
Schelling Games on Graphs∗

Aishwarya Agarwal
1
, Edith Elkind

1
, Jiarui Gan

2
, Ayumi Igarashi

3
,

Warut Suksompong
4

and Alexandros A. Voudouris
5

1
Department of Computer Science, University of Oxford, UK

2
Max Planck Institute for So�ware Systems, Germany

3
Principles of Informatics Research Division, National Institute of Informatics, Japan

4
School of Computing, National University of Singapore, Singapore

5
School of Computer Science and Electronic Engineering, University of Essex, UK

Abstract

We study strategic games inspired by Schelling’s seminal model of residential segregation. �ese

games are played on undirected graphs, with the set of agents partitioned into multiple types; each

agent either aims to maximize the fraction of her neighbors who are of her own type, or occupies a

node of the graph and never moves away. We consider two natural variants of this model: in jump
games agents can jump to empty nodes of the graph to increase their utility, while in swap games they

can swap positions with other agents. We investigate the existence, computational complexity, and

quality of equilibrium assignments in these games, both from a social welfare perspective and from a

diversity perspective. Some of our results extend to a more general se�ing where the preferences of

the agents over their neighbors are de�ned by a social network rather than a partition into types.

Keywords: Schelling games; Equilibrium analysis; Price of anarchy; Computational complexity

1 Introduction

In 2019, African Americans constituted 78% of the population of the City of Detroit. At the same time, the

neighboring Oakland County was 75% white, and in the city of Hamtramck in the Detroit metropolitan

area about 26% of the residents were Asians (compared to 1.7% in the City of Detroit and 8.2% in Oakland

County).
1

Similar phenomena of residential segregation have been extensively documented in numerous

metropolitan areas around the world. In the developed world, the leading cause of such population pa�erns

is not direct discrimination, which is typically illegal; rather, it is the residents themselves who tend to

select neighborhoods where their ethnic or social group is well-represented.

To formalize and study how the motives of individuals lead to residential segregation, Schelling [1969,

1971] proposed the following elegant model. �ere are two types of agents who are to be placed on a

line or a grid. An agent is happy with her location if at least a fraction τ ∈ (0, 1] of the agents within a

∗

�is paper uni�es and expands earlier versions that appeared in Proceedings of the 28th International Joint Conference on

Arti�cial Intelligence (IJCAI 2019) [Elkind et al., 2019] and Proceedings of the 34th AAAI Conference on Arti�cial Intelligence

(AAAI 2020) [Agarwal et al., 2020]. In particular, it includes new results (5.1, 5.10, 5.11, 6.1), improved bounds (5.3, 5.5), as well as

extensions of previous results (7.1, 7.3).
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See h�p://en.wikipedia.org/wiki/Ethnic groups in Metro Detroit#/media/File:FischerDetroit2010Census.png for a map of

ethnic groups in the Detroit metropolitan area.
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certain radius are of the same type as her. Happy agents do not want to move, but unhappy agents are

willing to do so in the hope of improving their current situation. Schelling described a dynamic process in

which at each step, unhappy agents jump to random unoccupied locations or swap positions with other

randomly selected agents. He showed via simple experiments that, surprisingly, this process can lead to

a strongly segregated placement even when the agents themselves are tolerant of mixed neighborhoods

(i.e., τ < 1/2).

In the half-century since Schelling’s pioneering papers, this segregation model has a�racted the at-

tention of many researchers in sociology and economics [Alba and Logan, 1993, Benard and Willer, 2007,

Pancs and Vriend, 2007, Clark and Fosse�, 2008, Benenson et al., 2009], who proposed and studied several

variants of Schelling’s model, mainly via agent-based simulations.
2

Variants of the model have also been

theoretically analyzed in a series of papers, including in computer science [Young, 2001, Zhang, 2004a,b,

Brandt et al., 2012, Barmpalias et al., 2014, Bhakta et al., 2014, Barmpalias et al., 2015, Immorlica et al.,

2017]; one of the main �ndings is that, with high probability, the random behavior of the agents leads to

the formation of large monochromatic regions, thereby implying that strong segregation is likely to occur.

While most of the earlier work has focused on se�ings where the behavior of the agents is random,

in practice it is more realistic to assume that the agents are strategic and move only when they have an

opportunity to improve their situation. Prior to our work, such a game-theoretic approach has only been

followed in a handful of papers. Speci�cally, Zhang [2004b] considered a game where the agents optimize

a single-peaked utility function. Chauhan et al. [2018] studied a strategic se�ing with two types of agents

who have preferred locations and can either swap with other agents or jump to empty positions. For a

given tolerance threshold τ ∈ (0, 1], each agent’s primary goal is to maximize the fraction of her neighbors

that are of her own type as long as this fraction is below τ (with all fractions above τ being equally good);

her secondary goal is to be as close as possible to her preferred location. For both types of games (swap

and jump), Chauhan et al. identi�ed values of τ for which the best response dynamics of the agents leads

to an equilibrium when the topology is a ring or a regular graph. More recently, a�er the publication of an

initial version of our work [Elkind et al., 2019], there has been a stream of follow-up papers on Schelling

games; we discuss them in Section 1.2.

1.1 Our Contribution

�e model considered by Chauhan et al. [2018] makes an important contribution to the literature by enrich-

ing Schelling’s model with two additional components: (1) agents who are fully strategic and (2) location

preferences. However, the resulting model of the agents’ preferences is quite complex and, consequently,

not easy to analyze: the positive results of Chauhan et al. are mostly limited to special cases of the utility

function and highly regular networks. In our work, we focus on a similar model, aiming to capture the

same phenomena, but in a way that is more amenable to formal analysis. In particular, our paper is the

�rst to consider more than two types of agents—an important feature of real-life segregation scenarios

such as that of the Detroit metropolitan area described earlier.

In our basic model, the agents are partitioned into k types, and the set of available locations is rep-

resented by an undirected graph which we will refer to as the topology. We also incorporate location

preferences into our model, but instead of assuming that optimizing the distance to the preferred location

is the secondary goal of every agent, we assume that agents are either stubborn, in which case they stay at

their chosen location irrespective of their surroundings, or strategic, in which case they aim to maximize

their happiness ratio by either jumping to an unoccupied location or swapping locations with other agents;
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we refer to the two classes of games as k-jump and k-swap games, respectively. Our model aims to capture

the fact that, in practice, many residents (such as older people or those with underwater mortgages) are

unwilling to move even if they are no longer satis�ed with the composition of their neighborhood. Unlike

most of the work on Schelling’s model, we do not assume that agents have tolerance thresholds. Instead,

a strategic agent is willing to move as long as there exists another location with a be�er happiness ratio

(i.e., τ = 1). We answer a wide range of fundamental questions concerning our model, which we formally

de�ne in Section 2. We remark here that some of our negative results (i.e., non-existence, computational

intractability, and price of anarchy/stability lower bounds) can be extended for some other values of τ < 1;

we discuss this in Section 8.

In Section 3, we show that for some classes of topologies, such as stars and graphs of maximum de-

gree 2, our games always admit an equilibrium assignment, that is, the strategic agents can be assigned

to the nodes of the topology so that none of them want to move to a di�erent location; this result holds

even for the more general “social Schelling games” (see the overview of Section 7 below), and such an

assignment can be computed e�ciently. In contrast, equilibria may fail to exist even for games in which

the topology is acyclic and has a small maximum degree (4 for jump games and 3 for swap games).
3

We

complement this negative result by presenting a dynamic programming algorithm that decides whether

an equilibrium exists on a tree topology; this algorithm runs in polynomial time if the number of types is

bounded by a constant (so in particular for the case k = 2, which is the focus of the prior work). For more

general topologies, we prove that deciding whether an equilibrium exists is an NP-complete problem.

In the next three sections, we study the e�ciency of (equilibrium) assignments. Following a well-

established research agenda in the algorithmic game theory literature, we primarily focus on the social
welfare objective, which is de�ned as the sum of agents’ utilities. In addition, given that the goal of

Schelling’s work was to study integration and segregation, it is also natural to ask what level of inte-

gration can be achieved at equilibrium. While a number of integration indices have been proposed (see

the survey of Massey and Denton [1988]), several of them are speci�cally de�ned for se�ings where the

topology is highly regular and there are only two agent types, so it is not clear how to adapt them to our

general model. We therefore focus on a simple index that we call the degree of integration; it is inspired

by the work of Lieberson and Carter [1982] and admits a natural interpretation in our context. �is index

counts the number of agents who are exposed to agents of other types, i.e., have at least one neighbor of a

di�erent type.

In Section 4, we show that �nding assignments (not necessarily equilibria) with a high social welfare or

a high degree of integration is computationally hard. �en, in Section 5, we thoroughly study the e�ects of

strategic behavior on the social welfare by bounding the price of anarchy [Koutsoupias and Papadimitriou,

1999] and the price of stability [Anshelevich et al., 2008]. �at is, for any given game, we compare the

minimum/maximum social welfare over all equilibrium assignments to the maximum social welfare over

all (not necessarily equilibrium) assignments. Even though the price of anarchy is unbounded in general,

we identify particularly interesting restricted subclasses of jump and swap games in which the price of

anarchy (and thus the price of stability) is bounded by the number of agents or the number of types; see

Table 1 for an overview of our price of anarchy bounds. In Section 6, we turn our a�ention to bounding

the price of anarchy and the price of stability with respect to the degree of integration—to the best of our

knowledge, this is the �rst such analysis for an integration index in the context of Schelling games. We

illustrate that even the best equilibria can be much less diverse than the maximally diverse assignments.

Finally, in Section 7, we discuss several variants of our basic typed model. We show that some of our

3

�is corrects a result of Chauhan et al. [2018, �eorem 8], which claims that equilibria are guaranteed to exist for both 2-jump

and 2-swap games regardless of the topology when agents have no preferred location (as in our model).
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fully-strategic with stubborn agents

general balanced strongly-balanced

Jump games Θ(n) ∈ [2k − 1, 2k]
[
3k−1
3k+1 · 2k, 2k

]
Swap games

k = 2 Θ(n) ∈ (2.058, 4] ∈ (2.666, 4]
k ≥ 3 unbounded unbounded

Table 1: An overview of our price of anarchy bounds from Section 5 for games with at least two strategic agents

per type and a connected topology. In cases where there is a type with a single strategic agent or the topology is

disconnected, the price of anarchy is unbounded. We have two main axes: the strategy space of the agents (jump or

swap), and whether there are stubborn agents (we refer to games without stubborn agents as fully-strategic). When

all agents are strategic, we further distinguish between general games (with possibly unequal number of agents per

type) and balanced games (where each type consists of the same number of agents). When there are stubborn agents,

we present results for strongly-balanced games (where each type consists of the same number of stubborn agents,

and the same number of strategic agents), as in any other case the price of anarchy is unbounded.

positive results extend to the se�ing where there are no types, but rather the agents are connected by a

social network and care about the fraction of their friends (that is, their neighbors in the social network)

among their neighbors in the topology—we refer to the resulting class of games as social Schelling games.
We also present two alternative utility functions that di�er conceptually from the canonical one. �e �rst

function aims to capture enemy aversion by including each agent in the set of her own friends, while the

second aims to capture scenarios in which the agents only care about the di�erence between the number

of her friends and the number of her enemies in her neighborhood (as opposed to the ratio). For the

di�erence-based utility function, we show that there is always an equilibrium and, when all agents are

strategic, the price of stability is 1.

1.2 Further Related Work

For an accessible introduction to the Schelling model and a survey of the literature on non-strategic vari-

ants, we refer the interested reader to Chapter 4 in the book of Easley and Kleinberg [2010], and the papers

by Brandt et al. [2012] and Immorlica et al. [2017]. Besides the paper of Chauhan et al. [2018], which we

discussed in detail earlier, a number of other authors have studied similar models a�er the publication of

the conference version of our paper [Elkind et al., 2019]. In particular, Echzell et al. [2019] strengthened

the results of Chauhan et al. [2018] and extended them to more than two agent types, and also examined

the complexity of computing assignments that maximize the number of happy agents. Kanellopoulos et al.

[2021a] investigated a variant of the utility function with enemy aversion that we discuss in Section 7.2.

Massand and Simon [2019] considered a class of linear swap games, like the ones we study in Section 7.3,

where the utility of the agents is a linear function of the weights they have for their neighbors. A similar

se�ing with agents that derive linear utility both from their location as well as their nearby friends, was

recently studied by Elkind et al. [2020b]. Bilò et al. [2020] examined the in�uence of the topology and lo-

cality on the existence of equilibria and the price of anarchy in swap games. Chan et al. [2020] introduced

an alternative model wherein multiple agents can occupy the same location and, similarly to our social

Schelling games (Section 7.1), there is a friendship network. Bullinger et al. [2021] presented results on

the complexity of computing assignments ful�lling welfare guarantees or other e�ciency notions. Very

recently, Kreisel et al. [2021] built on our work to establish that �nding equilibria is hard even if all agents

are strategic; their result holds both for jump and for swap games.

Our model shares a number of similarities with hedonic games [Drèze and Greenberg, 1980, Bogo-
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molnaia and Jackson, 2002]; these are games in which agents split into coalitions and each agent’s utility

is determined by the composition of her coalition. Speci�cally, in fractional hedonic games [Aziz et al.,

2019], the relationships among the agents are described by a weighted directed graph: the weight of an

edge (i, j) represents the value that agent i assigns to agent j, and an agent’s utility for a coalition is her

average value for the members in the coalition. If the graph is undirected and all edge weights take values

in {0, 1}, it can be interpreted as a friendship relation. In this case, an agent’s utility in a coalition corre-

sponds to the fraction of her friends among the coalition members, which is similar to how utilities are

de�ned in social Schelling games. More precisely, the utility de�nition in our games is analogous to that

in unweighted modi�ed fractional hedonic games [Olsen, 2012, Bredereck et al., 2019, Monaco et al., 2019,

Elkind et al., 2020a], where the denominator of the fraction that describes the utility of agent i in a coalition

X is |X \{i}| rather than |X|, i.e., the average is computed over coalition members other than i. Moreover,

our type-based model is closely related to the Bakers and Millers game discussed by Aziz et al. [2019], and

to the recently introduced class of hedonic diversity games [Bredereck et al., 2019, Boehmer and Elkind,

2020]. �ese connections between Schelling games and hedonic games motivate much of the discussion in

Section 7. Nevertheless, a fundamental di�erence between hedonic games and Schelling games is that in

hedonic games, agents derive their utilities from pairwise disjoint coalitions, whereas in Schelling games

the utilities are derived from (overlapping) neighborhoods.

2 Preliminaries

A Schelling game is given by a setN = {1, . . . , n} of n ≥ 2 agents partitioned into k ≥ 2 pairwise disjoint

types T1, . . . , Tk, and an undirected simple graph G = (V,E), called the topology. We o�en identify agent

types with colors; for example, in Schelling games with two types, the agents are either red (T1) or blue

(T2). Given an agent i ∈ T`, we refer to all other agents in T` as friends of i and denote the set of i’s friends

by Fi = T` \ {i}.
An assignment is a vector v = (v1, . . . , vn), where vi ∈ V for each i ∈ N and vi 6= vj for every pair of

agents i 6= j; intuitively, vi is the location of agent i and no two agents can occupy the same location. Let

πv(v) denote the agent that occupies the node v ∈ V according to an assignment v, that is, πvi(v) = i.
Given an assignment v, let Ni(v) = {j ∈ N \ {i} : {vi, vj} ∈ E} be the set of neighbors of agent i.

In addition to their types, the agents are also classi�ed as either strategic or stubborn. We denote by R
the set of strategic agents and by S the set of stubborn agents, so that R ∪ S = N . In case S = ∅, the

se�ing is fully-strategic. �e utility of a strategic agent i ∈ R for an assignment v is the fraction of her

neighbors who are her friends, i.e.,

ui(v) =
|Ni(v) ∩ Fi|
|Ni(v)|

.

and 0, in case Ni(v) = ∅. Strategic agents aim to maximize their utility, and may move in order to do so.

