of which are
currently k-kings. Moreover, outdeg(x) = α and outdeg(y) = β + 1, where α is any odd positive in-
teger while β can be any positive integer. The example is constructed in such a way that the MoVk-kings
of x is at least (α + 1)/2 while that of y is 1. Setting α ≥ 3 and β = α − 1 yields a violation of
equal-degree-consistency, and setting α ≥ 3 and β ≥ α yields a violation of degree-consistency.

We now describe the construction in more detail; see Figure 14 for an illustration. The tournament
T consists of four singleton alternatives, x, y, z and t, and 2k − 3 supernodes. These supernodes are
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tournaments themselves, where all alternatives in the supernode have the same relation to each alterna-
tive outside of the supernode. In Figure 14, we depict supernodes by large circles. In our construction
there exist two different types of supernodes: those with parameter α and those with parameter β. Each
supernode with parameter α contains α singleton alternatives and have a specific structure. More pre-
cisely, the alternatives are arranged on a cycle and each alternative dominates exactly the (α − 1)/2
alternatives following it on the cycle. (This structure is called a “cyclone” in Appendix B.2.) We make
fewer specifications for supernodes of parameter β and simply require that each of them corresponds to
a tournament of size β, but their inner structure can be chosen arbitrarily. For the relationships between
alternatives and supernodes, we refer to the left image of Figure 14.

Claim. Let α be an odd positive integer, β be a positive integer, and T be a tournament with parameters
α and β as described in Figure 14. Then, outdeg(x) = α, outdeg(y) = β + 1, MoVk-kings(x, T ) ≥
(α+ 1)/2, and MoVk-kings(y, T ) = 1.

Proof of Claim. The outdegrees of x and y follow by construction, and it can be verified that both x and
y are k-kings. We start by showing that the MoVk-kings of y in the constructed example is 1. By Lemma
3.2, it suffices to show that there exists a k-length bounded y-t-cut of size 1. The edge (z, t) forms such
a cut: after deleting it, all paths from y to t have length at least k + 1.

Next, we show that the MoVk-kings of x is at least (α + 1)/2. We do so by arguing that for any
w ∈ V (T ), the size of a minimum k-length bounded x-w-cut is at least (α + 1)/2. To this end, we
give a lower bound on the number of edge-disjoint paths of length at most k from x to w; clearly, any
k-length bounded x-w-cut must have size at least this latter number. First, let w be any alternative that
is not included in the supernode dominated by x. In this case, there exist at least α disjoint paths from x
to w. This is because there exists a path from x to w, containing at least three alternatives, which uses
only alternatives from supernodes of size α in its interior (in other words, all alternatives besides x and
w belong to such supernodes) and does not use more than one alternative from the same supernode. By
construction, such a path gives rise to α edge-disjoint paths from x to w. Second, let w be an alternative
in the supernode dominated by x. Then, due to the structure of the supernode, there exist (α − 1)/2
disjoint two-step x-w-paths and one direct x-w-path, i.e., the edge (x,w). Hence, the MoV of x is at
least (α+ 1)/2.

As discussed earlier, this Claim concludes the proof of Proposition 5.14.

Corollary 5.15. MoVCO ,MoVUC ,MoVk-kings (for constant k ≥ 3), and MoVBA do not fulfill strong
degree-consistency.

5.3 A Probabilistic Result

In this subsection, we establish a simple formula for the MoV of TC and k-kings for k ≥ 4 that works
“with high probability”, i.e., the probability that the formula holds converges to 1 as n grows. We
assume that the tournament is generated using the uniform random model, where each edge is oriented
in either direction with equal probability independently of other edges; this model has been studied,
among others, by Fey [2008] and Scott and Fey [2012].

Theorem 5.16. Let S ∈ {TC , k-kings}, where 4 ≤ k ≤ n − 1. Assume that a tournament T is
generated according to the uniform random model. Then, with high probability, the following holds for
all x ∈ V (T ) simultaneously:

MoVS(x, T ) = min

(
outdeg(x), min

y∈V (T ):y 6=x
indeg(y)

)
.
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Theorem 5.16 suggests that when tournaments are generated according to the uniform random
model, MoVTC and MoVk-kings for k ≥ 4 can likely be computed by a simple formula based on
the degrees of the alternatives. In particular, even though the problem is computationally hard for
MoVk-kings for any constant k ≥ 4 (Theorem 3.4), there exists an efficient heuristic that correctly com-
putes the MoV value in most cases. In Appendix B.2, we give an example showing that the heuristic
is not always correct. More precisely, for any positive integer `, we construct a tournament such that
{MoVTC (x, T ) | x ∈ V (T )} contains the values 1, 2, . . . , ` whereas the formula in Theorem 5.16
predicts that all alternatives have the same (arbitrarily large) MoVTC value.

At a high level, to prove this theorem, we first observe that by a result of Fey [2008], it is likely that
S(T ) = V (T ), i.e., all alternatives are chosen by S. In order to remove alternative x from the winner
set, one option is to make it a Condorcet loser—this requires outdeg(x) reversals—while another option
is to make another alternative y a Condorcet winner—this requires indeg(y) reversals. Hence, the left-
hand side is at most the right-hand side. To establish that both sides are equal with high probability,
we need to show that the aforementioned options are the best ones for making x a non-winner—by
Lemma 3.2, this requires making some y unreachable from x in four steps. The intuition behind this
claim is that the tournament resulting from the uniform random model is highly connected, with many
paths of length at most four from x to y. As a result, if we want to make y unreachable from x, it is
unlikely to be beneficial to destroy intermediate edges instead of edges adjacent to x or y.

To prove the theorem, we first state the Chernoff bound, a standard tool for bounding the probability
that the value of a random variable is far from its expectation.

Lemma 5.17 (Chernoff bound). Let X1, . . . , Xk be independent random variables taking values in
[0, 1], and let S := X1 + · · ·+Xk. Then, for any δ ≥ 0,

Pr[S ≥ (1 + δ)E[S]] ≤ exp

(
−δ2E[S]

3

)
and

Pr[S ≤ (1− δ)E[S]] ≤ exp

(
−δ2E[S]

2

)
.

Proof of Theorem 5.16. Let r := n− 1, and consider the following three events:

(i) S(T ) = V (T );

(ii) For every x ∈ V (T ), it holds that outdeg(x), indeg(x) ∈ [0.49r, 0.51r];

(iii) For every pair of disjoint sets A,B ⊆ V (T ) such that |A|, |B| ≥ 0.1r, the number of edges
directed from an alternative in A to an alternative in B is at least 0.004r2.

We claim that with high probability, all three events occur simultaneously. By union bound, it
suffices to prove this claim for each event separately. The claim for event (i) follows from Theorem 1 of
Fey [2008], which shows that the Banks set includes all alternatives with high probability in a random
tournament, along with the fact that in any tournament, the Banks set is contained in the uncovered set,
which is in turn contained in our tournament solution S.

Fix x ∈ V (T ), and let X1, . . . , Xn−1 be indicator random variables that indicate whether x domi-
nates each of the remaining n − 1 alternatives or not; Xi takes the value 1 if so, and 0 otherwise. Let
X :=

∑n−1
i=1 Xi. We have E[Xi] = 0.5 for each i, and so E[X] = 0.5r. By Lemma 5.17, it follows that

Pr[X ≥ 0.51r] ≤ exp

(
−0.022 · 0.5r

3

)
≤ exp(−10−5r).

Similarly, by applying the other inequality in Lemma 5.17, we have Pr[X ≤ 0.49r] ≤ exp(−10−5r).
Taking a union bound over these two events and over all x ∈ V (T ), the probability that outdeg(x) 6∈
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[0.49r, 0.51r] for some x is at most 2n · exp(−10−5r) ≤ 4r · exp(−10−5r), which converges to 0 as
r → ∞ (equivalently, as n → ∞). Since outdeg(x) + indeg(x) = r for each x, having outdeg(x) ∈
[0.49r, 0.51r] implies indeg(x) ∈ [0.49r, 0.51r] as well. This means that event (ii) occurs with high
probability.

Next, fix a pair of disjoint sets A,B ⊆ V (T ) such that |A|, |B| ≥ 0.1r. Let t be the number of
edges between A and B, and let Y1, . . . , Yt be indicator random variables that indicate whether each
edge is oriented from A to B; Yi takes the value 1 if so, and 0 otherwise. Let Y :=

∑t
i=1 Yi. We

have E[Yi] = 0.5 for each i, and so E[Y ] = 0.5t. Writing t = cr2 for some c ≥ 0.01, it follows by
Lemma 5.17 that

Pr[Y ≤ 0.004r2] = Pr

[
Y ≤ 0.004

0.5c
· E[Y ]

]
≤ Pr[Y ≤ 0.8 · E[Y ]]

≤ exp(−0.02 · E[Y ]) ≤ exp(−10−4r2).

Since there are no more than 2n choices for each of A and B, by union bound, the probability that event
(iii) fails for some pair A,B is at most 22n · exp(−10−4r2) ≤ exp(4r− 10−4r2), which again vanishes
for large r. We have therefore established that events (i), (ii), and (iii) occur simultaneously with high
probability.

Assume from now on that all three events occur, and let r ≥ 130. We will show that under these
conditions, it always holds that

MoVS(x, T ) = min

(
outdeg(x), min

y∈V (T ):y 6=x
indeg(y)

)
.

This suffices to finish the proof of the theorem.
First, since event (i) occurs, MoVS(x, T ) is positive for every x ∈ V (T ). We claim that for any

distinct x, y ∈ V (T ), it holds that

min-cutk(x, y) = min (outdeg(x), indeg(y)) . (6)

If (6) holds, we would have that the size of a minimum k-length bounded x-cut is

min
y 6=x

(min-cutk(x, y)) = min
y 6=x

(min (outdeg(x), indeg(y)))

= min

(
outdeg(x),min

y 6=x
indeg(y)

)
.

By Lemma 3.2, this size is equal to the size of a minimum DRS for xwith respect to S, i.e., MoVS(x, T ),
where for TC we take k = n− 1. To finish the proof, it therefore remains to establish (6).

Fix a pair x, y ∈ V . Observe that the following two sets are k-length bounded x-y-cuts:

• The set of all outgoing edges from x (since x cannot reach any other alternative upon the removal
of these edges);

• The set of all incoming edges into y (since y cannot be reached by any other alternative upon the
removal of these edges).

The former set has size outdeg(x) and the latter set has size indeg(y), implying that min-cutk(x, y) ≤
min (outdeg(x), indeg(y)).

Assume now for the sake of contradiction that this inequality is strict, i.e., there exists a k-length
bounded x-y-cut R of size less than min (outdeg(x), indeg(y)). Let E(x,D(x)) denote the set of
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edges between x and its dominion D(x), and let E(y,D(y)) denote the set of edges between y and its
set of dominators D(y). Since event (ii) occurs, we have |E(x,D(x))| ,

∣∣E(y,D(y))
∣∣ ∈ [0.49r, 0.51r].

Moreover, |R| ≤ 0.51r. Let Vx ⊆ D(x) be the set of alternatives that x can still directly reach after
the removal of R. Similarly, let Vy ⊆ D(y) be the set of alternatives that can directly reach y after the
removal of R. We consider two cases:

Case 1: R contains at most 0.39r edges in each of E(x,D(x)) and E(y,D(y)). This means that
|Vx|, |Vy| ≥ 0.1r. If Vx ∩ Vy 6= ∅, then x can reach y via a path of length two even after the removal
of R, a contradiction. So Vx and Vy must be disjoint. Since event (iii) occurs, there are at least 0.004r2

edges directed from an alternative in Vx to an alternative in Vy. In addition, from r ≥ 130 we have
0.004r2 > 0.51r, so at least one of these edges is not included in R. It follows that after R is removed,
there still exists a path of length three from x to y, a contradiction.

Case 2: R contains at least 0.39r edges in eitherE(x,D(x)) orE(y,D(y)). Assume without loss of
generality that it contains at least 0.39r edges inE(x,D(x)); the other case can be handled analogously.
Since |R| ≤ 0.51r, R contains at most 0.12r edges in E(y,D(y)). So |Vy| ≥ 0.49r − 0.12r = 0.37r.
Now, since |R| < min(outdeg(x), indeg(y)) ≤ outdeg(x), we have |Vx| ≥ 1. Let z be an arbitrary
alternative in Vx, and let E(z,D(z)) denote the set of edges between z and its dominion D(z). Let
Vz ⊆ D(z) be the set of alternatives that z can reach directly after R is removed. Repeating our
argument for Vy, we get |Vz| ≥ 0.37r.

The rest of the argument in Case 2 mirrors that of Case 1, with Vz taking the role of Vx. If Vz∩Vy 6= ∅,
then x can reach y via a path of length three even after the removal of R, a contradiction. Else, Vz and
Vy are disjoint. Since event (iii) occurs, there are at least 0.004r2 edges directed from an alternative in
Vz to an alternative in Vy, so at least one of these edges is not included in R. It follows that after R is
removed, there still exists a path of length four from x to y, a contradiction.

We have reached a contradiction in both cases, and the proof is complete.

5.4 Monotonicity

The definition of MoV implies that edge reversals have limited effects on the MoV value of alternatives:
If a single edge e of a tournament T is reversed, then MoVS(x, T ) and MoVS(x, T e) differ by at most
1, unless x is a winner in exactly one of the two tournaments T and T e (in which case |MoVS(x, T ) −
MoVS(x, T e)| = 2). We show that MoV values behave monotonically with respect to edge reversals
provided the underlying tournament solution is monotonic, as is the case for all tournament solutions
considered in this paper (Proposition 5.4).

Proposition 5.18. Let S be a monotonic tournament solution and consider two tournaments T and T e,
where e = (y, x) ∈ E(T ). Then, MoVS(x, T e) ≥ MoVS(x, T ).

Proof. Let T be a tournament and e = (y, x) ∈ E(T ), and let T ′ = T e. We first consider the case
where x ∈ S(T ), i.e., MoVS(x, T ) > 0. By monotonicity of S, it follows that x ∈ S(T ′). Suppose for
contradiction that MoVS(x, T ′) < MoVS(x, T ), and let R′ be a minimum DRS for x with respect to
T ′. Then, we will find a DRS R for x with respect to T of size |R| ≤ |R′|, contradicting the assumption
MoVS(x, T ) > MoVS(x, T ′) = |R′|. To this end, define R = R′ \ {e}. To see that R is a DRS for x
with respect to T , we need to show that x /∈ S(TR). Since R′ is a DRS for x with respect to T ′, we
have x /∈ S(T ′R

′
). In the case e ∈ R′, the tournament T ′R

′
is identical to TR, and the claim follows. In

the case e /∈ R′, we have T ′R
′

= T ′R = TR∪{e}. Since x /∈ S(TR∪{e}) and S is monotonic, we have
x /∈ S(TR).

An analogous argument can be applied in the case where x ∈ V (T ) \ S(T ), i.e., MoVS(x, T ) < 0.
If x ∈ S(T ′), then MoVS(x, T ′) > 0 > MoVS(x, T ) holds trivially. Therefore, we assume that
x ∈ V (T ) \ S(T ′), so MoVS(x, T ′) < 0. Suppose for contradiction that MoVS(x, T ′) < MoVS(x, T )
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and let R be a minimum CRS for x with respect to T . Then, by monotonicity, R′ = R \ {e} is a CRS
for x with respect to T ′, contradicting the assumption that MoVS(x, T ′) < MoVS(x, T ) = −|R|.

Note that Proposition 5.18 clearly fails when S is non-monotonic. Indeed, if strengthening an al-
ternative x takes it out of the winner set, then the MoV of x goes from positive to negative upon the
corresponding edge reversal.

6 Experiments

In order to better understand how MoV values of tournament solutions behave in practice, we conducted
computational experiments using randomly generated tournaments. For the sake of diversity of the
generated instances, we implemented six well-studied stochastic models to generate tournaments. In
particular, to make our study comparable to the experiments presented by Brandt and Seedig [2016], we
selected a similar set of stochastic models and parameterizations.

Given a tournament solution S and a tournament T , we are interested in

• the number | arg maxx∈V (T )MoVS(x, T )| of alternatives with maximum MoVS value, and

• the number |{MoVS(x, T ) : x ∈ V (T )}| of different MoV values taken by all alternatives in the
tournament.

The first value directly measures the discriminative power of the refinement of S that only selects alter-
natives with a maximal MoVS value, whereas the second value measures more generally the ability of
the MoV notion to distinguish between the alternatives in a tournament.

6.1 Setup

We used six stochastic models to generate preferences: the uniform random model (which was used in
Section 5.3), two variants of the Condorcet noise model (with and without voters), the impartial culture
model, the Pólya-Eggenberger urn model, and the Mallows model.

We first describe two models that directly create tournaments without creating a preference profile
of a set of voters beforehand. The simplest way to create a tournament is to start with a complete
undirected graph and decide the direction of each edge independently by flipping a fair coin—we call
this the uniform random model. The Condorcet noise model is similar but slightly more biased: Here,
we start with an initial order� on the alternatives and some fixed parameter 1/2 ≤ p ≤ 1. Then, for two
different alternatives a and b where a � b, the edge (a, b) is included in the tournament with probability
p; otherwise, the edge (b, a) is included.

For the remaining four stochastic models, we first create a preference profile of a set of voters, i.e.,
each voter has a complete and antisymmetric (but not necessarily transitive) preference relation over the
set of alternatives. Like Brandt and Seedig [2016], we set the number of voters to 51. Then, we consider
the majority relation, which induces a tournament when there are an odd number of voters. One way
to generate a preference profile is similar to the previously discussed Condorcet noise model, i.e., the
Condorcet noise model with voters. Again, we start with a random order � on the alternatives and some
fixed parameter 1/2 ≤ p ≤ 1. Now, the preference relation for each voter is created just as we created
the tournament in the Condorcet noise model, before we take the majority among these preferences.