In contrast, each stubborn agent is associated with a node of the topology and never moves away from that

node (i.e., the node that each stubborn agent occupies is explicitly given and never changes); we assume

that their utility is independent of the assignment and set ui(v) = 0 for each i ∈ S.

To maximize her utility, a strategic agent may either jump to an empty node of the topology or swap
positions with another agent. Games with k types in which the strategic agents are only allowed to jump

to empty nodes are called k-jump games, while games in which the strategic agents are only allowed to

perform pairwise swaps are called k-swap games; in this paper, we do not consider games where both types

of moves are allowed. In jump games, we assume that |V | > n, so that there always exists at least one
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empty node to which an agent can jump; in swap games, we assume that |V | = n, since empty nodes will

remain unoccupied throughout the game and have no impact on the utility calculations.

Observe that in swap games, since |V | = n, every node is occupied by some agent, so ifG is connected

then Ni(v) 6= ∅ for every i ∈ N . However, this is not generally true in jump games and it may be that

Ni(v) = ∅ for some agent i and assignment v, even if G is connected. In such cases, we assume that the

utility of agent i is 0.

In a jump game, let (z,v−i) be the assignment that is obtained from v by changing the location of a

strategic agent i from vi to z, where z is unoccupied in v. We say that an assignment v is a pure Nash jump
equilibrium (or, simply, a jump equilibrium) if no strategic agent i has an incentive to unilaterally deviate

to an empty node in order to increase her utility. �at is, v is a jump equilibrium if for every i ∈ R and

for every node z ∈ V such that z 6= vj for all j ∈ R ∪ S it holds that

ui(v) ≥ ui(z,v−i).

In a swap game, let vi↔j be the assignment that is obtained from v by swapping the positions of the

strategic agents i and j: vi↔j` = v` for every ` ∈ N \ {i, j}, vi↔ji = vj and vi↔jj = vi. Agents i and j

swap positions only if they both strictly increase their utility: ui(v
i↔j) > ui(v) and uj(v

i↔j) > uj(v).

Clearly, agents of the same type cannot both increase their utilities by swapping, so swaps always involve

agents of di�erent types. An assignment v is a swap equilibrium if no pair of agents i, j want to swap

positions. �at is, v is a swap equilibrium if and only if for every i, j ∈ R we have

ui(v) ≥ ui(vi↔j) or uj(v) ≥ uj(vi↔j).

In what follows, we omit the words ‘jump’/‘swap’ when the context is clear, and denote the set of all (jump

or swap) equilibrium assignments of the (jump or swap) game G by EQ(G).

For every assignment v, we de�ne two benchmarks that aim to capture, respectively, the happiness

of the agents and the societal diversity. �e �rst one is the well-known social welfare, de�ned as the total

utility of all strategic agents:

SW(v) =
∑
i∈R

ui(v).

Our second benchmark is the degree of integration. We say that a strategic agent is exposed if she has at

least one neighbor of a di�erent type, and count the number of exposed agents:

DI(v) = |{i ∈ R : Ni(v) \ Fi 6= ∅}|.

Note that we ignore the stubborn agents in the de�nitions of our benchmarks, as their utility is always the

same and they never want to move somewhere else.

For f ∈ {SW,DI}, let v∗f (G) be an optimal assignment in terms of the benchmark f for a given game G.

�e price of anarchy (PoA) in terms of the benchmark f is the worst-case ratio (over all games G such

that EQ(G) 6= ∅) between the optimal performance (among all assignments) and the performance of an

equilibrium assignment thatminimizes this benchmark. Similarly, the price of stability (PoS) in terms of f is

the worst-case ratio between the optimal performance and the performance of an equilibrium assignment

that maximizes this benchmark:

PoAf = sup
G:EQ(G)6=∅

max
v∈EQ(G)

f(v∗f (G))

f(v)
,

6



Γ

Δ

𝛼

𝛽

Figure 1: Example of the topology used in the proof of �eorem 3.2 for k = 2. �e assignment depicted here in

which node α is empty is not an equilibrium, since the middle red agent occupying a node of Γ wants to deviate to

α and thereby increase her utility from 1/3 to 1.

PoSf = sup
G:EQ(G)6=∅

min
v∈EQ(G)

f(v∗f (G))

f(v)
.

For readability, we refer to the quantity PoASW as the social price of anarchy and to PoADI as the integration
price of anarchy, and use similar terminology for the price of stability.

3 Existence and Complexity of Computing Equilibria

We begin the presentation of our technical results by discussing the existence of equilibria and studying

the complexity of computing equilibrium assignments. We warm up by observing that for topologies such

as paths, rings, and stars, there is always at least one equilibrium assignment, and such an assignment can

be computed e�ciently. �is can be shown directly, and also follows from a more general result established

later (�eorem 7.1).

�eorem 3.1. For every k ≥ 2, every k-jump or k-swap game with a topology that is a star or a graph of
maximum degree 2 admits at least one equilibrium assignment, which can be computed in polynomial time.

In what follows, we consider jump and swap games separately in Sections 3.1 and 3.2, respectively.

While the results we present are similar for both classes of games, in many cases the proofs exploit di�erent

techniques that are speci�cally designed for each type of games.

3.1 Jump Games

Let us �rst focus on jump games. We show that for this class of games, an equilibrium may fail to exist in

general. �is negative result holds even if the topology is acyclic and there are no stubborn agents.

�eorem 3.2. For every k ≥ 2, there exists a k-jump game that does not admit an equilibrium assignment,
even when all agents are strategic and the topology is a tree.

Proof. Given k ≥ 2, we construct an instance with 2k+1 agents per type; thus, the total number of agents

is n = k(2k + 1). �e topology G = (V,E) is a tree that consists of |V | = n + 1 nodes, which are

distributed over four layers. Speci�cally, the tree has a root α, which has one child β. Node β has 2k − 1
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children; we denote the set of its children by Γ. Each node in Γ has k children, which are leaves of the

tree; we denote the set of all leaves (excluding the root) by ∆. Figure 1 depicts the topology for k = 2.

Assume for the sake of contradiction that there is an equilibrium assignment. Since exactly one node

is le� empty, we consider four cases depending on its location. We show that each case cannot result in

an equilibrium, which yields the desired contradiction.

• Node α is empty. Assume that the agent occupying node β is of type T . �en, since there are 2k
other agents of type T and only 2k − 1 nodes in Γ, there must exist some subtree rooted at a node

in Γ that contains an agent of type T as well as agents that belong to other types. �en an agent of

type T from this subtree has an incentive to deviate to α.

• Node β is empty. Assume that the agent occupying node α is of type T ; note that her utility is 0. If

she does not have an incentive to deviate to β, it follows that no agent of type T occupies a node in

Γ. But then there is an agent of type T who occupies a node in ∆; as her parent is not of type T , her

utility is 0, and she can increase it by moving to β.

• Some node γ ∈ Γ is empty. Consider the agents occupying the children of γ; note that their utility

is 0. If at least two of them have the same type, each of them has an incentive to deviate to γ in

order to increase her utility to at least
1
k . If all of them have di�erent types, then there is exactly one

agent of each type in this set. In particular, there is an agent i who has the same type as the agent

occupying β; then i can move to γ to increase her utility.

• Some node δ ∈ ∆ is empty. Let γ denote the parent of this node, and suppose that γ is occupied by

an agent i of type T . We say that an agent j of type T is hungry if j 6= i and j is adjacent to at least

one agent of a di�erent type; note that a hungry agent has an incentive to deviate to δ. We claim

that at least one agent of type T is hungry. Indeed, if β is occupied by an agent j of type T , then j
is hungry. If the agent in β is not of type T and there is an agent ` of type T in Γ \ {γ}, then ` is

hungry. Finally, if no agent in Γ \ {γ} is of type T , there exists a leaf node not in γ’s subtree that is

occupied by an agent r of type T ; r is then hungry.

�e proof is complete.

Our next result shows that deciding whether a jump game admits an equilibrium assignment is an

intractable problem in general.

�eorem 3.3. For every k ≥ 2, it is NP-complete to decide whether a given k-jump game admits an equilib-
rium assignment, even if all strategic agents belong to the same type.

Proof. We give a proof for k = 2; one can extend it to k ≥ 2 by adding isolated stubborn agents of

di�erent types. One can verify whether a given assignment is an equilibrium simply by checking all

possible deviations, so our problem is in NP. To prove that it is NP-hard, we provide a reduction from the

Cliqe problem. An instance of this problem is an undirected graph H = (X,Y ) and an integer ξ; it is

a yes-instance if and only if H has a complete subgraph of size ξ. �is problem remains NP-hard if we

require that ξ ≥ 5 [Garey and Johnson, 1979]. Given an instance 〈H, ξ〉 of Cliqe with H = (X,Y ) and

ξ ≥ 5, we construct an instance of our problem as follows:

• �ere are two agent types: red and blue.

• �ere are ξ strategic red agents; all remaining agents are stubborn. We will describe the stubborn

agents and their locations when de�ning the topology.
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• �e topology G = (V,E) consists of three disjoint components G1, G2, and G3 such that

– G1 = (V1, E1), where V1 = X ∪W , |W | = ξ− 2, E1 = Y ∪{{v, w} : v ∈ X,w ∈W}. �ere

is a stubborn blue agent at each node w ∈W ;

– G2 is a complete bipartite graph with parts L and R, |L| = ξ − 2, |R| = 4ξ. Of the 4ξ nodes

in R, 2ξ + 1 nodes are occupied by stubborn red agents and 2ξ − 1 nodes are occupied by

stubborn blue agents;

– G3 has three empty nodes, denoted x, y, and z, and 136 nodes occupied by stubborn agents—47
red and 89 blue. �ere is an edge between nodes x and y; also, x is connected to 1 red agent

and 2 blue agents; y is connected to 41 red agents and 80 blue agents, and z is connected to 5
red agents and 7 blue agents.

Figure 2 depicts the topology G de�ned above. We can connect G1, G2 and G3 by adding edges

between nodes occupied by stubborn agents, so that the resulting topology is connected; this has

no impact on the strategic agents’ behavior. �is shows that our hardness result holds even if we

require the topology to be connected.

Note that a strategic red agent obtains a utility of
2ξ+1
4ξ = 1

2 + 1
4ξ by choosing an available node in G2 and

a utility of
5
12 by choosing z. If she chooses x, her utility is

1
3 if y is unoccupied and

1
2 otherwise. Similarly,

if she chooses y, her utility is
41
121 if x is unoccupied and

42
122 otherwise; note that

1
3 <

41
121 <

42
122 <

5
12 .

Now, suppose that H contains a clique of size ξ. If strategic red agents occupy the nodes of the corre-

sponding clique in G1, the utility of each such agent is

ξ − 1

(ξ − 1) + (ξ − 2)
=

1

2
+

1

4ξ − 6
>

1

2
+

1

4ξ
.

�us, by our choice of parameters, no agent has a pro�table deviation.

On the other hand, suppose that H does not contain a clique of size ξ. Assume for the sake of contra-

diction that there is an equilibrium assignment v. Suppose �rst that in v some strategic agents are located

in G1. It cannot be the case that each of them is adjacent to ξ − 1 friends, as this would mean that their

locations form a clique of size ξ. Hence, at least one of these agents is adjacent to at most ξ− 2 friends. As

this agent is also adjacent to the ξ− 2 stubborn blue agents in W , her utility is at most
1
2 . By our choice of

parameters, all unoccupied nodes of G2 o�er a higher utility, namely,
1
2 + 1

4ξ . �us, if there are strategic

agents in G1, all ξ− 2 nodes of G2 that are available to strategic agents must be occupied. But then, there

are at most two strategic agents in G1, which means that their utility is at most
1
ξ−1 <

1
3 (recall that we

assume that ξ ≥ 5). �is leads to a contradiction, as these strategic agents would be be�er o� moving to

G3, where their utility would be at least
1
3 .

�erefore, in equilibrium no strategic agent can be located at a node ofG1. Further, since all unoccupied

nodes of G2 always o�er more utility than any unoccupied node of G3 can o�er, in equilibrium all nodes

of G2 are occupied, and the two remaining strategic agents must be in G3, with one of x, y, and z le�

empty. Suppose that z is empty. �en the agent located at y can increase her utility from
42
122 to

5
12 by

moving to z, a contradiction. If y is empty, the agent located at x can increase her utility from
1
3 to

41
121 by

moving to y, a contradiction. Finally, if x is empty, the agent located at z can increase her utility from
5
12

to
1
2 by moving to x, a contradiction. As we have exhausted all possibilities, it follows that if H does not

have a clique of size ξ, then there is no equilibrium assignment.

We note that the hardness result of �eorem 3.3 is established for jump games with stubborn agents,

and our hardness reduction makes heavy use of stubborn agents. Very recently, Kreisel et al. [2021] showed
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Figure 2: �e topologyG used in the reduction of �eorem 3.3, which consists of three subgraphsG1,G2 andG3. An

edge between two components indicates that each node in one component is connected to every node of the other

component. Colored nodes are occupied by stubborn agents of the corresponding type; all other nodes are empty.

that deciding the existence of equilibria is hard even if all agents are strategic, thereby answering an open

question from the conference version of our paper. �eir construction relies on ours, but is signi�cantly

more involved to avoid using stubborn agents.

On the positive side, for small k we can e�ciently decide whether an equilibrium exists if the topology

G is a tree.
4

Our algorithm is based on dynamic programming: it selects an arbitrary node of G to be the

root, and then for every node v of G, it �lls out a multidimensional table whose dimension is linear in the

number of types, proceeding from the leaves to the root. It then decides whether the given instance admits

an equilibrium by scanning the table at the root node. �e details of the algorithm are rather involved, so

we relegate the algorithm and its analysis to the appendix.

4

�e algorithm used in the proof �eorem 3.4 is presented for k-jump games, but can also be adapted for k-swap games by

not enumerating empty nodes; we omit the details, and only present the algorithm for the harder case of jump games.
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Figure 3: �e topology of the 2-swap game considered in the proof of �eorem 3.5, and an assignment that corre-

sponds to the last case in the analysis; it is not an equilibrium since the red agent at node α and the blue agent at

node γ2 would like to swap.

�eorem 3.4. Given a k-jump game with a tree topology, we can decide whether there exists an equilibrium
(and compute one if it exists) in time poly(nk), i.e., this problem lies in the complexity class XP with respect
to the number of types k.

3.2 Swap Games

We now consider swap games, and again start with a proof of non-existence of equilibria for every k ≥ 2.

�eorem 3.5. For every k ≥ 2, there exists a k-swap game that does not admit an equilibrium assignment,
even when all agents are strategic and the topology is a tree.

Proof. We start with the case of k = 2. Consider a 2-swap game with 10 strategic agents: 5 red agents

and 5 blue agents. �e topology is a tree with a root node α, which has three children nodes (set B), each

of which has two children of its own (set Γ); see Figure 3. Suppose for the sake of contradiction that this

game admits an equilibrium assignment v.

Since |B| = 3 and there are only two types of agents, at least two nodes in B, say β1 and β2, must be

occupied by agents of the same type, say red. Now assume that nodes γ1 (a child of β1) and γ2 (a child of

β2) are occupied by blue agents. �en the red agent πβ1(v) and the blue agent πγ2(v) can swap positions

to increase their utility from strictly smaller than 1 and 0 to 1 and positive, respectively. �erefore, for at

least one of these nodes (say, β1) it must be the case that both of its children are occupied by red agents;

as there are only �ve red agents, it follows that at least one of the children of β2, say γ2, is occupied by a

blue agent.