The other three stochastic models all assign a ranking to each voter, i.e., the individual preference
relations are now required to be transitive. In the impartial culture model, for each voter, the probability
of obtaining a ranking is uniformly distributed over all possible rankings and thereby independent of the
selection for other voters. A similar but more correlated way to select rankings is the Pólya-Eggenberger
urn model, suggested by Berg [1985]. For this model, imagine an urn which initially contains each
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possible ranking exactly once. Then, after each voter has drawn a ranking from the urn, the ranking is
placed back together with α copies of it. Naturally, the parameter α controls the degree of similarity
among the voters. Lastly, we also applied the Mallows model [Mallows, 1957]. Assuming a ground
truth ranking, the probability that a voter is assigned a particular ranking in this model grows when the
Kendall tau distance to the ground truth ranking becomes smaller. The dispersion parameter φ ∈ (0, 1]
controls the concentration of the probability mass on rankings that are close to the ground truth ranking.
More precisely, φ = 1 corresponds to the uniform distribution over all possible rankings, while φ → 0
concentrates more probability on the ground truth ranking and rankings close to it.

For each stochastic model and each number of alternatives n ∈ {5, 10, 15, 20, 25, 30}, we sampled
100 tournaments. Using the methods described in Section 3, we implemented algorithms to calculate
the MoV values for CO , UC , 3-kings, and TC . Due to their computational intractability, we did not
implement procedures to calculate the MoV values for BA and k-kings for k ≥ 4.

The experiments were carried out on a system with 1.4 GHz Quad-Core Intel Core i5 CPU, 8GB
RAM, and macOS 10.15.2 operating system. The software was implemented in Python 3.7.7 and the
libraries networkx 2.4, matplotlib 3.2.1, numpy 1.18.2, and pandas 1.0.3 were used. For implementing
the Mallows and urn models, we utilized implementations contributed by Mattei and Walsh [2013].

The code for our implementation can be found at http://github.com/uschmidtk/MoV.

6.2 Results and Observations

Figure 15 depicts the average size of the set of alternatives with maximum MoV value, and Figure 16
shows the average number of unique MoV values.

The first observation we make is that MoV3-kings behaves rather similarly to MoVTC : the average
number of alternatives with maximum MoV grows as n increases, and this number is on average slightly
less than half of the number of 3-kings and TC winners, respectively. However, this ratio becomes
smaller for tournaments where the number of 3-kings or TC winners is already large. For example,
when we only consider tournaments where the number of TC winners is greater than 10, only one-third
of the TC winners have a maximum MoVTC value on average; the same holds for 3-kings. Never-
theless, a more detailed look at the experimental results show that for both 3-kings and TC , the set of
alternatives with maximum MoV consists of only one alternative in around 73% of all instances, while
in the remaining instances this set is typically large. This particular behavior for TC and the uniform
random model can be partially explained by Theorem 5.16:14 With high probability, the MoV values for
TC winners follow a specific formula based on the degrees, which leads to the set of alternatives with
maximum MoV containing either a single alternative or a large number of alternatives in most cases.15

Our experiments show that this behavior is also present in tournaments generated by other stochastic
models as well as for 3-kings; formalizing the behavior theoretically is an interesting future direction.

Our second main observation is that MoVUC behaves quite differently from MoV3-kings and MoVTC .
Most importantly, the number of UC winners with maximum MoVUC does not increase with a growing
number of alternatives, but remains more or less constant for each stochastic model. For the uniform
random model and the Condorcet noise models, this value is around 2, while it is roughly 1.4 for Mal-
lows, the urn model, and the impartial culture model. As can be seen in Figure 15, the set of alternatives
maximizing MoVUC is almost as discriminative as the Copeland set (all of whose alternatives maximize
MoVCO ). However, we observe in Figure 16 that the number of unique values of the Copeland score
is notably higher than that of MoVUC . The latter is particularly low for models which tend to create
tournaments with small UC , including Mallows, impartial culture and the urn model. Both of these

14Strictly speaking, the proof of Theorem 5.16 takes n ≥ 131, but we expect the formula in the theorem statement to already
hold with rather high probability for much smaller n.

15Indeed, if there is a unique Copeland winner, that winner will be the unique alternative with the largest MoV according to
the formula. Otherwise, for several alternatives (including the Copeland winners), it can be the case that their MoV is equal to
indeg(y) for a Copeland winner y.
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Average Size of Maximum Equivalence Class

Figure 15: The illustrations show the average number of alternatives with maximum MoV value for different
stochastic models, tournament solutions, and sizes. For comparison, the average size of the entire winning set of
the corresponding original tournament solution is depicted by a lighter shade.
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Average Number of Unique Values

Figure 16: The illustrations show the average number of unique MoV values for different stochastic models,
tournament solutions, and sizes. For comparison, the average number of unique Copeland scores is shown in
violet.
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effects can be explained by the observation that MoVUC is significantly better at distinguishing between
UC winners than it is at distinguishing between UC non-winners.16 As a consequence, tournaments
with a small uncovered set generally give rise to a small number of unique MoVUC values.

7 Conclusion and Future Work

In this paper, we have proposed and extensively studied a generic framework for refining tournament
solutions based on the notion of margin of victory (MoV). We determined the complexity of computing
the MoV, as well as bounds on the MoV, for several common tournament solutions. Moreover, we
provided not only structural insights such as consistency of the MoV with respect to the covering relation
and Copeland scores, but also experimental evidence regarding the extent to which the MoV refines
winner sets in stochastically generated tournaments. Besides the tournament solutions that we have
considered, it would be interesting to study the MoV with respect to other tournament solutions such
as the bipartisan set, the Slater set, the Markov set, and the minimal covering set. In Appendix C, we
provide a preliminary set of results for these four tournament solutions and describe some challenges
that we encountered while trying to extend our results.

Viewing the MoV as a robustness measure, one could aim to obtain more comprehensive information
about the space of all (not necessarily minimum) reversal sets. For example, one may ask how many
reversal sets of cost at most c exist for a given alternative. In particular, one could use the number of
minimum reversal sets as a tie-breaker for alternatives with equal MoV. Indeed, for some tournaments,
especially small ones, the MoV in the unweighted setting may not distinguish between all winners
(or non-winners), as witnessed by our experimental results. A specific example is the tournament in
Figure 1, where three of the four uncovered set (UC ) winners have a MoV of 1. In this example, c has
two minimum reversal sets ({(c, f)}, {(f, d)}), d has four ({(d, c)}, {(d, b)}, {(c, f)}, {(b, e)}), and e
has three ({(c, f)}, {(e, d)}, {(e, c)}). Investigating the complexity of computing these numbers is an
appealing direction for future work; similar counting questions have been considered in the context
of elections [Hazon et al., 2012, Baumeister and Hogrebe, 2020, Boehmer et al., 2020] and knockout
tournaments [Aziz et al., 2018].

In our experiments, the MoV function corresponding to UC stands out for its discriminative power:
not only is the set “max-MoVUC ” (containing all alternatives with maximum MoVUC value) consis-
tently small, but the number of distinct MoVUC values is also relatively high in general. It is con-
sequently tempting to suggest max-MoVUC as a new tournament solution. Besides its discriminative
power and structural appeal, it can be computed efficiently (Corollary 3.3) and inherits Pareto optimality
from the uncovered set, which it refines [Brandt et al., 2016b]. Another intriguing avenue for future
research is therefore to analyze max-MoVUC , as well as max-MoVS for other tournament solutions S,
from an axiomatic perspective.
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Figure 4: Illustration of the construction used in the proof of Theorem 3.4 for the case k = 4. For any undirected
graph G (left image), a tournament T is constructed by introducing node gadgets and edge gadgets as follows.
A node gadget Nv consists of four nodes v1, v2, v3, v4 and three “supernodes” v1, v2, v3, where the latter are
tournaments themselves. The center image shows the node gadget for node v. An edge gadget for e = {u, v}
consists of two nodes e1, e2 and edges connecting the node gadgets of u and v; see the right image. Nodes x and
y are connected to all node gadgets as illustrated. All omitted edges point “backwards” (from right to left) and the
direction of vertical edges, if not specified, can be chosen arbitrarily. (repeated from page 11)

A Proof of Theorem 3.4

We reduce from the vertex cover problem. Given an undirected graph G = (V,E), a subset of the nodes
U ⊆ V is called a vertex cover if for each edge in E, at least one of its endnodes is contained in U . The
problem is to determine the minimum cardinality of a vertex cover.

The proof is divided into three parts. We start by showing the reduction for k = 4, then extend
the construction to arbitrary constants k, and finally argue that we can still carry out the reduction even
when we restrict ourselves to cases in which k ≥ n1−ε for arbitrarily small constant ε > 0.