If node α is occupied by a blue agent, then the red agent πβ1(v) and the blue agent πγ2(v) can both

increase their utility by swapping. Hence, node αmust be occupied by a red agent (see Figure 3). However,

this assignment is not an equilibrium either, since the red agent πα(v) and the blue agent πγ2(v) have an

incentive to swap.

For k ≥ 3, consider a k-swap game with n = k(k2 − 2) agents such that there are k2 − 2 agents of

each type. �e topology is a tree whose nodes are distributed over three layers, just like in the case k = 2.

Speci�cally, there is a root node α, which has a set B of k(k − 1) − 1 children. Each node β ∈ B has a

set Γβ of k children leaf nodes; let Γ =
⋃
β∈B Γβ . Next, we will identify some con�gurations that cannot

arise in an equilibrium.

Lemma 3.6. Consider an assignment v such that there are two nodes β1, β2 ∈ B that are occupied by agents
of the same type Tx, and there exist nodes γ1 ∈ Γβ1 and γ2 ∈ Γβ2 that are occupied by agents of some type
Ty , y 6= x. �en v is not an equilibrium.

11



Proof. Let v be an assignment that satis�es the conditions in the statement of the lemma. �en the utility

of agent πβ1(v) is strictly less than 1, while the utility of agent πγ2(v) is 0. �erefore, they would like to

swap positions in order to increase their utility to 1 and positive, respectively.

Lemma 3.7. Consider an assignment v such that for every ` ∈ [k] there exists an agent of type T` that
occupies some node of B. �en v is not an equilibrium.

Proof. Let v be an assignment that satis�es the condition in the statement of the lemma. Without loss

of generality, assume that the agent πα(v) is of type Tx. We now distinguish between the following two

cases.

• �ere exist nodes β ∈ B and γ ∈ Γβ such that πβ(v) is of type Tx and πγ(v) is of type Ty , y 6= x.

By the assumption of the lemma, there exists at least one agent of type Ty located at some node

β′ ∈ B \ {β}. �erefore, agents πα(v) and πγ(v) would like to swap positions in order to increase

their utility from strictly less than 1 and 0 to 1 and positive, respectively.

• For every node β ∈ B occupied by an agent of type Tx, all agents occupying the nodes of Γβ are of

type Tx. Since α is occupied by an agent of type Tx, there are k2 − 3 = (k − 1)(k + 1) − 2 other

agents of type Tx. Since each subtree rooted at a node of B has k+ 1 nodes, there are at most k− 2
such subtrees that can be completely �lled up by agents of type Tx. Consequently, there are at least

k2− 3− (k− 2)(k+ 1) = k− 1 agents of type Tx located at leaf nodes whose (unique) neighbor is

not of type Tx.

Now, assume that one of these agents of type Tx occupies a node γ ∈ Γβ such that β ∈ B is

occupied by an agent of type Ty , with y 6= x. We will now argue that there must exist another node

β′ ∈ B \ {β} occupied by an agent of type Ty . Indeed, assume that there is no such node. �en all

agents of type Ty are located in leaf nodes of the tree. �ere are at least k2 − 2 − k agents of type

Ty that are not located in the subtree rooted in β. As k2 − k − 2 > k(k − 2) for k > 2, they appear

in at least k − 1 di�erent subtrees; let B′ ⊂ B be the set of roots of these subtrees. By Lemma 3.6,

if two agents of type Ty appear in di�erent subtrees, the roots of these subtrees have to be occupied

by agents of di�erent types. �us, the nodes of B′ are occupied by agents of k − 1 di�erent types;

moreover, by our assumption, none of them is occupied by an agent of type Tx. �us, at least one

node in B′ is occupied by an agent of type Ty , a contradiction. Consequently, there exists a node

β′ ∈ B \{β} occupied by an agent of type Ty . But then agents πγ(v) and πβ′(v) can swap positions

in order to increase their utility from 0 and strictly less than 1 to positive and 1, respectively.

�is completes the proof of the lemma.

Lemma 3.8. Consider an assignment v such that for some ` ∈ [k] there is no node in B that is occupied by
an agent of type T`. �en v is not an equilibrium.

Proof. Let v be an assignment that satis�es the condition in the statement of the lemma, and assume for

the sake of contradiction that v is an equilibrium.

Suppose �rst that k ≥ 4. As there is at most one agent of type T` occupying α, there are at least

k2 − 3 agents of type T` that must occupy nodes of Γ. Further, k2 − 3 > k(k − 1) for k > 3, so these

agents appear in at least k subtrees rooted in a node of B. By Lemma 3.6, if there exist two distinct nodes

β, β′ ∈ B such that a child of β and a child of β′ are occupied by agents of type T`, then β and β′ cannot
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be occupied by agents of the same type. Hence, B must contain nodes occupied by agents of k di�erent

types, a contradiction with the assumption that no node in B is occupied by an agent of type T`.
Now, consider the case k = 3. Assume without loss of generality that ` = 3. If α is not occupied by an

agent of type T3, then all k2 − 2 = 7 agents of this type must occupy nodes of Γ, and the same argument

as above leads to a contradiction. Hence, assume that πα(v) is of type T3, so there are 6 agents of type T3
occupying nodes of Γ. By Lemma 3.6, there exist two nodes β, β′ ∈ B such that β is occupied by an agent

of type T1, β′ is occupied by an agent of type T2, and all nodes in Γβ ∪ Γβ′ are occupied by agents of type

T3. Now, consider a node β′′ ∈ B \ {β, β′}, and assume without loss of generality that it is occupied by

an agent of type T1. �en an agent in γ ∈ Γβ and the agent in β′′ can swap positions to increase their

utilities from 0 and strictly less than one to positive and 1, respectively.

By Lemmas 3.7 and 3.8, we conclude that no assignment can be an equilibrium.

�e topology used in the proof of �eorem 3.5 for k = 2 is utilized as a subgraph in the proof of the

following theorem, which shows that the problem of deciding whether an equilibrium exists is computa-

tionally hard.

�eorem 3.9. For every k ≥ 2, it is NP-complete to decide whether a given k-swap game admits an equilib-
rium assignment.

Proof. Membership in NP is immediate: we can verify whether a given assignment is an equilibrium by

simply checking if there exists a pair of agents that would like to swap positions. To prove NP-hardness,

as in �eorem 3.3, we give a reduction from the Cliqe problem. Speci�cally, we will show how to map

an instance 〈H, ξ〉 of Cliqe with H = (X,Y ) and ξ > 5 to a k-swap game so that H has a clique of size

ξ if and only if our game admits a swap equilibrium.

Given an instance 〈H, ξ〉 of Cliqe with H = (X,Y ) and ξ > 5, we will construct a 2-swap game as

follows (the reduction can be extended to any k > 2 by adding isolated agents of di�erent types). Let dv
denote the degree of node v in H , and set dH = maxv∈X dv .

• �ere are ξ strategic red agents and t = |X|+ 5 strategic blue agents; all other agents are stubborn,

and will be de�ned in conjunction with the topology.

• �e topologyG = (V,E) consists of three componentsG1,G2 andG3. �ese are connected to each

other via stubborn agents, and their internal structure is de�ned as follows:

– To de�ne G1 = (V1, E1), let Wv be a set of 2dH − dv + 2ξ − 3 nodes for each v ∈ X . �en,

V1 = X ∪
(⋃

v∈XWv

)
and E1 = Y ∪ {{v, w} : v ∈ X,w ∈ Wv}. For every v ∈ X , dH

nodes of Wv are occupied by stubborn red agents, while the remaining dH − dv + 2ξ − 3
nodes are occupied by stubborn blue agents. Observe that every empty node of G1 has degree

δ = 2dH + 2ξ − 3.

– �e subgraph G2 = (A∪B,E2) is a complete bipartite graph with |A| = ξ − 5 and |B| = 4δ.

Out of the 4δ nodes ofB, 2δ+1 nodes are occupied by stubborn red agents, while the remaining

2δ − 1 nodes are occupied by stubborn blue agents.

Hence, a strategic red agent occupying a node of A has utility χr = 2δ+1
4δ = 1

2 + 1
4δ . Similarly,

a strategic blue agent has utility χb = 2δ−1
4δ = 1

2 −
1
4δ .

– To de�ne G3 = (V3, E3), let G′3 = (V ′3 , E
′
3) be the graph used in the proof of �eorem 3.5, for

which there is no equilibrium assignment; see Figure 3. For every non-leaf node v ∈ V ′3 , let Zv
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Figure 4: �e topology G used in the reduction of �eorem 3.9. An edge between two components indicates that

each node in one component is connected to every node of the other component. Colored nodes are occupied by

stubborn agents of the corresponding type. In G3, v is an internal node, whereas ` is a leaf node.

be a set of 100δ nodes such that 50δ of these nodes are occupied by stubborn red agents, while

the remaining 50δ nodes are occupied by stubborn blue agents. For every leaf node v ∈ V ′3 , let

Zv be a set of 10δ nodes such that 5δ of these nodes are occupied by stubborn red agents, while

the remaining 5δ nodes are occupied by stubborn blue agents. �en, V3 = V ′3 ∪
(⋃

v∈V ′3
Zv

)
and E3 = E′3 ∪ {{v, w} : v ∈ V ′3 , w ∈ Zv}.
One can verify that the utility of a strategic agent (red or blue) occupying a node of G3 is at

least ψ0 = 5δ
10δ+1 >

1
2 −

1
4δ and at most ψ1 = 5δ+1

10δ+1 <
1
2 + 1

4δ .

Figure 4 depicts the topology G de�ned above.

Now, assume thatH has a clique of size ξ, and let v be an assignment in which the strategic red agents

occupy the nodes of the clique, and the strategic blue agents occupy the remaining available nodes. Each

strategic red agent is connected to ξ − 1 + dH other red agents (strategic and stubborn) in G1, and thus
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has utility

u =
ξ − 1 + dH

δ
=
dH + ξ − 1.5 + 0.5

2dH + 2ξ − 3
=

1

2
+

1

2δ
.

Clearly, since u > χr and u > ψ1, no strategic red agent would be willing to swap positions with another

strategic agent in G2 or G3. Moreover, if a red agent were to swap positions with a blue agent within G1,

she would still be adjacent to at most ξ − 1 + dH red agents, and since every node in G1 has the same

degree, her utility cannot be improved. Hence, no strategic red agent can bene�t from a swap, so v is an

equilibrium.

Conversely, assume that H does not contain a clique of size ξ, and for the sake of contradiction also

assume that there is an equilibrium assignment v.

Suppose that some strategic red agents are located in G1. It cannot be the case that each of them is

adjacent to ξ − 1 other strategic red agents, as this would mean that the nodes they occupy form a clique

of size ξ. Hence, at least one of these agents, say agent i, is adjacent to at most ξ − 2 strategic red agents.

Since every node of G1 has degree δ and every node is adjacent to dH stubborn red agents, the utility of i
is

ui ≤
dH + ξ − 2

δ
=
dH + ξ − 1.5− 0.5

2dH + 2ξ − 3
=

1

2
− 1

2δ
.

We have ui < χr and ui < ψ0, and hence agent i has an incentive to move to G2 or G3. On the other

hand, the utility that a strategic blue agent j that is currently located in G2 or G3 (there is always such an

agent) can obtain by swapping positions with i is

uj = 1− ui ≥
1

2
+

1

2δ
.

Since uj > χb and uj > ψ1, agent j also has an incentive to swap positions with agent i, and hence v
cannot be an equilibrium assignment. �erefore, no strategic red agent is located in G1.

Similarly, observe that χr > ψ1 and χb < ψ0, meaning that strategic red agents would prefer to be in

G2, while strategic blue agents would prefer to be in G3. �us, for v to be an equilibrium assignment, it

must be the case that if a node of G2 is not occupied by a stubborn agent, it is occupied by a strategic red

agent. As a result, there are 5 strategic red agents and 5 strategic blue agents in G3. However, similarly

to the proof of �eorem 3.5, we can argue that there is no equilibrium assignment for these agents in G3.

Since we have exhausted all possibilities, it follows that if H does not have a clique of size ξ, then there is

no equilibrium assignment.

Just as for jump games, �eorem 3.9 has recently been strengthened by Kreisel et al. [2021], who

showed that the hardness result holds even for fully-strategic swap games. In addition, when the topology

is a tree, we can decide the existence of an equilibrium using a dynamic programming algorithm similar

to the one used for jump games (see also Footnote 4).

4 Maximizing Social Welfare and Degree of Integration

In this section, we focus on the problems of computing assignments with high social welfare or high degree

of integration. Observe that the complexity of these problems does not depend on the set of strategic

actions available to the agents, i.e., it does not ma�er whether we consider jump games or swap games.

We start by showing that, for k ≥ 3, maximizing the social welfare is hard. Our hardness result holds

when the number of locations |V | is equal to the number of agents n, which corresponds to the framework
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of swap games. We can extend it to the case |V | > n (so as to capture the framework of jump games) by

introducing isolated nodes.

�eorem 4.1. For every k ≥ 3, given a Schelling game with k types and a rational value ξ, it is NP-complete
to decide whether the game admits an assignment with social welfare at least ξ. �e hardness result holds even
if all but two types consist of stubborn agents only.

Proof. Membership in NP is immediate: given an assignment, we can sum up the utilities of the strategic

agents and check whether the social welfare is at least ξ. To prove NP-hardness, we give a reduction

from an NP-complete variant of the min-cut problem with additional cardinality constraints on the size

of the subsets; this problem is known as the Eqal-Min-Cut problem [Garey et al., 1974]. An instance of

Eqal-Min-Cut consists of a graph H = (X,Y ), two distinguished nodes s, t ∈ X , and an integer β. It

is a yes-instance if and only if there exist disjoint subsets of nodes X1 and X2 such that X1 ∪ X2 = X ,

|X1| = |X2|, s ∈ X1, t ∈ X2 and |{{v, z} ∈ Y : v ∈ X1, z ∈ X2}| ≤ β. To simplify notation, we write

vz to denote an edge {v, z}. Without loss of generality, we assume that |X| is an even number. Assume

also that k = 3 (to extend our hardness proof to k > 3, we can create stubborn agents of additional types

placed in isolated nodes), and the three types are red, blue, and green.

Given an instance 〈H, s, t, β〉 of Eqal-Min-Cut with H = (X,Y ), we construct an instance of our

social welfare maximization problem as follows:

• �ere are |X|/2− 1 strategic red and |X|/2− 1 strategic blue agents.

• �e topology G = (V,E) consists of H with additional nodes and edges:

– Let s∗ and t∗ be two auxiliary nodes, and X∗ = X ∪ {s∗, t∗}, and Y ∗ = Y ∪ {s∗v : sv ∈
Y } ∪ {t∗v : tv ∈ Y }.

– For every v ∈ X \ {s, t}, let dv = |{e ∈ Y ∗ : v ∈ e}| be the degree of v on Y ∗, and

d∗ = maxv∈X\{s,t} dv . Let Zv be a set of d∗ − dv nodes.

– LetG = (V,E), whereV = X∗∪
(⋃

v∈X\{s,t} Zv

)
andE = Y ∗∪{vz : v ∈ X\{s, t}, z ∈ Zv}.

Hence, the sets Zv ensure that every node in X \ {s, t} has the same degree d∗ on G.

• Let nodes s and s∗ be occupied by stubborn red agents, nodes t and t∗ be occupied by stubborn blue

agents, and all nodes in

⋃
v∈X\{s,t} Zv be occupied by stubborn green agents.

• Finally, let ξ = 2
d∗ (|Y | − β).

We will argue that this instance admits an assignment v with SW(v) ≥ ξ if and only if 〈H, s, t, β〉 is a

yes-instance of Eqal-Min-Cut.

We �rst show that for any assignment v, the social welfare is

SW(v) =
2

d∗
|{vz ∈ Y : χv(v) = χz(v)}|. (?)

For ease of description, we let χv(v) be the type of the agent occupying node v. Since strategic agents

occupy nodes in X \ {s, t}, we have

SW(v) =
∑

v∈X\{s,t}

|{vz ∈ E : χv(v) = χz(v)}|
d∗
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=
∑

v∈X\{s,t}

|{vz ∈ Y ∗ : χv(v) = χz(v)}|
d∗

=
1

d∗

∑
v∈X\{s,t}

|{vz ∈ Y ∗ : χv(v) = χz(v), z ∈ X \ {s, t}}|

+
1

d∗

∑
v∈X\{s,t}

|{vz ∈ Y ∗ : χv(v) = χz(v), z ∈ {s, t, s∗, t∗}}|, (1)

where the second transition holds since every edge not in Y ∗ is occupied by a green agent on one end.

Consider an arbitrary node v ∈ X \ {s, t}. Edge vs is in Y if and only if both vs and vs∗ are in

Y ∗. �e same can be said for the edges vt and vt∗. �e way the stubborn agents are positioned gives

χs(v) = χs∗(v) and χt(v) = χt∗(v). It follows that

|{vz ∈ Y ∗ : χv(v) = χz(v), z ∈ {s, t, s∗, t∗}}| = 2|{vz ∈ Y : χv(v) = χz(v), z ∈ {s, t}}|. (2)

Moreover, if z ∈ X \ {s, t}, then vz ∈ Y if and only if vz ∈ Y ∗. Hence,

|{vz ∈ Y ∗ : χv(v) = χz(v), z ∈ X \ {s, t}}| = |{vz ∈ Y : χv(v) = χz(v), z ∈ X \ {s, t}}|. (3)

Substituting (3) and (2) into (1) gives

SW(v) =
2

d∗
|{vz ∈ Y : χv(v) = χz(v), v, z ∈ X \ {s, t}}|

+
2

d∗
|{vz ∈ Y : χv(v) = χz(v), v ∈ X \ {s, t}, z ∈ {s, t}}|

=
2

d∗
|{vz ∈ Y : χv(v) = χz(v), v ∈ X \ {s, t}}|

=
2

d∗
|{vz ∈ Y : χv(v) = χz(v)}|,

where the last transition holds because we have {vz ∈ Y : χv(v) = χz(v), v, z ∈ {s, t}} = ∅, given that

χs(v) 6= χt(v). Note that in the �rst transition there is a factor 2 for the �rst term on the right side. �is

is because each vz is counted twice in the summation in (1). �erefore, (?) holds.

Now, assume that the input instance 〈H, s, t, β〉 is a yes-instance of Eqal-Min-Cut, and let X =
X1 ∪ X2 be a partition that witnesses this; hence, |{vz ∈ Y : v ∈ X1, z ∈ X2}| ≤ β. We construct an

assignment v by placing the strategic red agents into nodes of X1 \ {s} and the strategic blue agents into

nodes of X2 \ {t}. We have

|{vz ∈ Y : χv(v) = χz(v)}| = |Y | − |{vz ∈ Y : v ∈ X1, z ∈ X2}| ≥ |Y | − β.

It follows by (?) that SW(v) ≥ 2
d∗ (|Y | − β) = ξ.

Conversely, assume that there exists an assignment v with SW(v) ≥ ξ = 2
d∗ (|Y | − β). Let X1 consist

of s and the nodes occupied by strategic red agents, and let X2 consist of t and the nodes occupied by

strategic blue agents. �en, X1 ∩ X2 = ∅, and since there is an equal number of strategic red and blue

agents, we also have |X1| = |X2|. By (?), we have |Y |−|{vz ∈ Y : χv(v) = χz(v)}| ≤ β, or equivalently,

|{vz ∈ Y : v ∈ X1, z ∈ X2}| ≤ β,

which means that 〈H, s, t, β〉 is a yes-instance.
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Next, we establish the hardness of maximizing social welfare for the case k = 2 and |V | > n; very

recently, Bullinger et al. [2021] complemented our result by showing that the problem is hard, even when

k = 2 and |V | = n.

�eorem 4.2. Given a Schelling game with two types and a rational value ξ, it is NP-complete to decide
whether the game admits an assignment with social welfare at least ξ. �e hardness result holds even if all
strategic agents belong to one type and the other type consists of a single stubborn agent.

Proof. We modify the reduction in the proof of �eorem 3.3 by removing the gadgets G2 and G3 and

replacing the set W with a single node w. �at is, given an instance 〈H, ξ′〉 of Cliqe, we construct an

instance of our social welfare maximization problem as follows:

• �ere are two agent types: red and blue.

• �ere are ξ′ strategic red agents and one stubborn blue agent.

• �e topology G = (V,E) is de�ned so that V = X ∪ {w} and E = Y ∪ {{v, w} : v ∈ X}.

• �e single stubborn blue agent is positioned at node w.

• ξ = ξ′ − 1.

Note that the utility of a red agent p in an assignment v is
r
r+1 , where r is the number of red agents that

p is adjacent to in v; the function
r
r+1 is increasing in r and we have r ≤ ξ′ − 1 = ξ for any assignment.

Hence, the social welfare of ξ can be achieved if and only if the red agents can be placed in G so that each

agent is adjacent to every other red agent, in which case the utility of each strategic agent is
ξ′−1
ξ′ ; this is

possible if and only if H contains a clique of size ξ′.

We now focus on the complexity of computing assignments with a high degree of integration, and

show that this task is also computationally intractable for k = 2. �e hardness holds even if all agents are

strategic and the topology G = (V,E) is such that |V | = n.

�eorem 4.3. For every k ≥ 2, given a Schelling game with k types, it is NP-complete to decide whether the
game admits an assignment in which every agent is exposed. �e hardness result holds even if all agents are
strategic, and even if the number of locations is equal to the number of agents.

Proof. �e problem is clearly in NP: for a given assignment we can verify whether each of the n agents

has at least one neighbor of a di�erent type in timeO(n2). For the NP-hardness proof, we give a reduction

from the Vertex Cover problem, which is known to be NP-complete [Garey and Johnson, 1979]. An

instance of Vertex Cover consists of an undirected graph H = (X,Y ) and an integer λ ≤ |X|. It is a

yes-instance if and only if there exists a set X ′ ⊆ X such that |X ′| ≤ λ and {v, w} ∩X ′ 6= ∅ for every

edge {v, w} ∈ Y . Such a set X ′ is called a vertex cover of H . Without loss of generality, we assume that

H has no isolated vertices.

Given an instance 〈H,λ〉 of the Vertex Cover problem with H = (X,Y ), we construct a Schelling

game as follows:

• We have |X|+ |Y | − λ red agents and λ blue agents, for a total of n = |X|+ |Y | agents.

• To construct the topologyG = (V,E), we start with the graphH . �en, for each edge e = {v, w} ∈
Y , we add a node se, and two edges connecting se to v and w. Let Q = {se : e ∈ Y }. �en,

V = X ∪Q, X ∩Q = ∅, and |V | = |X|+ |Q| = |X|+ |Y | = n.
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We show that H has a vertex cover of size at most λ if and only if there exists an assignment in which

every agent is exposed.

First, suppose that there exists a vertex cover X ′ ⊆ X of H of size at most λ; by adding nodes, we can

assume that |X ′| = λ. Consider the assignment v in which the nodes of X ′ are occupied by blue agents,

while all other nodes of V \X ′ are occupied by red agents. In this assignment, every agent is exposed:

• For every blue agent i occupying a node v ∈ X ′, since H has no isolated nodes, there must exist an

edge e ∈ Y such that v ∈ e, and hence v is connected to se, which is occupied by a red agent.

• For every red agent i occupying a node v ∈ X \X ′, since X ′ is a vertex cover, v must be connected

to a node z ∈ X ′, which is occupied by a blue agent.

• For every red agent i occupying a node v = se ∈ Q, since X ′ is a vertex cover, at least one of e’s
endpoints must be in X ′ and is therefore occupied by a blue agent; this endpoint is connected to se.

Conversely, suppose that v is an assignment of the agents to the nodes of the topology such that every

agent is exposed.

For each edge e = {v, w} ∈ E, let `(e) be an arbitrary element of {v, w}. Let X ′ = {v ∈ X :
πv(v) is blue} andXQ = {z ∈ X : z = `(e) for some e such that πse(v) is blue}. Since there are λ−|X ′|
nodes in Q that are occupied by blue agents, we have |XQ| ≤ λ − |X ′| and hence |X ′ ∪ XQ| ≤ λ. We

claim that X ′ ∪XQ is a vertex cover for H . Indeed, consider an arbitrary edge e = {v, w} ∈ Y ; we will

argue that e ∩ (X ′ ∪XQ) 6= ∅. If v ∈ X ′ or w ∈ X ′, we are done. Otherwise, both v and w are occupied

by red agents; since πse(v) is adjacent to an agent of a di�erent type, it follows that se is occupied by a

blue agent and `(e) ∈ XQ. Hence at least one of v and w is in XQ. �is completes the proof.

5 Social Welfare at Equilibrium

In this section, we consider the e�ciency of equilibrium assignments in terms of social welfare, and provide

bounds on the social price of anarchy and stability. In order to obtain meaningful bounds on the price of

anarchy, we will need to make several assumptions about the agents and the structure of the topology.

�e next proposition provides a justi�cation for this: it shows that the price of anarchy can be unbounded

even for some very simple classes of jump and swap games.

Proposition 5.1. For both jump and swap games, the social price of anarchy may be unbounded if there
exists an agent type that consists of a single agent, or if the topology is a disconnected graph.

Proof. We will �rst construct a Schelling game where there is a type T that consists of a single agent

and the social price of anarchy is unbounded. In our construction, the topology is a star and there exists

another type T ′ with |T ′| > 1. �en any assignment that places the agent of type T in the center node of

the star is an equilibrium with social welfare 0. On the other hand, it is possible to achieve positive social

welfare by assigning one of the agents of type T ′ to the center of the star.

Next, we construct a Schelling game where the topology is disconnected and the social price of anarchy

is unbounded. Our game has two agents per type. �e topology consists of (at least) n− 2 isolated nodes,

and a path with two nodes. Consider an assignment that places two agents of di�erent types in the nodes

of the path. �is assignment is an equilibrium with social welfare 0: indeed, no agent has an incentive to

deviate to an empty isolated node, and neither of the two agents on the path wants to swap with any other

agent. However, it is possible to achieve positive social welfare by assigning two agents of the same type

to the nodes of the path.
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In light of Proposition 5.1, in the rest of this section we will focus on games where each type consists

of at least two agents and the topology is a connected graph. We will distinguish between jump and swap

games, as they require di�erent techniques.

5.1 Jump Games

We start by establishing bounds on the price of anarchy for fully-strategic jump games.

�eorem 5.2. For any �xed k ≥ 2, the social price of anarchy of fully-strategic k-jump games with connected
topology and at least two agents per type is Θ(n).

Proof. For the lower bound, consider the following fully-strategic k-jump game. �ere are n > 2k agents:

|Ti| = 2 agents of type Ti for each i ∈ [k− 1], and |Tk| = n− 2(k− 1) agents of type Tk. �e topology is

a star with n+ 1 nodes. It is easy to see that any assignment that does not place an agent of type Tk in the

center of the star is an equilibrium with social welfare 1+ 1
n−1 = n

n−1 . On the other hand, any assignment

that places an agent of type Tk in the center of the star has social welfare

n− 2(k − 1)− 1 +
n− 2(k − 1)− 1

n− 1
= n− 2(k − 1)

(
1 +

1

n− 1

)
=

n

n− 1
· (n− 2k + 1).

Hence, the price of anarchy is at least n− 2k + 1, i.e., Ω(n) for any �xed k.

For the upper bound, consider an arbitrary fully-strategic k-jump game with ni ≥ 2 agents of type Ti
for each i ∈ [k], so that n =

∑
i∈[k] ni. We will show that the social welfare of any equilibrium assignment

is at least 1. �is implies our bound on the price of anarchy, since the optimal social welfare is at most n.

Let v be an equilibrium assignment. Recall that we assume that the number of available nodes exceeds

the number of agents, and the topology is connected. Hence, there must exist some empty node v with

at least one non-empty neighbor. Suppose that v is connected to xi nodes containing agents of type Ti,
for i ∈ [k], and let s =

∑
i∈[k] xi ≥ 1. By deviating to v, an agent of type Ti would get utility

xi
s if her

current location is not connected to v, and utility
xi−1
s−1 otherwise; for readability, we use the convention

that
0
0 = 0. Since at equilibrium no agent has an incentive to deviate, the utility of each agent is at least

the utility she would get by deviating to v. �erefore, the social welfare at equilibrium is at least

SW(v) ≥
∑
i∈[k]

(
(ni − xi)

xi
s

+ xi ·
xi − 1

s− 1

)
≥ 1

s

∑
i∈[k]

(ni − 1)xi ≥ 1,

where the second inequality holds since

(ni − xi)
xi
s

+ xi ·
xi − 1

s− 1
≥ (ni − 1)

xi
s

for all i ∈ [k],

and the third inequality holds since ni ≥ 2 for every i ∈ [k].

To establish the lower bound of Ω(n) in �eorem 5.2, we considered a family of games with Θ(n)
agents of type Tk and just two agents of any other type. Hence, one may expect that the price of anarchy

is lower in games with the same number of agents per type; we refer to such games as balanced. Our next

theorem shows that this is indeed the case.

�eorem 5.3. �e social price of anarchy of fully-strategic balanced k-jump games with connected topology
is between 2k − 1 and 2k.
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Proof. �e upper bound follows directly from �eorem 5.5, which establishes this bound for a more general

se�ing.

For the lower bound, consider the following fully-strategic balanced k-jump game. For each i ∈ [k],
there are two agents of type Ti; hence there are n = 2k agents in total. �e topology (V,E) is a spider

graph with 3k branches, among which k branches have length 2 while 2k branches have length 1; formally,

V = {α0} ∪ {αi : i ∈ [3k]} ∪ {βi : i ∈ [k]}, and E = {{α0, αi} : i ∈ [3k]} ∪ {{αi, βi} : i ∈ [k]}.
Consider the assignment where, for each i ∈ [k], the agents of type Ti occupy the nodes of the i-th

long branch. �is assignment is optimal, as the utility of each agent is 1. Hence, the optimal social welfare

is exactly n = 2k. On the other hand, the assignment where the agents occupy α0 (the center of the star)

as well as the nodes αk+1, . . . , α3k−1 is an equilibrium. Let us assume that in this assignment the center of

the star is occupied by an agent of type T1. �en, this agent has utility
1

n−1 , the other agent of type T1 has

utility 1, and all other agents have utility 0. �us, the social welfare in this equilibrium is
1

n−1 + 1 = n
n−1 .

�e price of anarchy is therefore at least n− 1 = 2k − 1.

As we saw, the social price of anarchy of fully-strategic jump games improves signi�cantly if we focus

on balanced games, i.e., games where there is the same number of agents of each type. We can extend the

concept of balancedness to games with stubborn agents. Recall that R and S denote the set of strategic

and stubborn agents, respectively. We say that a game is strongly-balanced if |Ti ∩ R| = |Tj ∩ R| and

|Ti ∩ S| = |Tj ∩ S| for all i, j ∈ [k]. �e next result shows that, in order to obtain a meaningful bound on

the price of anarchy in strongly-balanced jump games, we have to also require that there are at least two

strategic agents per type.

Proposition 5.4. �e social price of anarchy of strongly-balanced k-jump games is unbounded for every
k ≥ 2.

Proof. To construct the topology, we create k − 1 paths with two nodes and one path with three nodes;

let αi and βi be the �rst two nodes of the i-th path. For i ∈ [k − 1], we connect αi to αi+1. �ere are two

agents per type (one stubborn agent and one strategic agent), and, for i ∈ [k], node αi is occupied by the

stubborn agent of type Ti. �us, in the optimal assignment, the strategic agent of type Ti occupies node

βi and has utility 1, so the social welfare is k. However, there is also an equilibrium in which for each

i ∈ [k] the node βi is occupied by the strategic agent of type Ti+1 (where the subscript is modulo k). In

this equilibrium all strategic agents have utility 0.