Part I. Let k = 4. From a given instance G of the vertex cover problem, we construct an instance
(T, x) of the MoV for 4-kings problem as follows. (An illustration of the construction can be found
in the three images of Figure 4.) For ease of presentation we define nG := |V (G)|. For every node
v ∈ V (G) we introduce a node gadget, indicated by a grey box in Figure 4 and consisting of four nodes
v1, v2, v3 and v4 as well as three supernodes, v1, v2 and v3. A supernode is itself a tournament consisting
of 2nG+ 1 nodes which are arranged within a circle such that each node has outgoing edges towards the
next nG nodes on the circle and ingoing edges from all other nodes. See the center image in Figure 4 for
a close-up of a node gadget with nG = 2. Moreover, we introduce two nodes x and y. Corresponding
to the node gadget there exist edges

(x, v1), (x, v2), (v1, v2), (v2, v3), (v3, v4), (v4, y), (v3, y)

as well as superedges (i.e., edges that connect at least one supernode)

(x, v1), (v1, v2), (v2, v3), (v1, v1), (v2, v2), (v3, v3), (v3, v4).

More precisely, a superedge (u, v) is a set of edges going from all nodes in u to all nodes in v. We
extend the node gadget to a tournament by letting all unspecified edges point “backwards” (from right
to left) according to Figure 4. In case two nodes are on the same vertical line and the edge between them
has not been specified previously, it can be chosen arbitrarily.

For every edge e = (u, v) ∈ E we introduce an edge gadget, consisting of two nodes e1 and e2 and
the (super)edges (v2, e1), (e1, u2), (e1, u3), (v2, e1) and analogously (u2, e2), (e2, v2), (e2, v3), (u2, e2).
For the sake of clarity we omit the superedges (v2, e1) and (u2, e2) in the illustration of Figure 4. For all
nodes w ∈ V (G) \ {u, v} we add edges (e1, w2) and (e2, w2). Finally, all edges unspecified thus far in
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the entire construction point backwards and the direction of non-specified vertical edges can be chosen
arbitrarily.

Lemma 3.2 implies that the cardinality of a minimum 4-bounded x-cut is equal to the cardinality of
a minimum DRS for x with respect to 4-kings. Hence, showing the following claim suffices to prove the
theorem for k = 4.

Claim. For c ≤ nG, there exists a vertex cover of size c in G if and only if there exists a 4-bounded
x-cut of size c+ nG in T .

Proof of Claim. We start by showing the implication from left to right. Let U ⊆ V (G) be a vertex
cover in G. For every node v ∈ V (G) we name the following three edges inside the node gadget
`v := (x, v2),mv := (v2, v3) and rv := (v3, y); the first and last are depicted by red dashed edges in
Figure 4. We construct the edge set C ⊆ E(T ), which we will show is a 4-bounded x-y-cut, by iterating
over all v ∈ V (G): If v ∈ U , we choose `v and rv to be in the set C. On the other hand, if v 6∈ U , we
include mv in the set C. It is easy to see that |C| = nG + c, so it remains to show that C is a 4-bounded
x-y-cut.

Since the tournament T contains a very large number of x-y-paths, we argue in the following that,
when focusing on Px,y(4), we can virtually restrict ourselves to the set of “visible” paths in Figure 4,
i.e., paths that do not contain omitted edges. See Table 4 and Table 5 which contain distances from x
and to y within the visible subgraphs of T , respectively. The columns of the tables correspond to the
positions of the nodes within the horizontal alignment in Figure 4.

Pos. 1 Pos. 2 Pos. 3 Pos. 4
v1 | 1 v2 | 2 v3 | 3
v1 | 1 v2 | 1 v3 | 2 v4 | 3

e1 | 2

Table 4: Distances from x to nodes in node gadget Nv .

Pos. 1 Pos. 2 Pos. 3 Pos. 4
v1 | 4 v2 | 3 v3 | 2
v1 | 3 v2 | 2 v3 | 1 v4 | 1

e1 | 2

Table 5: Distances from nodes in node gadget Nv to y.

We first claim that the introduction of backward and vertical edges does not change these distances.
To see this, let vi and vj be (super)nodes at position i and j respectively, where i ≤ j. For any choice
of vi and vj it holds that dist(x, vj) + 1 ≥ dist(x, vi) and dist(vi, y) + 1 ≥ dist(vj , y), where dist()
denotes the distance between two nodes. Hence the backward and vertical edges cannot decrease these
distances.

Second, we claim that no backward edge is included in a path in Px,y(4). Assume for contradiction
that there exists such a path with backward edge e. First, assume that the head of e is at position 1.
Observe that e cannot be the first edge in the path. However, from Table 5, the minimum distance from
position 1 to y is 3, a contradiction. Second, assume that the head of e is at position 2 and observe that e
needs to be the third or fourth edge in the path since the path needs to reach position 3 or 4 before using
edge e, according to Table 4. However, the minimum distance from position 2 to y is 2, a contradiction.
Lastly, assume that the head of edge e is in position 3 and observe that edge e needs to already be the
fourth edge in the path since position 4 cannot be reached in less than 3 steps, a contradiction.
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Third, we claim that there exist exactly two types of omitted vertical edges that are included in paths
in Px,y(4). A vertical edge (u, v) is included in a path in Px,y(4) if and only if dist(x, u)+dist(v, y) ≤
3. Looking at Table 4 and 5 we see that the only candidates for such an edge are {v2, u2}, {v2, e1},
{v2, e2} and {v3, u3}. Since the edges (v2, e1) and (e2, v2) have already been specified, there remain
only {v2, u2} and {v3, u3}. No matter how the directions of these edges are chosen, they create two new
paths of length four, e.g., {`v, (v2, u2),mu, ru} and {`u,mu, (u3, v3), rv}.

Lastly, we claim that no node contained in a supernode can be used in any path of Px,y(4). To see
this, note that the distances from x and to y sum up to five for all supernodes.

With all this in mind, we show that every path in Px,y(4) includes some edge in C. First, consider all
paths in Px,y(4) which only use edges within one node gadget, say the one corresponding to v ∈ V (G).
These are exactly the paths {`v,mv, rv}, {`v,mv, (v3, v4), (v4, y)} and {(x, v1), (v1, v2),mv, rv}. All
of these paths contain mv and at least one of the edges `v and rv and hence, independently of whether
v ∈ U or not, the paths include an edge in C. Second, consider paths in Px,y(4) which use edges
within two node gadgets u and v which are not neighboring in the graph G. How these paths look
exactly depends on the direction of the edge betweeen u2 and v2 as well as the edge between u3 and
v3. Without loss of generality, assume that they are {`v, (v2, u2),mu, ru} and {`u,mu, (u3, v3), rv}.
These paths have the property that for one of the nodes, say u, they contain either both `u and mu,
or both mu and ru. Hence, independently of whether u ∈ U or not, the paths include an edge in C.
Lastly, consider paths in Px,y(4) which use two node gadgets corresponding to neighboring nodes in G,
say u and v. These paths are {`v, (v2, e1), (e1, u3), ru} and {`u, (u2, e2), (e2, v3), rv} as well as (with
the same without-loss-of-generality assumption as earlier in this paragraph), {`v, (v2, u2),mu, ru} and
{`u,mu, (u3, v3), rv}. All of them have the property that they contain either both `v and ru, or both `u
and rv. Since U is a vertex cover, we know that at least one of the pairs `v, rv and `u, ru is included in
C, and therefore the paths contain an edge in C. We summarize that C is a 4-bounded x-y-cut of size
|U |+ nG.

We turn to prove the direction of the Claim from right to left. Let C ⊆ V be a 4-bounded x-cut
of size nG + c with c ≤ nG. For any node z ∈ V (T ) \ {y}, the set C cannot be a 4-bounded x-z-cut
because there exist at least 2nG+1 > nG+c disjoint 4-bounded x-z-paths due to the introduction of the
supernodes. Hence, C is a 4-bounded x-y-cut. In the following, we transform C so that it only contains
edges of type `v, mv and rv.

In our first step, we ensure that no edges connecting node gadgets or having an endnode from an
edge gadget are included in C. Assume that C contains an edge e connecting gadgets corresponding to
the nodes u and v, where we consider e2 to correspond to node u and e1 to node v. If e is not included
in any path of Px,y(4), we simply delete e from C. Otherwise, e is contained in exactly one path from
Px,y(4). (To see this, consult the complete characterization of Px,y(4) in the previous part of the proof.)
Moreover, this path contains exactly one of `u and `v. We replace e by the edge `u or `v, respectively,
and obtain another 4-bounded x-y-cut of the same or smaller size.

In our second step, we guarantee that within the node gadget for each node v, either edgemv or both
of the edges `v and rv are selected. If one edge from this gadget is selected, it must be the edge mv,
since otherwise there exists at least one path in Px,y(4) which does not contain an edge in C. If two or
more edges are selected, we instead select edges `v and rv, since all paths that contain an edge from the
node gadget either contain `v or rv. Hence, we obtain a new 4-bounded x-y-cut of size at most the size
of the previous cut.