On the other hand, if there are at least two strategic agents per type, we obtain an almost-tight bound

on the price of anarchy in strongly-balanced games.

�eorem 5.5. �e social price of anarchy of strongly-balanced k-jump games with at least two strategic
agents per type and connected topology is between 3k−1

3k+1 · 2k and 2k.

Proof. For the lower bound, consider a slight variation of the construction in the proof of �eorem 5.3

(where we consider balanced fully-strategic k-jump games). �ere are two strategic agents and one stub-

born agent per type, so n = 3k. To construct the topology, we start with a star with center α0 and leaves

α1, . . . , αn, create nodes βi and γi for i ∈ [k], and add edges {αn, βi} and {βi, γi} for each i ∈ [k]. �ere

is a stubborn agent of type Ti in node αi for each i ∈ [k]. In the optimal assignment, the strategic agents

of type Ti are placed in βi and γi, so that the social welfare is 2k. However, there is also an equilibrium

assignment in which the strategic agents occupy the nodes α0 and αk+1, . . . , αn−1, with node αn remain-

ing empty. In this equilibrium the social welfare is 1 + 2
3k−1 = 3k+1

3k−1 . Hence, the price of anarchy is at

least
3k−1
3k+1 · 2k.

21



𝑦1 𝑦2

𝑥

𝛼

𝛽

Figure 5: �e topology used in the proof of �eorem 5.6. �e assignment on the le� is the unique equilibrium of this

2-jump game (up to symmetry), while the assignment on the right is the optimal one.

For the upper bound, consider an arbitrary strongly-balanced k-jump game with t strategic and
n
k − t

stubborn agents per type, for some integer t ≥ 2. We will show that the social welfare of any equilibrium

assignment is at least t−1. Since the utility of every strategic agent is at most 1, the optimal social welfare

is at most kt, so we can upper-bound the price of anarchy as
kt
t−1 ≤ 2k.

Let v be an arbitrary equilibrium assignment. Since the number of available nodes exceeds the number

of agents and the topology is connected, there must exist some empty node v with at least one non-empty

neighbor. Suppose that v is connected to xi nodes containing agents of type Ti, for i ∈ [k], and xRi of

them are strategic. Also, let s =
∑

i∈[k] xi ≥ 1. Now, consider a strategic agent of type Ti. A deviation

to v would give her utility
xi
s if her current location is not connected to v, and utility

xi−1
s−1 otherwise; by

convention,
0
0 = 0. Since at equilibrium no strategic agent has an incentive to deviate, her utility is at least

the utility she would get by deviating to v. �erefore, the social welfare at equilibrium is at least

SW(v) ≥
∑
i∈[k]

((
t− xRi

) xi
s

+ xRi ·
xi − 1

s− 1

)
≥ 1

s

∑
i∈[k]

(
txi − xRi

)
≥ t− 1,

where the second inequality holds since

1

s

(
txi − xRi xi

)
+ xRi ·

xi − 1

s− 1
≥ 1

s

(
txi − xRi

)
for all i ∈ [k],

and the last inequality follows since xRi ≤ xi for each i ∈ [k].

We conclude our analysis of jump games by showing that even the best equilibrium need not be socially

optimal. Speci�cally, we describe a fully-strategic balanced 2-jump game in which the ratio between the

optimal social welfare and the maximum social welfare in an equilibrium assignment is at least 34/33.

�is bound was very recently improved to approximately 2 by Kanellopoulos et al. [2021b].

�eorem 5.6. �e social price of stability of fully-strategic balanced 2-jump games is at least 34/33.

Proof. Consider an instance with two types of agents (red and blue) such that there are �ve red and �ve

blue agents; the topology is depicted in Figure 5. Let v be the following assignment: node x, node y1 and

all of the children of y1 are occupied by red agents, while node β, node y2 and all of the children of y2
are occupied by blue agents. One can verify that v is an equilibrium, since no agent has an incentive to

deviate to the empty node α; its social welfare is SW(v) = 33/4.

Let v′ be the following assignment: node x, node y1 and all of the children of y1 are occupied by red

agents, while node α, node β, node y2 and two of the children of y2 are occupied by blue agents. �e social
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welfare of this assignment is SW(v′) = 34/4, o�ering an improvement over v. However, this is not an

equilibrium assignment, since the blue agent occupying α has utility 1/2 and hence has an incentive to

deviate to the empty node (a child of y2) in order to increase her utility to 1.

To complete the proof, we need to argue that v is a social welfare maximizing equilibrium. To this end,

we establish some properties of equilibrium assignments.

• In an equilibrium node x must be occupied. Indeed, suppose that x is le� empty. Suppose �rst that

nodes y1, α and y2 are occupied by agents of the same type (say, red). �en at least one of them will

be connected to a node occupied by a blue agent and hence will have an incentive to deviate to x, so

as to be connected to red agents only. On the other hand, suppose that y1, α and y2 are occupied by

two agents of one type (say, red) and one agent of the other type (say, blue). �en there exists a blue

agent occupying a leaf node whose only neighbor is a red agent; this blue agent can then increase

her utility from 0 to 1/3 by deviating to x.

• In an equilibrium nodes y1 and y2 must be occupied. Indeed, suppose that one of these nodes, say

y1, is le� empty. We can assume without loss of generality that node x is occupied by a red agent.

If there is a child of y1 occupied by a red agent then this agent can increase her utility from 0 to

positive by deviating to y1. �us, the children of y1 can only be occupied by blue agents; as at least

two children of y1 are occupied, an agent in one of these nodes can increase her utility from 0 to

positive by deviating to y1.

• In an equilibrium all leaf nodes are occupied. Suppose that z is an unoccupied leaf node. We can

assume without loss of generality that z is not a child of y1, and that the parent of z is red. Suppose

�rst that y1 is occupied by a red agent. �en it cannot be the case that all four neighbors of y1 are

occupied by red agents, so the agent at y1 has an incentive to deviate to z to increase her utility to

1. �us, y1 must be occupied by a blue agent. Now, if one of the four neighbors of y1 is occupied by

a red agent, this agent has an incentive to deviate to z; thus, both x and all children of y1 must be

occupied by blue agents. Consider, then, the node in {α, y2} that is not the parent of z. �is node

must be occupied by a red agent, and it is adjacent to x, which is occupied by a blue agent; hence,

this red agent has an incentive to deviate to z.

We can now conclude that in an equilibrium α must be empty. Moreover, the agent at x and the agent

at β cannot belong to the same type, since otherwise the agent at β could increase her utility by deviating

to α. �us, any agent could achieve a positive utility (namely, 1/2) by moving to α. It follows that the

agents at the leaves of y1 must have the same type as the agent at y1, and the agents at the leaves of y2
must have the same type as the agent at y2: otherwise, there will be an agent at a leaf who has zero utility

and can therefore bene�t from moving to α. It now follows by a counting argument that agents at y1 and

y2 cannot belong to the same type. Hence, any equilibrium is essentially equivalent to v: the agents at the

leaves of y1 and y2 have utility 1, the agent at x has utility 1/2, the agent at β has utility 0, and �nally, the

agents at y1 and y2 contribute 1 + 3
4 to the social welfare. Hence, the social welfare at any equilibrium of

this game is
33
4 . �e lower bound on the price of stability follows.

5.2 Swap Games

We now turn our a�ention to swap games. We start by presenting bounds on the price of anarchy of

fully-strategic 2-swap games, both for the general and for the balanced case. �roughout this section, we

assume that the topology is a connected graph G = (V,E) with |V | = n, and that there are at least two

agents per type.
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Figure 6: �e topology of the lower bound instance used in the proof of �eorem 5.8. �e big square represents a

clique of nodes. �e assignment on the le� is an equilibrium, while the assignment on the right is optimal. In both

cases, all nodes of the clique are occupied by red agents.

�eorem 5.7. �e social price of anarchy of fully-strategic 2-swap games with at least two strategic agents
per type and connected topology is Θ(n).

Proof. For the lower bound, consider a fully-strategic 2-swap game with star topology, n − 2 red agents,

and 2 blue agents. �ere is an equilibrium where one of the blue agents occupies the center of the star.

�e social welfare in this equilibrium 1 + 1
n−1 = n

n−1 . In contrast, in an optimal assignment the central

node is occupied by a red agent, and the social welfare is n − 3 + n−3
n−1 = n

n−1 · (n − 3). �erefore, the

price of anarchy is at least n− 3.

For the upper bound, consider a fully-strategic 2-swap game with n agents: nr ≥ 2 red agents and

nb ≥ 2 blue agents. Let v be an equilibrium assignment of this game.

Suppose �rst that each agent has positive utility in v. �en the utility of each agent is at least 1/n, so

the social welfare in v is at least 1; the bound then follows since the optimal social welfare is at most n.

Now, suppose there is some agent, say `, whose utility is zero; we can assume without loss of generality

that ` is red, and hence all agents connected to ` are blue. If ` is connected to all nb blue agents, then, since

the topology is connected, at least one of these blue agents, say t, is connected to another red agent. If t
is connected to x blue agents, her utility is at most x/(x+ 2) ≤ (nb − 1)/(nb + 1), where the inequality

holds since x ≤ nb − 1 and the function z/(z + 2) is increasing in z. But then ` and t have an incentive

to swap: a swap would increase `’s utility from 0 to at least 1/n and it would increase t’s utility from at

most (nb − 1)/(nb + 1) to (nb − 1)/nb.
�us, there must exist a blue agent that is not connected to `; let t′ be some such agent. Now, if t′

is connected to some red agent, her utility is less than 1, and ` and t′ have an incentive to swap: a swap

would increase `’s utility from 0 to at least 1/n and it would increase t′’s utility to 1. We conclude that t
is not connected to any red agents; since the topology is connected and the number of nodes equals the

number of agents, it follows that t′’s utility in v is at least 1. Hence, SW(v) ≥ 1; this implies that the price

of anarchy is at most n.

In contrast, when the fully-strategic 2-swap game is balanced, the social price of anarchy is bounded

by 4. Later, in �eorem 5.11), we will show that the bound holds even in the presence of stubborn agents.

We should note that a�er the conference version of our paper, Bilò et al. [2020] improved the bound to 3
for the fully-strategic case.

�eorem 5.8. �e social price of anarchy of fully-strategic balanced 2-swap games with at least two agents
per type and connected topology is between 667/324 ≈ 2.05864 and 4.
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Figure 7: �e topology of the k-swap game considered in the proof of �eorem 5.9 for k = 3. Here, T1 = red, T2 =
blue and T3 = green. �e assignment on the le� is an equilibrium with zero social welfare, while the assignment on

the right is an optimal one, in which all agents have a positive utility.

Proof. �e upper bound follows from �eorem 5.11, which will be proved later in the paper. For the lower

bound, consider a fully-strategic balanced 2-swap game with the following topology: there is a node α of

degree x + 1 that is connected to x leaf nodes and to one node in a clique C of size x − 1, where x is to

be chosen later. �ere are x agents of each type. �ere is an equilibrium v where α and all nodes of C are

occupied by red agents, and all leaf nodes are occupied by blue agents, see Figure 6. Hence,

SW(v) = x− 1 +
1

x+ 1
=

x2

x+ 1
.

Let r be the red agent that is located in α. For the assignment v∗ obtained from v by swapping r with one

of the blue agents we have

SW(v∗) = 2x− 3 +
x− 2

x− 1
+
x− 1

x+ 1
.

Hence, the price of anarchy is at least

2x3 − x2 − 5x+ 2

x2(x− 1)
;

this expression a�ains its maximum value 667/324 ≈ 2.05864 over N at x = 9.

In contrast, for three or more types, the social price of anarchy can be unbounded even in fully-strategic

balanced swap games.

�eorem 5.9. �e social price of anarchy of fully-strategic balanced k-swap games is unbounded for every
k ≥ 3.

Proof. Consider a k-swap game with n = 2k agents such that there are exactly two agents of each of

the k ≥ 3 types T1, . . . , Tk. �e topology G consists of 2k nodes α1, β1, . . . , αk, βk, so that α1, . . . , αk
form a cycle and for each ` ∈ [k] the nodes α` and β` are connected; see Figure 7 for the topology and

the equilibrium assignment discussed in the following for k = 3. �roughout the proof, all subscripts are

interpreted modulo k, i.e., we set T0 := Tk, α0 := αk, β0 := βk.

Consider an assignment v where for each ` ∈ [k] the agents of type T` occupy the nodes α` and β`−1.

�is assignment is an equilibrium. Indeed, the only way the agent of type T` located at α` can increase

her utility is by moving to node α`−1, so as to connect with the agent of type T` located at β`−1. However,

in v the node α`−1 is occupied by an agent of type T`−1, who is not interested in moving to α`. Similarly,

the agent of type T` located at β`−1 cannot swap with another agent, because the only agent who would
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like to move to β`−1 is the agent of type T`−1 located at β`−2, and the agent of type T` does not bene�t

from moving to β`−2. Note that SW(v) = 0.

On the other hand, consider the assignment v∗ in which α` and β` are occupied by the two agents of

type T`, for every ` ∈ [k]. We have SW(v∗) > 0, so the social price of anarchy is unbounded.

�eorem 5.9 can be extended to games with stubborn agents. To see this, observe that we can modify

the construction in the proof of this theorem by assuming that one agent of each type T` is a stubborn

agent placed at α`, for ` ∈ [k]. �en, the same arguments show that an optimal assignment guarantees

a positive utility to every strategic agent, while there exists an equilibrium in which all strategic agents

have utility 0. In fact, in the presence of stubborn agents, the price of anarchy remains unbounded even

for strongly-balanced 2-swap games.

Proposition 5.10. �e social price of anarchy of strongly-balanced 2-swap games is unbounded.

Proof. Consider a strongly-balanced 2-swap game with four agents: r1 is a stubborn red agent, r2 is a

strategic red agent, b1 is a stubborn blue agent, and b2 is a strategic blue agent. �e topology is a path

of length 4. Suppose that r1 occupies the �rst node and b1 occupies the second node. In the optimal

assignment, the third node is occupied by b2, who obtains positive utility. However, the assignment where

the third node is occupied by r2 and the fourth node is occupied by b2 (so that the utility of each agent is

0) is an equilibrium as well, as r2 does not bene�t from swapping with b2. Hence, the price of anarchy is

unbounded.

Similarly to jump games (�eorem 5.5), to obtain a meaningful bound on the social price of anarchy

for general 2-swap games, we need to restrict our a�ention to the class of strongly-balanced games with

at least two strategic agents per type.

�eorem 5.11. �e social price of anarchy of strongly-balanced 2-swap games with at least two strategic
agents per type and connected topology is between 8/3 ≈ 2.667 and 4.

Proof. For the lower bound, consider a 2-swap game such that each type consists of two strategic agents

and one stubborn agent. �e topology is a path with �ve nodes, say,α1, . . . , α5, with the nodeα4 connected

to another node β. �e stubborn red agent is positioned at node α2 and the stubborn blue agent at node α3.

Now, consider the equilibrium assignment v according to which α1 and α4 are occupied by the strategic

red agents, and α5 and β by the strategic blue agents. �en, the strategic red agent at α1 has utility 1 and

all other strategic agents have utility 0, yielding SW(v) = 1. On the other hand, consider the assignment

v∗ obtained from v by swapping the strategic red agent at α4 with the strategic blue agent at α5. �en, the

strategic red agent at α5 has utility 0, the strategic red agent at α1 continues to get utility 1, the strategic

blue agent at β now has utility 1, and the strategic blue agent at α4 has utility 2/3, yielding SW(v∗) = 8/3.

Consequently, the price of anarchy is at least 8/3.