After the transformation of C, we derive a vertex cover U of size c in the graph G. For each node
v ∈ V (G) we include v in U if and only if `v and rv are included in C. Clearly, |U | = |C| − nG.
In case we previously reduced the cardinality of C, we simply add nodes to U until |U | = c. Now,
assume for contradiction that U is not a vertex cover, i.e., there exists an edge {u, v} ∈ E(G) such that
u, v 6∈ U . This means that C contains both mu and mv and no other edge from the node gadgets of
u and v. Then the path {`v, (v2, e1), (e1, u3), ru} does not contain an edge in C, a contradiction to C
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being a 4-bounded x-y-cut.

x y

v1
(3)

v1
(3)

v2
(3)

v1
(2)

v1
(2)

v2
(2)

v1
(1)

v1
(1)

v2
(1)

v1

v1 v2

v2

v3

v3 v4

`v

mv

rv

Figure 18: Example illustration of the extended node gadget for k = 7 as introduced in the proof of Theorem 3.4.

Part II. We now show how we can adjust the construction for fixed k > 4. We change the definition
of a node gadget by extending it with a set of preceding (super)nodes

{v1(i), v1(i), v2(i) | ∀ i ∈ {1, . . . , k − 4} and ∀ v ∈ V (G)}.

(Super)edges go from x to all nodes with superscript k − 4 and more generally from a node with
superscript i + 1 to the node of the same type with superscript i if they correspond to the same node
v ∈ V (G). Moreover, a superedge points from v1

(1) towards v1, an edge from v
(1)
1 towards v1, and

edges from v
(1)
2 towards v1 and v2. For the connections among the nodes v1, v2, v3, v4, v1, v2, v3, y we

use the same edges as in the case k = 4. Edge gadgets are defined exactly as in the case k = 4. All
non-specified edges point backwards and vertical edges can be chosen arbitrarily. For every v ∈ V (G)

we define `v := (v
(1)
2 , v2), mv := (v2, v3) and rv := (v3, y). See Figure 18 for an illustration of the

extended node gadget. We show the same claim as previously and omit analogous arguments.

Claim. For c ≤ nG, there exists a vertex cover of size c in G if and only if there exists a k-bounded
x-cut of size c+ nG in T .

Proof of Claim. We start by showing the implication from left to right. Let U ⊆ V (G) be a vertex
cover. Similarly to before, we construct C ⊆ E(T ) by choosing for every v ∈ V (G) the edges `v and rv
whenever v ∈ U and the edge mv when v 6∈ U . While it is easy to see that |C| = |U |+ nG, we need to
show that C is a k-bounded x-y-cut. Hence, we are interested in the set Px,y(k) and need to show that C
intersects each of its paths at least once. We compare the set Px,y(k) to the set of 4-bounded x-y-paths
which we characterized in the proof for the claim for k = 4. To this end, let T4 be the tournament that
we constructed in Part I of the proof. First, consider only the “visible” subgraph of T and note that, in
comparison to the graph T4, the nodes v1, v2, v3, v4, e1, v1, v2 and v3 have a distance from x which is
increased by exactly k − 4 while the distance to y is the same as previously. Inserting backwards and
vertical edges does not change these distances, due to the same arguments as before. Since the rest of
the structure of the node gadget is equivalent, the subpaths of the paths in Px,y(k) that are within the
original node gadget (depicted by a darker grey box in Figure 18) correspond to the 4-bounded x-y-paths
in T4. By the same arguments as in Part I, C is a k-bounded x-y-cut.

We turn to prove the implication from right to left. Let C be an x-cut of size c + nG with c ≤ nG.
Analogously to the case k = 4, we show that we can modify C so that it only contains edges of type `v,
mv and rv and is still an x-cut with no greater cost. First, note that for every z ∈ V (T )\{y}, there exist
at least 2nG + 1 > nG + c disjoint k-bounded x-z-paths. For example, for the node v(3)1 in Figure 18,
this is true because of paths through the supernodes v(3)1 and v(2)1 and backward edges from v

(2)
1 to v(3)1 .

Hence, C is in particular an x-y-cut.
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In our first step, we ensure that no edges connecting node gadgets or having an endnode from an edge
gadget are included in C. We follow a very similar argument as in Part I. First, assume that C contains
an edge e connecting gadgets corresponding to the nodes u and v, where we consider e2 to correspond
to node u and e1 to node v. If e is a backwards edge, it is not contained in any path in Px,y(k) and we
simply delete it from C. If e is a vertical edge, then e is included in at most one path in Px,y(k). This
is due to the fact that when moving from the gadget of u to the gadget of v, the subpath from x to the
first node that is reached in node gadget v is necessarily one step longer than the shortest possible path.
Hence, the rest of the path is completely determined, as it needs to choose the unique shortest path from
x to e as well as the unique shortest path from e to y in order to fulfill the length bound. Moreover, this
unique path contains either edge `u or edge `v, and we replace edge e by `u or `v, respectively.

The second step, in which we guarantee that for every node gadget either the pair `v, rv or the edge
mv is chosen, proceeds analogously to the case k = 4. We complete the proof by the same argument as
before, showing that we can translate C into a vertex cover U ⊆ E(G) of size |U | = c.

Part III. It remains to argue that even if we restrict ourselves to the problem with k ≥ n1−ε for any
fixed ε > 0, we can still carry out the previously explained reduction in polynomial time. Let ε > 0
be given and the size of the vertex cover instance G be denoted by nG := |V (G)| and mG := |E(G)|.
Moreover, we define nk to be the number of nodes of the tournament that we construct for a given k.
We obtain

nk = (k − 1)(2nG + 1)nG + (2k − 4)nG + 2mG + 2

= (2n2G + 3nG)k + (−2n2G − 5nG + 2mG + 2)

≤ αk,

where α := (2n2G + 3nG + 4mG). Choose the smallest k ∈ N≥4 such that

k ≥ α(1−ε)/ε.

This is still polynomial in nG and mG while it implies that

k = (kε/(1−ε)k)1−ε ≥ (αk)1−ε ≥ n1−εk .

This concludes the proof of Theorem 3.4.

B Omitted Results

B.1 Cover-Consistency

In the following two propositions, we show that neither monotonicity nor transfer-monotonicity can be
dropped from the condition of Lemma 5.3. This also means that neither of the two properties implies
the other.

Proposition B.1. There exists a monotonic tournament solution S such that MoVS does not satisfy
cover-consistency.

Proof. Let S be a tournament solution such that an alternative x is excluded if and only if it is dominated
by an alternative of outdegree 1 and the tournament has size at least four.17 Suppose that an excluded
alternative x is dominated by an alternative y of outdegree 1. If x becomes dominated by an additional
alternative, x remains dominated by y, whose outdegree is still 1, so it remains excluded. Hence S is
monotonic.

17The latter condition is needed to ensure that the choice set is always nonempty.
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To see that MoVS does not satisfy cover-consistency, consider a tournament T composed of a regular
tournament T ′ of size 2k + 1 ≥ 7, along with an additional alternative x which is dominated by all
alternatives in T ′. Note that S(T ) = V (T ). For any y ∈ T ′, the edge (y, x) alone constitutes a DRS
for y, so MoVS(y, T ) = 1. On the other hand, since every alternative in T ′ has outdegree at least 3, in
order for x to be dominated by an alternative of outdegree 1, at least two edges need to be reversed. This
means that MoVS(x, T ) > MoVS(y, T ) even though y covers x.

Proposition B.2. There exists a transfer-monotonic tournament solution S such that MoVS does not
satisfy cover-consistency.

Proof. Let S be a tournament solution such that an alternative x is excluded if and only if it has outdegree
1 and there is another alternative of outdegree 0 (so, in particular, D(x) consists only of that alternative).
Assume that a tournament T ′ is obtained by reversing edges (y, z) and (z, x) in a tournament T . Note
that in T ′, if x has outdegree 1, then it dominates only z which does not have outdegree 0, so x ∈ S(T ′)
regardless of whether x ∈ S(T ). Hence S is transfer-monotonic.

To see that MoVS does not satisfy cover-consistency, consider any transitive tournament T . Let x
and y be the alternative of outdegree 1 and 0, respectively. Then MoVS(x, T ) < 0 < MoVS(y, T ) even
though x covers y.

B.2 Example showing that MoVTC does not always follow the formula in Theorem 5.16

The tournament consists of ` different subtournaments T1, . . . , T`, each of which corresponds to a cy-
clone of size m, where m is an odd positive integer which is sufficiently larger than `. A cyclone of
size m is a tournament in which the m alternatives are arranged on a cycle and each alternative dom-
inates its (m − 1)/2 successors on the cycle. For ease of presentation, each Ti has one distinguished
alternative which we call vi. For two alternatives u and v from distinct subtournaments, say u ∈ V (Tj)
and v ∈ V (Tj′), it holds in general that u dominates v if and only if j < j′. However, there are ` − 1
exceptions: all distinguished alternatives dominate v1, i.e., (v2, v1), (v3, v1) . . . , (v`, v1) ∈ E(T ); we
call these backward edges. See Figure 19 for an illustration.