For the upper bound, consider a strongly-balanced 2-swap game with t ≥ 2 strategic and
n
2−t stubborn

agents per type (red and blue). Fix an equilibrium assignment v. We will prove that the social welfare in

v is at least t/2; since the optimal social welfare is at most 2t, this gives an upper bound of 4 on the price

of anarchy. Let B0 denote the set of strategic blue agents with utility 0 in v and let R0 denote the set of

strategic red agents with utility 0 in v. We consider three cases.

B0 6= ∅, R0 6= ∅. We claim that in this case t − 1 strategic agents of one type must all get utility 1 at

equilibrium. We make the following observations:
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• All agents in R0 must be connected to all agents in B0. Indeed, if an agent r ∈ R0 is not connected

to an agent b ∈ B0, then r and b would prefer to swap and increase their utility from 0 to 1, by

ge�ing connected to agents of their own type only.

• It holds that |R0| = 1 or |B0| = 1. Indeed, suppose that |R0| ≥ 2, |B0| ≥ 2. But then an agent

r ∈ R0 and an agent b ∈ B0 can increase their utility by swapping. From now on, we will assume

that R0 is a singleton, R0 = {r}.

• If |B0| > 1 then at least t− 1 red agents obtain utility 1. Indeed, let b1, b2 be two distinct agents in

B0. Note that they are both connected to r ∈ R0. If neither b1 nor b2 occupy a leaf node, then both

of them are connected to red agents other than r, so b1 and r would prefer to swap, a contradiction.

Hence at least one of them (say, b1) occupies a leaf node; note that the only agent it is connected to

is r. But then the utility of any strategic red agent r′ 6= r is equal to 1: otherwise, r′ and b1 can both

bene�t from swapping. From now on, we will assume that B0 is a singleton, B0 = {b}.

• At least one of the agents in {r, b} occupies a leaf node. Otherwise, if both nodes occupied by these

agents have degree at least two, the agents would prefer to swap with each other. From now on, we

will assume that b occupies a leaf node; note that the parent of this node is occupied by r.

Let R>0 denote the set of strategic red agents with positive utility. By the above observations we have

|R>0| = t− 1. Consider an agent r′ ∈ R>0; note that r′ is not connected to b. It follows that r′’s utility is

exactly 1, as otherwise r′ and b would prefer to swap. Hence, we have identi�ed t− 1 agents with utility

1, as claimed. In particular, since t ≥ 2, the social welfare is at least t/2.

B0 6= ∅, R0 = ∅ (the case B0 = ∅, R0 6= ∅ can be handled using symmetric arguments). We denote

by R1 the set of strategic red agents with utility 1, and by R< the set of strategic red agents whose utility

is strictly less than 1; note that |R1|+ |R<| = t.
We have SW(v) ≥ |R1|, so if |R<| ≤ 1, then we have SW(v) ≥ t − 1. Now, suppose that |R<| ≥ 2.

We will prove that in this case the utility of each agent in R< is at least 1/2 and hence

SW(v) ≥ |R1|+
|R>|

2
≥ t

2
.

Each agent in B0 has to be connected to all agents in R<, as otherwise a non-adjacent pair of agents

r ∈ R<, b ∈ B0 would like to swap. �erefore, if |B0| ≥ 2, any agent in B0 would like to swap with any

agent in R< to get a positive utility. �us, in v no agent r ∈ R< wants to swap with any agent in B0.

Since each agent inB0 is connected to all agents inR< and no blue agents (and possibly to some stubborn

red agents), the utility that agent r would get by swapping with an agent in B0 is at least
|R<|−1
|R<| ≥ 1/2,

so ur(v) ≥ 1/2. On the other hand, suppose that |B0| = 1, i.e., B0 = {b} for some strategic blue agent b.
If an agent r ∈ R< is connected to a (strategic or stubborn) blue agent other than b, then b wants to swap

with r, and hence r does not want to swap with b, which means that her utility is at least 1/2. Otherwise,

r is connected to at least one red agent and at most one blue agent (i.e., b), so ur(v) ≥ 1/2.

B0 = ∅, R0 = ∅. Let us pair up strategic red and strategic blue agents arbitrarily, creating t red-blue

pairs. We will show that for every such pair (r, b) we have ur(v) + ub(v) ≥ 1/2; by summing over all

pairs, we then obtain SW(v) ≥ t/2.

Consider a pair (r, b). Since v is an equilibrium, at least one of these agents has no incentive to swap

positions. Assume that r does not want to swap. If r and b are not neighbors in v, then it must be that

ur(v) ≥ 1− ub(v) and hence ur(v) + ub(v) ≥ 1. Now, suppose that r and b are neighbors in v. Assume
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Figure 8: �e topology of the 2-swap games considered in the proof of �eorem 5.12. �e assignment on the le� is

the best equilibrium in terms of social welfare, while the assignment on the right is the optimal one.

that b has xr red neighbors besides r, and xb blue neighbors. Since b has positive utility, it has at least one

blue neighbor, so xr + xb ≥ 1. �en, ub(v) = xb
xr+xb+1 , and, since r does not want to swap,

ur(v) ≥ xr
xr + xb + 1

= 1− ub(v)− 1

xr + xb + 1
≥ 1

2
− ub(v),

or, equivalently, ur(v)+ub(v) ≥ 1
2 , and hence SW(v) ≥ t/2. �e bound now follows since the maximum

possible social welfare is 2t.

Next, we turn our a�ention to the social price of stability and show a lower bound for fully-strategic

balanced 2-swap games.

�eorem 5.12. �e social price of stability of fully-strategic balanced 2-swap games is at least 4/3.

Proof. Let x ≥ 3 be a parameter, and consider a 2-swap game with 2x + 1 red and 2x + 1 blue agents.

�e topology is a tree with a root node α, which is connected to two nodes β and γ, as well as to a set A
of 2x − 1 leaf nodes. Moreover, node β is connected to a set B of x leaf nodes, and node γ is connected

to a set Γ of x leaf nodes. �e topology and the best equilibrium assignment (which we discuss below) are

depicted in Figure 8.

We will now establish some properties of equilibria of this swap game. Without loss of generality, we

assume that the root node α is occupied by a red agent. Let s be the number of blue agents that are located

in A. We consider the following cases:

• s ≥ x + 1. Let b be a blue agent occupying a node of A. If s ≥ x + 1, there are at most x − 2 red

agents in A. �us, at least x + 2 red agents occupy nodes of the subtrees rooted at β and γ. Since

each of these subtrees has x+1 nodes, at least one of these red agents, say agent r, is connected to at

least one blue agent. But then this assignment is not an equilibrium, since agent r can swap positions

with b to increase their utilities from strictly smaller than 1 and 0 to 1 and positive, respectively.

• s = x. Let b be a blue agent occupying a node of A. If s = x, the remaining x − 1 nodes of A are

occupied by red agents. We claim that the only equilibrium assignment v1 (up to symmetries) is
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such that all nodes of the β-subtree are occupied by red agents, and all nodes of the γ-subtree are

occupied by blue agents. Indeed, if either of these subtrees contains agents of both types, then in

particular it contains a red agent connected to a blue agent, who has a mutually bene�cial swap with

b. �e social welfare of v1 is

SW(v1) = 3x+
x

x+ 1
+

x

2x+ 1
≤ 3x+ 2.

• 1 ≤ s ≤ x− 1. Let b be a blue agent occupying a node of A. Consider the subtrees rooted at β
and γ. �ere are at least 2 and at most x red agents that occupy nodes of these subtrees. As each of

these subtrees has x + 1 nodes, at least one of them has to contain a red agent connected to a blue

agent; this red agent then has a mutually bene�cial swap with b.

• s = 0. In this case, all nodes ofA andα are occupied by 2x red agents; denote the (unique) remaining

red agent by r. �ere is no equilibrium where r is located in a leaf node: if r is placed in a node of

B, she has a mutually bene�cial swap with the blue agent at γ, and if r is placed in a node of Γ, she

has a mutually bene�cial swap with the blue agent at β. �us, in an equilibrium, agent r occupies

either node β or node γ. �e social welfare of any such equilibrium v2 is

SW(v2) = 3x− 1 +
2x

2x+ 1
+

1

x+ 1
+

x

x+ 1
≤ 3x+ 1.

Now consider the assignment v∗ in which the red agents occupy node α, all nodes of A, and one node

ofB, while all other nodes are occupied by blue agents (see Figure 8). �e social welfare of this assignment

is

SW(v∗) = 4x− 2 +
2x− 1

2x+ 1
+
x− 1

x+ 1
+

x

x+ 1
≥ 4x− 2.

�erefore, the social price of anarchy is at least
4x−2
3x+2 , which tends to 4/3 as x tends to in�nity.

In contrast, in fully-strategic k-swap games in which the topology is a δ-regular graph (i.e., the degree

of each node equals to δ), there is always a Nash equilibrium that is socially optimal, i.e., the social price

of stability is 1. We show this by exploiting a potential function that is similar to the one used by Chauhan

et al. [2018] and Echzell et al. [2019] to show the existence of equilibria in such games.

�eorem 5.13. �e social price of stability in fully-strategic k-swap games with topology that is a δ-regular
graph is 1.

Proof. We use a potential function argument inspired by Echzell et al. [2019]. For an assignment v, let

Φ(v) be the number of edges connecting agents of the same type. Consider a pair of agents (i, j) such that

i is of type Tx and j is of type Ty , with y 6= x. Since i and j want to swap positions if and only if they can

both increase their utility, and since |Ni(v)| = |Nj(v)| = δ for any assignment v, it follows that if i and j
want to swap positions, then each of them is adjacent to a higher number of friends a�er the swap. �us,

each swap increases the potential function Φ. Consequently, an assignment v that maximizes Φ must be

an equilibrium. We will now argue that every such assignment also maximizes the social welfare. Recall

that Fi denotes the set of friends of agent i, and R is the set of strategic agents. Given an assignment v,

we can relate its social welfare and the value of Φ(v) as follows:

SW(v) =
∑
i∈R

ui(v) =
∑
i∈R

|Ni(v) ∩ Fi|
|Ni(v)|

=
1

δ
·
∑
i∈R
|Ni(v) ∩ Fi| =

2

δ
· Φ(v).

�us, if an assignment v∗ is such that Φ(v∗) ≥ Φ(v) for any assignment v, then v∗ is an equilibrium and

SW(v∗) ≥ SW(v) for any assignment v, which establishes our claim.
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Figure 9: �e topology used in the proof of �eorem 6.1 for k = 3. �e assignment on the le� is the unique

equilibrium in which the degree of integration is 0 (no agent is exposed), while the assignment on the right is an

optimal one in which all agents are exposed.

6 Degree of Integration at Equilibrium

We now investigate whether equilibrium assignments can be diverse, by bounding the price of anarchy

and stability in terms of the degree of integration; recall that this benchmark counts the number of agents

who are exposed, that is, they have at least one neighbor of a di�erent type. In this section we focus

entirely on fully-strategic games.

For jump games, it turns out that the integration price of stability (and thus the price of anarchy) is

unbounded for every k ≥ 2. In the proof of the following theorem we present a balanced fully-strategic

k-jump game in which the unique equilibrium assignment is such that the di�erent types are completely

segregated, leading to zero degree of integration.

�eorem 6.1. For any k ≥ 2, the integration price of stability of fully-strategic balanced k-jump games is
unbounded.

Proof. Consider a fully-strategic balanced k-jump game with two agents per type; hence n = 2k. �e

topology is a tree with 2k+ 1 nodes in total: the root node α has k children (setB), each of which has one

child (set Γ); see Figure 9 for an example of the topology and the assignments discussed in the rest of the

proof for k = 3.

To reason about the structure of equilibrium assignments, we proceed by case analysis. We consider

all possibilities for the (unique) empty node.

• Node α is empty. �en, all nodes in B must be occupied by agent of di�erent types. Indeed, if there

are two agents of type Ti located in nodes of B, either of them would want to jump to α in order

to connect with their (only) friend. Consequently, the remaining agents that occupy the nodes of

Γ must be assigned so that they are connected to friends only, as otherwise they would have an

incentive to move to α. �is leads to an equilibrium in which all types are segregated and the degree

of integration is 0; an example of this assignment for k = 3 is depicted in the le� part of Figure 9.

• Some node β ∈ B is empty. Let γ ∈ Γ be the child of β, and assume that γ is occupied by an agent

of type Ti. �is means that the second agent of type Ti has utility 0 and hence has an incentive to

move to β. �us, such an assignment cannot be an equilibrium.

• Some node γ ∈ Γ is empty. Let β ∈ B be the parent of γ. Assume that β is occupied by an agent

of type Ti. �e second agent of type Ti is then connected to at least one agent of type other than
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Figure 10: �e topology of the k-swap game considered in the proofs of �eorems 6.2 and 6.3 for k = 2. �e

assignment on the le� is the unique equilibrium (for k = 2) in which only two agents are exposed, while the

assignment on the right is an optimal one in terms of the degree of integration.

Ti, and therefore has an incentive to move to γ. Consequently, such an assignment cannot be an

equilibrium.

By the above discussion, we conclude that the unique (up to symmetries) assignment is such that α is

empty, and each connected pair (β, γ) ∈ B × Γ is occupied by agents of the same type. Since we can

assign the agents to the nodes of the topology so that everyone is exposed (e.g., by assigning the agents of

type Ti to the i-th node in B and the (i− 1)-th node in Γ, where indices are taken modulo k; see the right

part of Figure 9), the integration price of stability is unbounded.

For swap games, the picture becomes more interesting. We start by showing a tight bound on the price

of anarchy, which indicates that in the worst case, agents of di�erent types are highly segregated. However,

as the number of types increases, equilibria become more diverse and the price of anarchy decreases.

�eorem 6.2. For any k ≥ 2, the integration price of anarchy of fully-strategic k-swap games is n/k.

Proof. For the upper bound, consider an arbitrary fully-strategic k-swap game withn agents. By de�nition,

the degree of integration is at most n. Since the topology is a connected graph and the number of agents

is equal to the number of nodes, in any assignment v at least one agent per type must be exposed. Hence,

DI(v) ≥ k, and the integration price of anarchy is at most n/k.

For the lower bound, consider a fully-strategic k-swap game with n = kx + 1 agents such that there

are x + 1 agents of type T1 and x agents of type T` for every ` ∈ [k] \ {1}. �e topology is a tree with

root node α that has k children nodes β1, . . . , βk, each of which has x− 1 children leaf nodes of its own;

see Figure 10 for an example of this topology for k = 2.

One can assign the agents to the nodes of the topology so that each agent is exposed; thus the maximum

possible degree of integration is n. However, there is an equilibrium assignment v in which α is occupied

by an agent of type T1 and for each ` ∈ [k] all nodes of the β`-subtree are occupied by agents of type T`.
In v only the agent in α and the agents in nodes β`, 2 ≤ ` ≤ k, are exposed, yielding degree of integration

DI(v) = k, and the bound follows.

Next, we consider the integration price of stability for swap games. Using the same instance as in

the proof of �eorem 6.2, we show a lower bound that depends linearly on the number of agents for the

fundamental case of two agent types. �is bound is tight by �eorem 6.2, and indicates that, in some

instances, we cannot avoid high levels of segregation at equilibrium even in the best case.
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�eorem 6.3. �e integration price of stability of fully-strategic 2-swap games is n/2.

Proof. By �eorem 6.2, it su�ces to show the lower bound. Consider a 2-swap game with x+1 red agents

and x blue agents, for a total of n = 2x + 1 agents. �e topology is the same as in �eorem 6.2: a tree

consisting of a root node αwith two children nodes β1 and β2, each of which has x−1 children leaf nodes

of its own (sets B1 and B2); see Figure 10. �e optimal degree of integration is n. We will now argue

that in each equilibrium assignment the blue agents occupy the nodes of the subtree rooted at βi for some

i = 1, 2, so that α and the nodes of the subtree rooted at β3−i are occupied by red agents. �e degree of

integration of any such assignment is exactly 2, so the theorem follows.

Consider an assignment v and suppose for the sake of contradiction that agent πα(v) is blue. We

distinguish the following cases with regard to the agents occupying nodes β1 and β2.

• Both πβ1(v) and πβ2(v) are of the same type. Assume �rst that both of these agents are blue; as

there are x + 1 red agents, there must be a red agent r in B1 and another red agent r′ in B2. But

then the blue agent in β2 and r can swap to increase their utility from strictly less than 1 and zero

to 1 and positive, respectively. Hence, it must be the case that πβ1(v) and πβ2(v) are both red. �en

some leaf node is occupied by a blue agent; assume without loss of generality that there is a blue

agent b in B1. But then b and the red agent in β2 have an incentive to swap.

• πβ1(v) and πβ2(v) are of different types. Assume without loss of generality that β1 is occupied by

a red agent and β2 is occupied by a blue agent. Since there are x red agents remaining, at least one

of them must be in B2. But then such an agent can swap positions with the blue agent in α so that

they increase their utility from zero and 1/2 to 1/2 and 1, respectively.

�erefore, the agent in α must be red. Similarly to the previous case, we observe that if the agents in

β1 and β2 are both blue, there must be red agents in both B1 and B2, and if the agents in β1 and β2 are

both red, there must be blue agents in both B1 and B2, which means that the agent in β1 and some agent

in a node of B2 would have an incentive to swap. �us, the agents in β1 and β2 must be of di�erent types.

Assume without loss of generality that the agent in β1 is red and the agent in β2 is blue. �en, if there is

a blue agent in B1, by a counting argument there is also a red agent in B2, and these two agents would

have an incentive to swap. �us, all agents in B1 must be red and all agents in B2 must be blue.

7 Variants and Extensions

�roughout this paper, we have so far focused on a se�ing where agents are classi�ed into k types and

their utilities are de�ned by the proportion of their friends among their neighbors; to simplify our discus-

sion in what follows, we will refer to this class of (jump or swap) games as k-typed. In this section, we

introduce three modi�cations of this model and brie�y discuss some preliminary results; a more thorough

investigation of these alternative models is le� for future work.

7.1 Schelling Games with Social Networks

In k-typed games, the friendship relation is de�ned by types: the set of friends of an agent consists of all

agents of the same type. One can also consider a more general friendship relation, de�ned by an arbitrary

undirected graph N with vertex set N (the set of all agents), which we will refer to as the social network:

the set of friends of agent i consists of the neighbors of i in N . We refer to the resulting class of games

as social Schelling games (or, simply, social games) and distinguish between jump and swap social games.
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By de�nition, k-typed games form a subclass of social games in which the social network consists of k
independent cliques. Hence, our next theorem implies �eorem 3.1 in Section 3.

�eorem 7.1. Every social (jump or swap) game with topology that is a star or a graph of maximum degree
2 admits at least one equilibrium assignment, which can be computed in polynomial time.

Proof. Consider an arbitrary social game with topologyG and set of agentsN = R∪S who are connected

via a social network N .

Suppose that G is a star with center v. If v is occupied by a stubborn agent, all strategic agents are

indi�erent among the leaves, so they have no incentive to deviate. If v is not occupied by a stubborn agent,

consider an assignment v that places some strategic agent i in v. All strategic agents are indi�erent among

the leaves, so no agent in R \ {i} can bene�t from a jump to another leaf, or a swap with another agent

located at a leaf. Moreover, agent i cannot bene�t from a jump to an empty leaf, as that would reduce her

utility to 0. Finally, for agent i to bene�t from a swap, she has to swap positions with a friend of hers, and

all friends of i have utility 1 under v and therefore do not want to deviate. �us v is an equilibrium.

Now, suppose that G = (V,E) is a graph of maximum degree 2. Our analysis for this case is inspired

by �eorem 6 in the work of Chauhan et al. [2018]. For each v ∈ V , let deg(v) denote the degree of a

vertex v in G. Given an assignment v, for each edge e = {v, w}, we de�ne the potential of e as

φ(v, e) =


1 if w = vi, v = vj and i ∈ F (j)

0 if w = vi, v = vj and i 6∈ F (j)
1
3 if v or w is unoccupied in v.

Let Φ(v) =
∑

e∈E φ(v, e). We claim that Φ is an ordinal potential function for our se�ing, that is, for

any bene�cial deviation, the potential function increases. Since the function Φ takes values in the set

{ `3 : ` = 0, . . . , 3|E|}, where |E| is the number of edges of the topology, this implies that any best

response dynamics starting from an arbitrary initial con�guration converges to an equilibrium in O(|E|)
steps. �us, it remains to prove our claim that Φ is an ordinal potential function.

Given an edge e ∈ E and two assignments v and v′, let

∆(v,v′, e) = φ(v′, e)− φ(v, e).

Also, for z ∈ V , let

∆(v,v′, z) =
∑
e:z∈e

∆(v,v′, e).

We omit v and v′ from the notation when they are clear from the context.

In our analysis, we distinguish between jump and swap social games.

Jump games. Consider an assignment v and an agent i with vi = v that deviates to an empty node w;

denote the resulting assignment by v′. Observe that i’s move only changes the potential of edges incident

to v and w. We will now prove that ∆(v) + ∆(w) > 0. �is will prove our claim for the case where v and

w are not adjacent, as in this case we have Φ(v′)− Φ(v) = ∆(v) + ∆(w). Subsequently, we will explain

how to handle the case {v, w} ∈ E. We make the following observations:

• As no agent bene�ts from moving to an isolated node, it must be the case that deg(w) > 0.

• If deg(w) = 1, let ew ∈ E be the edge that is adjacent to w. Since w is empty in v, we have

φ(v, ew) = 1
3 . Since agent i bene�ts from moving to w, we have φ(v′, ew) = 1. Hence, ∆(ew) = 2

3
and, consequently, ∆(w) = 2

3 .
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• If deg(w) = 2, let ew,1 and ew,2 be the two edges incident to w. Since w is empty in v, we have

φ(v, ew,1) = φ(v, ew,2) = 1
3 . Since agent i bene�ts from moving to w, we have φ(v′, ew,1) +

φ(v′, ew,2) ≥ 1. Hence, ∆(w) ≥ 1
3 .

• If deg(v) = 0 then by de�nition ∆(v) = 0.

• If deg(v) = 1, let ev ∈ E be the edge that is incident to v. Since i bene�ts from moving away from

v, we have φ(v, ev) ≤ 1
3 . Since v is le� empty in v′, we have φ(v′, ev) = 1

3 and, consequently,

∆(v) ≥ 0.

• If deg(v) = 2, let ev,1 and ev,2 be the two edges incident to v. Since v is le� empty in v′, we

have φ(v′, ev,1) = φ(v′, ev,2) = 1
3 . Since agent i bene�ts from moving away from v, we have

φ(v, ev,1) + φ(v, ev,2) ≤ 1. �us, ∆(v) ≥ −1
3 .

�e observations above show that ∆(v) + ∆(w) > 0 unless ∆(v) = −1
3 and ∆(w) = 1

3 . However, this is

impossible: ∆(v) = −1
3 only if in v agent i is adjacent to one friend and one non-friend, and ∆(w) = 1

3
only if in v′ agent i is adjacent to one friend and one non-friend; but in such a case, agent i would not

have an incentive to move, a contradiction. �is completes the analysis for the case {v, w} /∈ E.

Now, suppose that v and w are adjacent. In this case ∆(v) + ∆(w) double-counts the contribution of

the edge {v, w} to the potential, so we have Φ(v′)−Φ(v) = ∆(v) + ∆(w)−∆({v, w}). However, since

w is empty in v and v is empty in v′, it holds that ∆({v, w}) = 1
3 −

1
3 = 0, and hence ∆(v) + ∆(w) > 0

implies Φ(v′)− Φ(v) > 0 in this case as well.

Swap games. In swap games, all nodes of the topology are occupied by agents, and thus φ(v, e) takes

values in {0, 1}. Consider an assignment v and a pair of agents (i, j) with vi = v and vj = w who swap

their positions, which results in the assignment v′ = vi↔j . �e swap of i and j only a�ects the potential

of edges incident to v and w; moreover, if i and j are adjacent in v then they remain adjacent in v′, and

thus the potential of the edge connecting them does not change. �us, Φ(v′) − Φ(v) = ∆(v) + ∆(w).

Hence, to prove that Φ is an ordinal potential function, it su�ces to show that ∆(v) + ∆(w) > 0.

We make the following two observations for z ∈ {v, w}:

• If deg(z) = 1, let e ∈ E be the edge that is adjacent to z. Since the agent occupying z in v has an

incentive to leave, we have φ(v, e) = 0. Since the agent occupying z in v′ has an incentive to move

there, we have φ(v′, e) = 1. Hence, ∆(e) = 1 and, consequently, ∆(z) = 1.

• If deg(z) = 2, let e1 and e2 be the two edges incident to z. Since the agent occupying z in v has

an incentive to leave, we have φ(v, e1) + φ(v, e2) ≤ 1. Since the agent occupying z in v′ has an

incentive to move there, we have φ(v′, e1) + φ(v′, e2) ≥ 1. Consequently, ∆(z) ≥ 0.

By the above observations, it follows that ∆(v) + ∆(w) > 0 unless ∆(v) = 0 and ∆(w) = 0. However,

this is impossible. Indeed, if ∆(v) = 0 then i and j are connected to the same number of friends at v, and

this number can only be 1: if it is 0, j would not want to move to v, and if it is 2, i would not want to

move away. But then it has to be the case that i is connected to two friends at w and j is connected to zero

friends at w, so ∆(w) = 2. �is completes the proof.

Since social games generalize k-typed games, all of our non-existence results, hardness results, and

lower bounds on the price of anarchy and stability presented in the previous sections apply to social

games as well. In fact, for social Schelling games it is easy to prove that maximizing the social welfare is

NP-hard even if all agents are strategic. Moreover, this hardness result holds even when the topology is a
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graph of maximum degree 2; in other words, social welfare maximization may be hard even when �nding

an equilibrium is easy.

�eorem 7.2. Given a social Schelling game and a rational value ξ, it is NP-complete to decide whether the
game admits an assignment with social welfare at least ξ. �e hardness result holds even when all agents are
strategic and the topology is a graph of maximum degree 2.

Proof. It is immediate that our problem is in NP. To show NP-hardness, we will use a reduction from the

Hamiltonian Cycle (HC) problem. An instance of HC is an undirected graph H = (X,Y ); it is a yes-

instance if and only if the vertices of this graph can be ordered as x1, . . . , x|X| so that {x|X|, x1} ∈ Y and

for each i ∈ [|X| − 1] it holds that {xi, xi+1} ∈ Y .

Given an instance H = (X,Y ) of HC, where X is the set of nodes and Y is the set of edges, we

construct an instance of our social welfare maximization problem as follows:

• For every node v ∈ X , we have a strategic agent pv with set of friends {pz : {z, v} ∈ Y }.

• �e topology G = (V,E) is a cycle consisting of |X| nodes.

By construction, a social welfare of ξ = |X| can be achieved if and only if the agents can be assigned to the

nodes of the cycle so that each of them is adjacent to two friends; this is possible if and only if H admits a

Hamiltonian cycle.

Identifying special classes of social Schelling games that allow for good upper bounds on the price of

anarchy and the price of stability is an interesting research direction. We note that the upper bounds in

Sections 5 and 6 only apply to k-typed games with further restrictions on the structure of each type, so

they cannot be directly extended to the social se�ing.

7.2 Schelling Games with Enemy Aversion

In our model, if an agent is not adjacent to any friends, it does not ma�er how many non-friends she is

adjacent to—her utility is always zero. �is is also the case in unweighted modi�ed fractional hedonic

games: agents are indi�erent between being alone and being in coalitions consisting of their non-friends

only. �is assumption makes sense when the non-friends of an agent are simply agents that do not con-

tribute to her welfare. However, it may be the case that if two agents are not friends, they are enemies, and

an agent may prefer being alone to being in a group full of enemies. To take into account such preferences,

we can modify the de�nition of the utility function of a strategic agent so that the agent herself is also

included in the set of her friends. In this case, the agent’s utility becomes
f+1
f+e+1 , where f is the number

of friends and e is the number of enemies that the agent is connected to.

Many of our results extend to this de�nition of the utility function. For example, for 2-jump games we

can construct instances without equilibria, using ideas similar to those in the reduction of �eorem 3.3.

Further, for k-jump games with a tree topology and a constant number of types, equilibrium existence can

be decided in polynomial time, by adapting the proof of �eorem 3.4. As we mentioned in Section 1.2,

Kanellopoulos et al. [2021a] recently conducted a more thorough analysis of Schelling games with enemy

aversion. However, it still remains an open question if instances with no stubborn agents always admit an

equilibrium in this model.
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7.3 Schelling Games with Linear Utilities

�roughout the paper we have assumed that an agent’s utility is determined by the fraction of her friends

among her neighbors. Alternatively, an agent may simply care about the number of friends in her neigh-

borhood or the di�erence between the number of friends fi and the number of enemies (i.e., non-friends)

ei; more broadly, her utility may be an arbitrary linear function of fi and ei (in the context of hedonic

games, this model corresponds to a subclass of additively separable hedonic games; see, e.g., the survey by

Aziz and Savani [2016]). It turns out that games of this form are potential games and therefore have at

least one equilibrium. Furthermore, in the absence of stubborn agents there is always an equilibrium that

is socially optimal.

�eorem 7.3. Consider a modi�cation of our model where the utility of each agent i who is adjacent to fi
friends and ei enemies is αfi− βei for some given α, β ≥ 0. �en, both for swap games and for jump games,
and even if the friendship relation is given by a social network, every instance has an equilibrium assignment
which can be computed in polynomial time. Moreover, if no agent is stubborn, the price of stability is 1.

Proof. Consider a game with a set of strategic agentsR, a set of stubborn agents S, a topologyG = (V,E)
and a friendship relation that is de�ned by a social network N . Fix non-negative constants α and β such

that the utility of an agent who is adjacent to f friends and e enemies in the topology is given by αf −βe.
Our analysis is inspired by Proposition 2 in the work of Bogomolnaia and Jackson [2002], showing that a

Nash stable partition always exists in symmetric additively separable hedonic games.

Fix an assignment v. For each i ∈ N , let

φi(v) = αfi(v)− βei(v) and Φ(v) =
∑
i∈N

φi(v).

We will argue that Φ is an ordinal potential function for our game. �is implies that if the strategic agents

follow the best response dynamics starting from any initial con�guration, they will converge to an equi-

librium. Also, observe that if all agents are strategic, Φ(v) is equal to the social welfare of v, and thus

when N = R, the social welfare is maximized at equilibrium. (However, in general this is not the case:

intuitively, Φ ascribes “strategic” utilities to the stubborn agents.) Finally, observe that Φ takes values in

the set {αi − βj : 0 ≤ i, j ≤ n}, where n is the number of agents. �us, any best response dynamics

converges in O(n2) iterations.

We will now argue that Φ is a potential function. We start with jump games. Consider an agent i with

vi = v. Suppose that i has a bene�cial deviation from v to another nodew ∈ V , which is empty inv; denote

the resulting assignment by v′. Assume that agent i has f friends and e enemies in v, and f ′ friends and e′

enemies inv′. �en, since the deviation is pro�table, it holds thatφi(v
′)−φi(v) = α(f ′−f)−β(e′−e) > 0.

We claim that Φ(v′) > Φ(v).