. . . . . . . . . . . .

v1 v2 v3 v`

T1 T2 T3

. . .

T`

Figure 19: Illustration of the example showing that MoVTC does not always follow the formula in Theorem 5.16.
Each Ti is a “cyclone” of size k and has one distinguished alternative vi.

One can check that all alternatives belong to TC (T ). We claim that MoVTC (x, T ) = ` − (i − 1)
if x ∈ V (Ti) for i ≥ 2. Since reversing the backward edges (vi, v1), . . . , (v`, v1) makes v1 unreachable
from x, we have MoVTC (x, T ) ≤ `− (i−1). For the other direction, by Lemma 3.2, it suffices to show
that even if ` − i edges are removed, x can still reach every other alternative via some directed path.
Suppose that `− i edges are removed. We first claim that in any subtournament Tj , every alternative can
still reach every other alternative. Indeed, if the cyclone Tj consists of the alternatives z1, . . . , zm in this
order, then before the edges are removed, z1 can reach z(m+3)/2 via (m− 1)/2 (disjoint) paths of length
two; at least one of these paths remains intact after the edge removal as long as m > 2`+ 1. Similarly,
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z(m+3)/2 can still reach z2, meaning that z1 can also reach z2. Applying the same argument repeatedly,
in Tj , every alternative can still reach every other alternative. Now, since `− i edges are removed, one of
the backward edges (vi, v1), . . . , (v`, v1) remains intact, say (vs, v1). By going to vs via some alternative
in Ts, our alternative x can then reach v1 ∈ T1, from where it can also reach all other alternatives in T .
Hence MoVTC (x, T ) = ` − (i − 1). In particular, {MoVTC (y, T ) | y ∈ V (T )} ⊇ {1, 2, . . . , ` − 1}.
This example therefore also shows that MoVTC can take on an arbitrary large number of values in a
tournament.

Finally, note that the formula in Theorem 5.16 predicts a MoV value of (m−1)/2 for all alternatives.
This can be made arbitrarily larger than `− 1 by choosing m to be as large as desired.

C Other Tournament Solutions

In this section, we present additional results for the following tournament solutions:

• The bipartisan set (BP ) is the set of alternatives chosen with positive probability in the (unique)
Nash equilibrium of the symmetric zero-sum game induced by the tournament matrix. In this
n× n matrix, the (i, j)-entry is 1 if i dominates j, −1 if j dominates i, and 0 if i = j.

• The Slater set (SL) is the set of alternatives that appear as the Condorcet winner (i.e., maximal
element) of a transitive tournament that can be obtained from the original tournament by reversing
the smallest number of edges.

• The Markov set (MA) is the set of alternatives that win the most matches, in expectation, in a
“winner-stays” tournament, where play proceeds by selecting a random alternative to replace the
loser of the previous match. The Markov set corresponds to the alternatives that receive the highest
probability in the (unique) eigenvector with sum of elements 1 associated with the eigenvalue 1 of
the transition matrix of the tournament. In this n×nmatrix, the (i, j)-entry is 1

n−1 if i dominates j,

0 if j dominates i, and outdeg(i)
n−1 if i = j.

• The minimal covering set (MC ) is the (unique) minimal UC -stable set. A set of alternatives B is
said to be UC -stable if for every x ∈ V (T ) \B, the alternative x is covered in the subtournament
T |B∪{x}.

Like the other tournament solutions that we have considered in this paper, all four tournament so-
lutions are Condorcet-consistent. Moreover, all of them are contained in UC and therefore in k-kings
and TC , and BP is contained in MC [Laslier, 1997, Brandt et al., 2016a]. While the bipartisan set,
the Markov set, and the minimal covering set can be computed in polynomial time, deciding whether an
alternative belongs to the Slater set is an NP-hard problem.

C.1 Bounds for Winners

We begin by considering MoV bounds for winners. Recall from Theorem 4.1 that for CO , TC , UC ,
BA, and k-kings, the MoV can be as high as dn/2e. We demonstrate that, rather surprisingly, one edge
reversal always suffices to take any alternative out of the Slater set. Indeed, this is the case even when the
alternative in question is a Condorcet winner and the remaining alternatives form a regular tournament.
This result also implies that computing the MoV with respect to a Slater winner can be done efficiently,
and stands in contrast to the corresponding result for the Banks set (Theorem 3.5), where we used the
hardness of deciding whether an alternative is a Banks winner to derive a hardness for computing the
MoV of Banks winners.

Theorem C.1. For any tournament T and any x ∈ SL(T ), we have MoVSL(x, T ) = 1.
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Proof. Let x ∈ SL(T ). Consider first the case where x is a Condorcet winner. Let y ∈ SL(T−x),
and let r be the minimum number of edge reversals required to make T−x transitive. In particular, it is
possible to reverse r edges in T−x and reach a transitive tournament with y as the Condorcet winner.
Reverse the edge (x, y), and call the resulting tournament T ′; note that T ′−x = T−x. We claim that
x 6∈ SL(T ′). To see this, observe that in T ′, y can be made the Condorcet winner of a transitive
tournament by reversing r edges; since x is dominated by y and dominates the remaining alternatives,
it will automatically slot into the second position in the transitive order. On the other hand, in order to
make x the Condorcet winner of a transitive tournament, one must make T ′−x transitive—this takes at
least r reversals—and reverse the edge (x, y), for a total of at least r + 1 reversals. Hence x 6∈ SL(T ′),
which implies that MoVSL(x, T ) = 1.

Assume now that x is not a Condorcet winner. Let T ′′ be the tournament obtained by making x
dominate all alternatives that dominate it in T . From the previous paragraph, there exists an alternative y
such that in the tournament T ′′xy obtained by reversing the edge (x, y), we have x 6∈ SL(T ′′xy). Recall
that the Slater set is monotonic [Laslier, 1997]. If x is dominated by y in T , monotonicity implies
that x 6∈ SL(T ), a contradiction. Therefore, T contains the edge (x, y). By reversing this edge, we
obtain the tournament Txy. Since x 6∈ SL(T ′′xy), monotonicity implies that x 6∈ SL(Txy). It follows that
MoVSL(x, T ) = 1, as desired.

We now turn to the Markov set, the bipartisan set, and the minimal covering set. Since all of these
tournament solutions are refinements of the uncovered set, Theorem 4.1 immediately implies the fol-
lowing upper bound:

Corollary C.2. Let S ∈ {MA,BP ,MC}. For any tournament T and any x ∈ S(T ), we have
MoVS(x, T ) ≤ bn/2c.

We show that MoVMA cannot always be as high as bn/2c, at least when n = 4. This separates MA
from CO , TC , UC , BA, and k-kings.

Proposition C.3. Let n = 4. For any tournament T and any x ∈ MA(T ), we have MoVMA(x, T ) = 1.

Proof. We prove the desired statement by case analysis. Up to isomorphism, there are four tournaments
with n = 4:

• The transitive tournament T1 with a1 � b1 � c1 � d1.

• The tournament T2, obtained by starting with the transitive tournament with a2 � b2 � c2 � d2
and letting d2 dominate a2 instead.

• The tournament T3 with a3 as the Condorcet winner and the remaining three alternatives forming
a cycle b3 � c3 � d3 � b3.

• The tournament T4 with d4 as the Condorcet loser and the remaining three alternatives forming a
cycle a4 � b4 � c4 � a4.

The four tournaments are depicted in Figure 20. We determine the Markov set for each of them by com-
puting the respective probabilities that the alternatives ai, bi, ci, di receive in the (unique) eigenvector
with sum of elements 1 associated with the eigenvalue 1 in the transition matrix of Ti.

• The eigenvector for T1 is [1, 0, 0, 0], so MA(T1) = {a1}.

• The eigenvector for T2 is [4/10, 3/10, 1/10, 2/10], so MA(T2) = {a2}.

• The eigenvector for T3 is [1, 0, 0, 0], so MA(T3) = {a3}.

• The eigenvector for T4 is [1/3, 1/3, 1/3, 0], so MA(T4) = {a4, b4, c4}.

49



a1 b1

c1 d1

T1

a2 b2

c2 d2

T2

a3 b3

c3 d3

T3

a4 b4

c4 d4

T4

Figure 20: All four tournaments with n = 4 up to isomorphism.

Now, we show that for each i and each x ∈ MA(Ti), it holds that MoVMA(x, Ti) = 1.

• For i ∈ {1, 2, 4}, if we reverse the edge (ai, bi) to obtain a tournament T ′i , then bi is a Condorcet
winner in T ′i , so ai 6∈ MA(T ′i ) = {bi}. Hence, MoVMA(ai, Ti) = 1. Moreover, since a4, b4, and
c4 are symmetric in T4, we have MoVMA(b4, T4) = MoVMA(c4, T4) = 1.

• For i = 3, if we reverse the edge (a3, b3), the resulting tournament T ′3 is isomorphic to T2, with
the mapping (b3, a3, c3, d3) → (a2, b2, c2, d2). It follows that a3 6∈ MA(T ′3) = {b3}. Hence,
MoVMA(a3, T3) = 1.

The proof is complete.

Our next proposition shows that for the Markov set, the MoV can be higher than 1. This means that
it is not always as easy to take a winner out of the Markov set as it is for the Slater set (cf. Theorem C.1).

Proposition C.4. For any even n ≥ 6, there exists a tournament T and an alternative x ∈ MA(T ) such
that MoVMA(x, T ) > 1.

Proof. Let n ≥ 6 be even, and consider a tournament T in which there is a Condorcet winner x1
and the remaining n − 1 alternatives x2, . . . , xn form a “cyclone” as in Appendix B.2. We claim that
MoVMA(x1, T ) > 1. If we reverse an edge (xi, xj) for i, j ≥ 2, then x1 remains the Condorcet winner
and therefore a Markov winner. Hence we only need to consider the case where we reverse an edge
between x1 and one of x2, . . . , xn. Since x2, . . . , xn are symmetric, it suffices to show that in the
tournament T ′ obtained by reversing the edge (x1, xn), we have x1 ∈ MA(T ′).

Let p1, . . . , pn denote the probabilities that x1, . . . , xn receive in the (unique) eigenvector with sum
of elements 1 associated with the eigenvalue 1 of the transition matrix of T ′. The first row of this matrix
implies that

n− 2

n− 1
· p1 +

1

n− 1
· p2 + · · ·+ 1

n− 1
· pn−1 = p1,

which is equivalent to
p2 + · · ·+ pn−1 = p1.

This means that p1 ≥ max{p2, . . . , pn−1}. If p1 ≥ pn, then x1 ∈ MA(T ′) and we are done. Assume
therefore that pn > p1. Since p1 + (p2 + · · ·+ pn−1) + pn = 1, we have pn > 1/3 > p1. From the last
row of the transition matrix of T ′, we have

1

n− 1
· p1 +

1

n− 1
· p2 + · · ·+ 1

n− 1
· pn/2 +

n/2

n− 1
· pn = pn,

which is equivalent to
p1 + · · ·+ pn/2 =

(n
2
− 1
)
pn.
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Since pn > 1/3 and p1 + · · ·+ pn/2 ≤ 1− pn < 2/3, it follows that

2

3
> p1 + · · ·+ pn/2 =

(n
2
− 1
)
pn >

n− 2

6
,

which holds only when n < 6. Hence, the case pn > p1 cannot occur, and the proof is complete.

For the bipartisan set, we know from Corollary C.2 that MoVBP (x, T ) ≤ bn/2c for all tourna-
ments T and all x ∈ BP(T ). When n = 4, this bound is achieved by the alternative a3 in tournament T3
in Figure 20. While we do not know whether the bound can be attained for all n, we show that the MoV
of a BP winner can be greater than 1, thereby separating the bipartisan set from the Slater set (cf. The-
orem C.1). Specifically, we prove that for any tournament T with a Condorcet winner x such that no
alternative has outdegree n−2 (such a tournament exists for any n ≥ 4), it holds that MoVBP (x, T ) > 1.

Proposition C.5. Let T be a tournament with x as the Condorcet winner such that no alternative
has outdegree n − 2 (in other words, the tournament T−x does not have a Condorcet winner). Then
MoVBP (x, T ) > 1.

To prove Proposition C.5, it is helpful to recall an alternative characterization of the bipartisan set,
shown as Proposition 6.2.3 in the book by Laslier [1997].

Lemma C.6 (Laslier, 1997). For any tournament T with alternatives x1, . . . , xn, there exists a unique
probability distribution p1, . . . , pn over the alternatives that satisfies the following two conditions for
every i ∈ {1, . . . , n}:

(i) If pi > 0, then
∑

j:xj�xi pj =
∑

j:xi�xj pj;

(ii) If pi = 0, then
∑

j:xj�xi pj ≥ 1/2.

The bipartisan set is then equal to the set of alternatives with positive probability, {xi | pi > 0}.

It is also known that the bipartisan set always has odd size [Laslier, 1997], a fact that we shall make
use of in the following proof.

Proof of Proposition C.5. Consider a tournament T with alternatives x1, . . . , xn such that x1 is a Con-
dorcet winner and no alternative has outdegree n − 2. If we reverse an edge (xi, xj) for i, j ≥ 2, then
x1 remains the Condorcet winner and therefore a BP winner. Hence, to establish MoVBP (x1, T ) > 1,
it suffices to show that x1 remains in the bipartisan set when we reverse an edge between it and one of
the remaining alternatives.

Assume that we reverse an edge adjacent to x1 to obtain a tournament T ′, and suppose for contra-
diction that x1 6∈ BP(T ′). Let p1, . . . , pn be the probability distribution of T ′ satisfying the conditions
in Lemma C.6. Since T does not contain any alternative with outdegree n − 2, there is no Condorcet
winner in T ′. If BP(T ′) is a singleton, say it only contains xi, then we must have pi = 1, and condition
(ii) implies that xi is a Condorcet winner, a contradiction. Since BP(T ′) has odd size, it must contain
at least three alternatives, all of which receive a positive probability. If one of these alternatives receives
probability at least 1/2, then condition (i) cannot be satisfied with respect to any other alternative in
BP(T ′). Hence, all of the alternatives in BP(T ′) receive probability less than 1/2. Now, since x1
is dominated by only one alternative in the entire tournament T ′, we have

∑
j:xj�x1 pj < 1/2. This

contradicts condition (ii) with i = 1 and completes the proof.

Since BP is contained in MC , Proposition C.5 implies the following corollary.

Corollary C.7. Let T be a tournament with x as the Condorcet winner such that no alternative has
outdegree n− 2. Then MoVMC (x, T ) > 1.
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C.2 Bounds for Non-Winners

We now consider MoV bounds for non-winners. Recall from Section 4.2 that the corresponding bound
is constant (specifically, −1) for TC and k-kings with k ≥ 3, logarithmic for UC and BA, and linear
for CO . The following proposition places SL and MA in the same category as CO .

Proposition C.8. Let S ∈ {SL,MA}. If x is a Condorcet loser in a tournament T , then MoVS(x, T ) ≤
−bn/2c.

Proof. It is known that every alternative in the Slater set and the Markov set has outdegree at least bn/2c
[Laslier, 1997, Kim et al., 2017]. Hence, in order to bring a Condorcet loser into the Slater set or the
Markov set, at least bn/2c edge reversals are necessary.

Next, since BP and MC are contained in UC , Theorem 4.4 implies a logarithmic bound:

Proposition C.9. For sufficiently large n, there exist a tournament T and an alternative x ∈ V (T ) \
BP(T ) such that MoVBP (x, T ) ∈ −Ω(log n). An analogous statement holds for MC .

If only the edges adjacent to the alternative of interest x are allowed to be reversed, then a linear
number of reversals may be required to bring x into the bipartisan set.

Proposition C.10. For any even n ≥ 4, there exist a tournament T and an alternative x ∈ V (T ) \
BP(T ) such that if only the edges adjacent to x can be reversed, then at least n/2 edges must be
reversed in order to bring x into the bipartisan set of the resulting tournament.

Proof. Let n ≥ 4 be even, and consider a tournament T in which there is a Condorcet loser xn
and the remaining n − 1 alternatives x1, . . . , xn−1 form a regular tournament. Note that the proba-
bility distribution (p1, . . . , pn) =

(
1

n−1 ,
1

n−1 , . . . ,
1

n−1 , 0
)

satisfies the conditions of Lemma C.6, so
BP(T ) = {x1, . . . , xn−1}. If we reverse fewer than n/2 edges adjacent to xn (and no other edges), the
same probability distribution still satisfies the conditions. Indeed, condition (i) remains the same, while
for condition (ii) we have∑

j:xj�xn

pj = 1−
∑

j:xn�xj

pj = 1− |{j | xn � xj}| ·
1

n− 1
≥ 1−

n
2 − 1

n− 1
=

n

2n− 2
>

1

2
.

It follows that the bipartisan set of the modified tournament remains {x1, . . . , xn−1}. In particular, the
set does not contain xn.

For the tournament T in the proof of Proposition C.10, it may be true that MoVBP (T ) = n/2.
However, in order to prove this, one would need to reason about how the bipartisan set changes as we
reverse edges not adjacent to xn; we leave it as an intriguing open question.

C.3 Structural Results

We next address structural results. We show that the margin of victory with respect to BP , MA, SL, and
MC fail all of the degree-consistency notions. This leaves TC and CO as the only tournament solutions
among the ones we consider to satisfy any of these notions (cf. Table 3).

Proposition C.11. MoVBP , MoVMA, MoVSL, and MoVMC do not satisfy degree-consistency, equal-
degree-consistency, and strong degree-consistency.
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Proof. It suffices to prove the claim for degree-consistency and equal-degree-consistency.
First, for each S ∈ {MA,SL}, there exists a tournament T such that S(T ) and CO(T ) are disjoint

[Brandt et al., 2015, Table 1]. Let x ∈ CO(T ) and y ∈ S(T ). We have outdeg(x) > outdeg(y) but
MoVS(x, T ) < 0 < MoVS(y, T ). It follows that MoVMA and MoVSL fail degree-consistency.