Indeed, consider an agent j ∈ N \ {i}. If j is a neighbor of i in both v and v′, or if j is a neighbor of i
in neither v nor v′, then φj(v) = φj(v

′). Now, suppose that j is connected to i in v, but not in v′. If j is

a friend of i, then φj(v
′) = φj(v)− α, and if j is an enemy of i, then φj(v

′) = φj(v) + β. Similarly, if j
is connected to i in v′ but not in v, then if j is a friend of i, then φj(v

′) = φj(v) +α, and if j is an enemy

of i, then φj(v
′) = φj(v)− β. �us, the overall change in potential can be computed as

Φ(v′)− Φ(v) = φi(v
′)− φi(v)− αf + βe+ αf ′ − βe′ = 2

(
α(f ′ − f)− β(e′ − e)

)
> 0.

For swap games, the proof is similar. Let i and j be a pair of strategic agents who swap their positions

vi = v and vj = w, leading to the assignment v′ = vi↔j . For z ∈ {v, w}, we de�ne the following

quantities:
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• fi(z) is the number of agents connected to z that are friends of i and enemies of j;

• ei(z) is the number of agents connected to z that are enemies of i and friends of j;

• fij(z) is the number of agents connected to z that are friends of both i and j;

• eij(z) is the number of agents connected to z that are enemies of both i and j.

Since the swap is pro�table for both agents, it holds that

φi(v
′)− φi(v) = α(fi(w) + fij(w)− fi(v)− fij(v))− β(ei(w) + eij(w)− ei(v)− eij(v)) > 0

and

φj(v
′)− φj(v) = α(fj(v) + fij(v)− fj(w)− fij(w))− β(ej(v) + eij(v)− ej(w)− eij(w)) > 0.

By summing these two expressions, we can bound φi(v
′)− φi(v) + φj(v

′)− φj(v) as

α(fi(w)− fi(v))− β(ei(w)− ei(v)) + α(fj(v)− fj(w))− β(ej(v)− ej(w)) > 0.

Now, observe that there is no change in the utility of the common friends and the common enemies of i
and j. Consequently, by considering agents that are friends of i and enemies of j, or vice versa, just as in

the jump case above, we can conclude that

Φ(v′)− Φ(v) = 2

(
α(fi(w)− fi(v))− β(ei(w)− ei(v))

)
+ 2

(
α(fj(v)− fj(w))− β(ej(v)− ej(w))

)
> 0,

as desired.

8 Conclusions and Open Problems

In this paper, we have extensively studied games inspired by Schelling’s seminal segregation model, in

which the agents are partitioned into multiple types, occupy nodes of a graph topology, and can increase

their utility either by jumping to empty locations or by swapping locations with other agents. We con-

sidered questions related to the existence and the e�ciency of equilibrium assignments, as well as the

price of anarchy and price of stability, both from a social welfare and from a diversity standpoint. We also

proposed several variants and extensions for further study.

Concerning equilibrium existence, while we showed that an equilibrium always exists for simple

topologies such as stars and graphs of maximum degree 2, we gave an example demonstrating that it may

fail to exist even if the topology does not contain cycles. Furthermore, deciding whether a given game

admits an equilibrium assignment is NP-complete in general. Even though we have implicitly assumed

that the tolerance threshold of every agent is 1, and thus she is never truly happy unless she is connected

to friends only, our proofs extend to other threshold values as well. For instance, one can verify that for

k = 2, �eorem 3.2 holds for any τ ∈ (3/4, 1) and �eorem 3.5 holds for any τ ∈ (2/3, 1). A challenging

open question is to completely characterize the topologies and threshold values for which equilibria are

guaranteed to exist, and also to design e�cient algorithms to compute equilibria when they exist. Alter-

natively, one could aim to design parameterized algorithms for deciding the existence of equilibria; for
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example, can the result of �eorem 3.4 for tree topologies be improved to an FPT algorithm with respect

to the number of types k?

For welfare and integration maximization, a natural question is whether one can e�ciently compute

assignments with nearly optimal social welfare. We note that our NP-hardness reductions in �eorems 4.1

and 4.2 are not approximation preserving, and thus they do not rule out this possibility. Recently, Bullinger

et al. [2021] showed that an assignment with at least half of the optimal social welfare can be computed

in polynomial time; whether this factor can be improved or a PTAS exists remains open. In addition, it

would be interesting to explore the tradeo�s between diversity and social welfare: given two parameters

p and q, can we compute an (equilibrium) assignment whose degree of integration is at least p and whose

social welfare is at least q? While our results indicate that this problem is hard for general topologies, one

could hope to obtain approximate or parameterized algorithms, or focus on simple topologies. One can

also investigate more �ne-grained diversity indices, for example by considering the number of other types

that each agent is exposed to.

Acknowledgments

�is work has been supported by the European Research Council (ERC) under grant number 639945 (AC-

CORD), by the EPSRC International Doctoral Scholars Grant EP/N509711/1, by the KAKENHI Grant-in-Aid

for JSPS Fellows number 18J00997, by JST, ACT-X, and by an NUS Start-up Grant. We are grateful to the

reviewers of IJCAI 2019, AAAI 2020 and AIJ for their valuable comments.

References

Aishwarya Agarwal, Edith Elkind, Jiarui Gan, and Alexandros A. Voudouris. Swap stability in Schelling

games on graphs. In Proceedings of the 34th AAAI Conference on Arti�cial Intelligence (AAAI), pages

1758–1765, 2020.

Richard D. Alba and John R. Logan. Minority proximity to whites in suburbs: An individual-level analysis

of segregation. American Journal of Sociology, 98(6):1388–1427, 1993.

Elliot Anshelevich, Anirban Dasgupta, Jon M. Kleinberg, Éva Tardos, Tom Wexler, and Tim Roughgarden.
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A Proof of �eorem 3.4

For readability, we will present a polynomial-time algorithm that can decide whether an equilibrium exists

for instances with two agent types (red and blue) and no stubborn agents; towards the end of the proof, we

will explain how to extend it to instances with a constant number of agent types that may contain stubborn

agents. Let TR denote the set of all red agents and let TB denote the set of all blue agents. �roughout the

proof, we use the convention that a fraction of the form
a
b evaluates to 0 whenever a = 0.

Consider an instance I with n agents and tree topology G = (V,E). Pick an arbitrary node r to be

the root of G. Let tree(v) denote the set of descendants of v (including v), and let child(v) be the set of

children of v. Observe that the utility of a strategic agent takes values in the set U = {i/j : i ∈ [n], j ∈
[n], i ≤ j} ∪ {0}; note that |U| ≤ n2.

We use the following dynamic programming approach. For each node v ∈ V , we �ll out a table τv ,

which contains an entry τv(C,n,k, ǔ, û) for each tuple (C,n,k, ǔ, û), where

• C ∈ {blue, red, empty},

• n = (nB, nR) ∈ [n]2,

• k = (kB, kR) ∈ [n]2,

• ǔ = (ǔB, ǔR, ǔB† , ǔR†) ∈ U4
, and

• û = (ûB, ûR, ûtop) ∈ U3
.

�us, the number of entries in each table is 3 · n4 · |U|7, which is polynomial in the input size.

�e value of each entry is either true of false. Speci�cally, τv(C,n,k, ǔ, û) = true if and only if there

exists an assignment of a subset of agents to the nodes in tree(v) that satis�es the following conditions:

1. If C = empty, then node v is empty. Otherwise, the node is assigned to an agent of color C .

2. Exactly nB nodes of tree(v) are assigned to blue agents, and exactly nR nodes of tree(v) are assigned

to red agents.

3. Exactly kB nodes of child(v) are assigned to blue agents, and exactly kR nodes of child(v) are as-

signed to red agents.
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4. Every blue agent in a node of child(v) gets utility at least ǔB† and every red agent in a node of

child(v) gets utility at least ǔR† .

5. Every blue agent in a node of tree(v) \ (child(v) ∪ {v}) gets utility at least ǔB and every red agent

in a node of tree(v) \ (child(v) ∪ {v}) gets utility at least ǔR.

6. If a blue agent that is not already in tree(v) moves to an empty node of tree(v) \ {v}, her utility

would be at most ûB , and if a red agent that is not already in tree(v) moves to an empty node of

tree(v) \ {v}, her utility would be at most ûR.

7. If node v is not empty, then the agent occupying v can get utility at most ûtop by moving to an empty

node of tree(v) \ {v}.

8. All agents in nodes of tree(v)\{v} do not have an incentive to deviate to empty nodes of tree(v)\{v}.

Condition 8 directly relates to the stability of tree(v)\{v}, whereas conditions 1–7 are auxiliary, providing

the necessary information that we need in order to determine the stability of node v, and �ll out the

dynamic programming table for the parent of v. Note that for conditions 4 and 5, if there is no agent with

the speci�ed property, the corresponding condition is vacuously true. Similarly, for conditions 6–8, if there

is no empty node to deviate to, the corresponding condition vacuously holds.

Consider the table τr at the root node r. �e game admits an equilibrium if and only if there exists

(C,n,k, ǔ, û) such that nB = |TB|, nR = |TR|, τr(C,n,k, ǔ, û) = true for the root node r of G, and,

moreover,

• if C = blue, then

kB
kB + kR

≥ ûtop;

• if C = red, then

kR
kB + kR

≥ ûtop;

• if C = empty, then for each X ∈ {R,B} with kX > 0 it holds that

kX
kB + kR

≤ ǔX ,
kX − 1

kB + kR − 1
≤ ǔX† .

�e �rst two conditions ensure that if the root node is not empty, the agent in that node does not have

an incentive to move to another node of the tree, and the last condition ensures that if the root node is

empty, no agent has an incentive to deviate there (the exact form of this condition depends on whether

the potential deviator is located in a child of r). Together with condition 8, these conditions ensure that

no agent wants to deviate.

�e existence of a tuple (C,n,k, ǔ, û) with these properties can be decided in polynomial time by

going through all entries of τr . It remains to show that τr can be �lled in polynomial time.

GivenC ∈ {red, blue, empty}, we write 1B(C) = 1 ifC = blue and 0 otherwise; similarly, 1R(C) = 1
if C = red and 0 otherwise, and 1E(C) = 1 if C = empty and 0 otherwise.

We �ll the tables in all nodes starting from the leaf nodes of G. For every leaf node v, we have
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Tv(C,n,k, ǔ, û) =

{
true, if n = (1B(C),1R(C)) and k = (0, 0)

false, otherwise.
(4)

Suppose now that for a node w we have constructed the table τv for each v ∈ child(w). We will

construct τw using these tables as follows. Let child(w) = {v1, . . . , vL}. We create an intermediate table

θ`w for each ` ∈ {0, 1, . . . , L}. �is table has an entry θ`w(C,n,k, ǔ, û) for every tuple (C,n,k, ǔ, û).

�e entry θ`w(C,n,k, ǔ, û) is set to true if and only if conditions 1–8 hold for the subtree tree`(w) ob-

tained from tree(w) by deleting the subtrees rooted at v`+1, . . . , vL. Note that, by construction, we have

τw(C,n,k, ǔ, û) = θLw(C,n,k, ǔ, û).

We construct θ`w sequentially for ` = 0, . . . , L. We can �ll out θ0w using Equation (4). Next, suppose

that we have �lled out the �rst ` tables, i.e., θ0w, . . . , θ
`−1
w . We combine θ`−1w and τv` in order to build

θ`w as follows: θ`w(C,n,k, ǔ, û) = true if and only if there exists a pair of tuples (C ′,n′,k′, ǔ′, û′) and

(C ′′,n′′,k′′, ǔ′′, û′′) such that θ`−1w (C ′,n′,k′, ǔ′, û′) = τv`(C
′′,n′′,k′′, ǔ′′, û′′) = true and the following

conditions hold:

1. C ′ = C .

2. n′′ + n′ = n.

3. 1B(C ′′) + k′B = kB and 1R(C ′′) + k′R = kR.

4. For each X ∈ {B,R},
ǔ′X† ≥ ǔX†

so that the agents occupying nodes v1, . . . , v`−1 have utility at least ǔX† . Additionally, ifC ′′ = blue,
then

k′′B + 1B(C ′)

k′′B + k′′R + (1− 1E(C ′))
≥ ǔB†

and, if C ′′ = red, then

k′′R + 1R(C ′)

k′′B + k′′R + (1− 1E(C ′))
≥ ǔR†

so that the agent occupying node v` has utility at least ǔB† if she is blue or at least ǔR† if she is red.

�erefore, if these conditions hold, all agents occupying the �rst ` children of w have utility at least

ǔB† or ǔR† , according to their type.

5. For each X ∈ {B,R},
ǔ′X , ǔ

′′
X , ǔ

′′
X† ≥ ǔX ,

so that all agents of type X occupying the nodes of tree`(w) \ (child(w)∪ {w}) have utility at least

ǔX .

6. For each X ∈ {B,R},
û′X ≤ ûX , û′′X ≤ ûX

and, if C ′′ = empty, then

k′′X + 1X(C ′)

k′′B + k′′R + (1− 1E(C ′))
≤ ûX .
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�is sets upper bounds for the utilities that agents that do not occupy nodes of tree`(w) can obtain

by deviating to a node in the �rst `− 1 branches, a node other than v` in the `-th branch, and node

v`, respectively.

7. If C ′ = blue, then

û′top ≤ ûtop, û′′B ≤ ûtop
and, if also C ′′ = empty, then

k′′B
k′′B + k′′R

≤ ûtop,

so that the blue agent occupying node w has utility at most ûtop if she deviates to a node in the �rst

`−1 branches, a node in the `-th branch (excluding node v`), or node v`. Similarly, if C ′ = red, then

û′top ≤ ûtop, û′′R ≤ ûtop

and, if also C ′′ = empty,

k′′R
k′′B + k′′R

≤ ûtop.

8. If n′′B > 0, then ǔ′′B, ǔ
′′
B†
≥ û′B so that blue agents occupying nodes in the `-th branch (excluding

v`) have no incentive to deviate to any node in the �rst ` − 1 branches. If also C ′′ = empty and

n′′B > k′′B , then

ǔ′′B ≥
k′′B + 1B(C ′)

k′′B + k′′R + 1B(C ′)
,

while if also C ′′ = empty and k′′B > 0 then

ǔ′′B† ≥
k′′B + 1B(C ′)− 1

k′′B + k′′R + 1B(C ′)− 1
,

so that blue agents occupying nodes other than v` in the `-th branch have no incentive to deviate

to v`. Since τv`(C
′′,n′′,k′′, ǔ′′, û′′) = true means that these agents already have no incentive to

deviate to other empty nodes in the `-th branch, now these agents have no incentive to deviate to

any empty node in tree`(w) \ {w}. Further, if C ′′ = blue, then

k′′B + 1B(C ′)

k′′B + k′′R + 1B(C ′)
≥ û′B, û′′top,

so that if there is a blue agent at node v`, she has no incentive to deviate as well. Similar constraints

must hold for red agents.

9. If n′B > k′B +1B(C ′), then ǔ′B ≥ û′′B so that blue agents occupying nodes in the �rst `−1 branches

other than v1, . . . , v`−1 have no incentive to deviate to nodes in the `-th branch (excluding node v`).
If also C ′′ = empty, then

ǔ′B ≥
k′′B + 1B(C ′)

k′′B + k′′R
,

so that these blue agents have no incentive to deviate to v` if it is empty. Likewise, if k′B > 0,

then analogous constraints must hold with ǔ′
B†

taking the role of ǔ′B , so that any blue agent in

v1, . . . , v`−1 has no incentive to deviate to nodes in the `-th branch. Similar constraints must hold

for red agents as well.
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�ese constraints can be veri�ed in polynomial time by checking each pair of entries of the tables θ`−1w

and τv` . �is completes the proof for instances with two agent types and no stubborn agents.

To extend the algorithm to instances with stubborn agents, we can set the entry values of the table τv
to false if v is occupied by a stubborn agent of a type other than C , and only consider possible deviations

by strategic agents. �e algorithm can trivially be extended to instances with constant number of di�erent

agent types; the size of the tables would scale exponentially with the number of types.
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