We establish the remaining properties with a single tournament. Consider the tournament T with
five alternatives a � b � c � d � e which is transitive in this order except that e dominates a.

• Since the probability distribution (1/3, 1/3, 0, 0, 1/3) satisfies the conditions of Lemma C.6,
BP(T ) = {a, b, e}. We have outdeg(c) > outdeg(e) but MoVBP (c, T ) < 0 < MoVBP (e, T ), so
MoVBP fails degree-consistency. Moreover, since outdeg(d) = outdeg(e) but MoVBP (d, T ) <
0 < MoVBP (e, T ), MoVBP also fails equal-degree-consistency.

• Observe that the set {a, b, e} is UC -stable, since c is covered by b in T |{a,b,c,e} and d is covered
by b in T |{a,b,d,e}. Moreover, since BP is contained in MC and BP(T ) = {a, b, e}, we also have
MC (T ) = {a, b, e}. The previous bullet point then implies that MoVMC fails degree-consistency
and equal-degree-consistency.

• Since the eigenvector with sum of elements 1 associated with the eigenvalue 1 in the transition
matrix of T is [3/7, 2/7, 2/21, 1/21, 1/7], MA(T ) = {a}. We have outdeg(a) = outdeg(b) but
MoVMA(a, T ) > 0 > MoVMA(b, T ), so MoVMA fails equal-degree-consistency.

• In order to make a the Condorcet winner of a transitive tournament, it suffices to reverse the edge
(e, a). On the other hand, for every other alternative, the analogous outcome requires reversing at
least two edges. Indeed, this is clear for c, d, and e since each of them is dominated by at least
two other alternatives, while for b, the tournament does not become transitive even after reversing
the edge (a, b). Hence, SL(T ) = {a}, and so MoVSL(a, T ) > 0 > MoVSL(b, T ) even though
outdeg(a) = outdeg(b). This implies that MoVSL fails equal-degree-consistency.

The proof is complete.

In light of Proposition C.11 and Table 3, the remaining structural questions are whether MoVBP ,
MoVMA, MoVSL, and MoVMC satisfy cover-consistency. To answer these questions in the positive, by
Lemma 5.3 and the fact that BP , MA, SL, and MC are monotonic [Laslier, 1997], it would suffice to
establish that the four tournament solutions are transfer-monotonic. However, perhaps surprisingly, we
show next that this is not the case for BP , SL, and MC .

Proposition C.12. BP and MC do not satisfy transfer-monotonicity.

Proof. Consider the tournaments T and T ′ as illustrated in Figure 21. We will show in the following
that x ∈ BP(T ) and x ∈ MC (T ), but x 6∈ BP(T ′) and x 6∈ MC (T ′), where T ′ is derived from T by
reversing the edges (z, y) and (y, x). This implies that BP and MC violate transfer-monotonicity.

We start with the argument for BP . For tournament T the unique probability distribution satisfying
the two conditions in Lemma C.6 is

(a : 3/23, z : 7/23, b : 1/23, x : 1/23, c : 1/23, y : 7/23, d : 3/23).

This can be verified by checking the first condition for all alternatives:∑
i∈D(a)

pi = pz + pd =
10

23
= pb + px + pc + py =

∑
i∈D(a)

pi;

∑
i∈D(z)

pi = pb + py =
8

23
= pa + px + pc + pd =

∑
i∈D(z)

pi;
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a z b cx y d
T

a z b cx y d
T ′

Figure 21: Illustration of the counterexample from Proposition C.12. All missing edges point from right to left.

∑
i∈D(b)

pi = pa + py + px =
11

23
= pz + pc + pd =

∑
i∈D(z)

pi;

∑
i∈D(x)

pi = pa + pz + pc =
11

23
= pb + py + pd =

∑
i∈D(x)

pi;

∑
i∈D(c)

pi = pa + pz + pb =
11

23
= px + py + pd =

∑
i∈D(c)

pi;

∑
i∈D(y)

pi = pa + px + pc + pd =
8

23
= pz + pb =

∑
i∈D(y)

pi;

∑
i∈D(d)

pi = pz + pb + px + pc =
10

23
= pa + py =

∑
i∈D(d)

pi.

Hence, BP(T ) = {a, b, c, d, x, y, z} and in particular x ∈ BP(T ). For tournament T ′, the probability
distribution satisfying the two conditions in Lemma C.6 is

(a : 0, z : 0, b : 1/3, x : 0, c : 0, y : 1/3, d : 1/3).

To verify: ∑
i∈D(a)

pi = pb + px + pc + py =
2

3
>

1

2
;

∑
i∈D(z)

pi = pa + px + pc + pd + py =
2

3
>

1

2
;

∑
i∈D(b)

pi = pa + py + px =
1

3
= pz + pc + pd =

∑
i∈D(b)

pi;

∑
i∈D(x)

pi = pb + pd =
2

3
>

1

2
;

∑
i∈D(c)

pi = px + py + pd =
2

3
>

1

2
;

∑
i∈D(y)

pi = pa + pz + pc + pd =
1

3
= pb + px =

∑
i∈D(y)

pi;
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z y a b c x
T

z y a b c x
T ′

Figure 22: Illustration of the counterexample from Proposition C.13. All missing edges point from right to left.

∑
i∈D(d)

pi = pz + pb + px + pc =
1

3
= pa + py =

∑
i∈D(d)

pi.

Hence, BP(T ′) = {b, y, d} and in particular x 6∈ BP(T ′).
We turn to proving the analogous statements for MC . As BP selects a subset of MC for any tourna-

ment, we know in particular that MC (T ) = BP(T ) = {a, b, c, d, x, y, z} holds. For tournament T ′ we
will show that MC (T ′) = BP(T ′) = {b, y, d} holds, by verifying that {b, y, d} is UC -stable. Observe
that a is covered by y in T ′|{b,y,d,a}, z is covered by d in T ′|{b,y,d,z}, x is covered by b in T ′|{b,y,d,x},
and c is covered by d in T ′|{b,y,d,c}. Hence, MC (T ′) = {b, y, d} and in particular x 6∈ MC (T ′).

Thus, BP and MC do not satisfy transfer-monotonicity.

Proposition C.13. SL does not satisfy transfer-monotonicity.

Proof. Consider the tournaments T and T ′ as illustrated in Figure 22. We will show in the following
that x ∈ SL(T ), but x 6∈ SL(T ′), where T ′ is derived from T by reversing the edges (z, y) and (y, x).
This implies that SL violates transfer-monotonicity.

We first show that x ∈ SL(T ). For every alternative d ∈ {a, b, c, x, y, z}, we write f(d) for
the minimum reversal distance from T to some transitive tournament having d as a Condorcet win-
ner. To prove x ∈ SL(T ), we will show that x is a minimizer of this function. First observe that
f(z), f(y), f(a) ≥ 3 as all of these alternatives have indegree at least 3. Moreover, f(b) ≥ 3, as alter-
native b has indegree 2 and, after reversing the edges (a, b) and (x, b), the tournament still contains the
cycle (y, x), (x, a), (a, y). Similarly, f(c) ≥ 3, since, after reversing the only ingoing edge (b, c) of c,
the tournament contains two edge-disjoint cycles, e.g., (y, x), (x, a), (a, y) and (a, b), (b, z), (z, a). That
is, at least two additional edges have to be reversed. Lastly, we show that f(x) ≤ 3. To see this, observe
that reversing the edges (y, x), (c, x), and (a, b) results in the linear order x � b � c � z � a � y.
Hence, x ∈ SL(T ).

We turn to prove that x 6∈ SL(T ′). For every alternative d ∈ {a, b, c, x, y, z}, we write g(d) for the
minimum reversal distance from T ′ to some transitive tournament having d as a Condorcet winner. We
will show in the following that x is not a minimizer of this function. We first prove that g(c) ≤ 2. To this
end, observe that reversing the two edges (b, c) and (z, a) in the tournament T ′ leads to the linear order
c � x � a � b � y � z. On the other hand, we have that g(x) ≥ 3, as, after reversing the edge (c, x),
the tournament still contains two edge-disjoint cycles, e.g., (a, b), (b, c), (c, a) and (a, y), (y, z), (z, a).
Hence, x 6∈ SL(T ′), which allows us to conclude that SL violates transfer-monotonicity.

Despite Propositions C.12 and C.13, it could still be that MoVBP , MoVSL, and MoVMC satisfy
cover-consistency. However, we would need a new approach to prove this.

For the Markov set, our computer experiments showed that it satisfies transfer-monotonicity for all
tournaments of size at most 10. Therefore, it may still be possible to establish the cover-consistency of
MoVMA using the same approach that we used for CO , TC , UC , k-kings, and BA.
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