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Abstract

Voting is one of the most prominent applications of pref-
erence aggregation and computational social choice. While
much of the literature focuses on models involving discrete
candidates, there has been a growing interest in voting over
divisible resources, such as budget, space, and time. In this
survey, we review existing work on voting in divisible set-
tings, including fundamental models of budget aggregation,
fair mixing, and cake sharing. We also establish connections
among these models, highlight unifying themes across differ-
ent frameworks, and suggest directions for future research.

1 Introduction
Computational social choice is a field that studies algorithms
and procedures for aggregating individual preferences into
a collective decision (Brandt et al. 2016). This area of re-
search is inherently interdisciplinary, drawing upon concepts
from mathematics, economics, political science, and com-
puter science. Not only does the field continue to produce
exciting theoretical research every year—with its findings
presented at leading AI conferences including AAAI—but
the solutions that it developed have also significantly im-
proved a variety of practical decision-making processes.

Among the most prominent applications of computational
social choice is voting, in which individual preferences are
combined to produce a shared outcome for all agents (Kil-
gour 2010; Zwicker 2016; Faliszewski et al. 2017; Lackner
and Skowron 2023). Traditionally, voting has been studied
in discrete or indivisible settings. In a typical voting model,
there is a set of candidates, and each voter submits a bal-
lot, which may take the form of a ranking or an approval
set, among others. The objective of a voting rule is to ag-
gregate these ballots into a collective choice, for instance, a
single candidate (single-winner voting) or a subset of can-
didates (multiwinner voting). Examples include electing a
public official, appointing committee members within an or-
ganization, or selecting a venue for a graduation party.

While multiwinner voting typically involves selecting a
predetermined number of candidates, an important extension
is participatory budgeting, where candidates (i.e., projects)
may have differing costs (Aziz and Shah 2021). Participa-
tory budgeting allows residents of a city or community to
vote on which public projects should receive funding, and
has been adopted in numerous countries. Naturally, the total

cost of the selected projects must not exceed the available
budget. As in multiwinner voting, much of the work on par-
ticipatory budgeting deals with the discrete setting, where
each project is implemented either fully or not at all. For in-
stance, the survey by Rey, Schmidt, and Maly (2025) focuses
exclusively on discrete participatory budgeting.

The emphasis of the voting literature on discrete settings
stands in contrast to fair division, another major topic in
computational social choice (Thomson 2016). Fair division
studies the aggregation of individual preferences into private
outcomes, such as the assignment of resources or tasks that
each agent receives privately. The allocation of continuous
or divisible resources has long been a central topic in fair
division, a problem also known as cake cutting (Procaccia
2016). The cake serves as a metaphor for any divisible re-
source such as land or time, and the objective is to ensure
fairness with respect to the agents’ preferences. Some of the
most notable results in fair division pertain to cake cutting,
for example, the existence of a bounded protocol for finding
an envy-free cake division, where no agent prefers another
agent’s piece over her own (Aziz and Mackenzie 2016).

Although voting may appear more naturally suited to dis-
crete settings at first glance, a number of voting applications
in fact involve divisibility and have received increasing at-
tention in recent years. For example, consider a workshop
organizer tasked with dividing time between presentations,
discussions, and social events. Participants may be asked to
vote on their preferred time distribution, and the organizer
would then aggregate these preferences into a final sched-
ule. This type of problem is known as budget aggregation.
More generally, the aggregation of preferences into a dis-
tribution is referred to as fair mixing, with the case of ap-
proval preferences (i.e., each voter approves each candidate
or not) receiving particular attention. Another divisible vot-
ing model is cake sharing, where there is a heterogeneous
cake and only a subset of the cake of a specified size can
be chosen. As in cake cutting, the cake can represent time or
space, which must be reserved for a group of agents to share.

In this survey, we provide an overview of voting in di-
visible settings, with an emphasis on recent developments
in this growing area of research. Besides summarizing key
results for each fundamental model, we explore the connec-
tions among these models, highlight unifying themes, and
identify directions for future research in the area.



2 Budget Aggregation
In addition to modeling the allocation of time as discussed
earlier, budget aggregation can also represent how funds are
distributed across various public projects. From this view-
point, it can be seen as a divisible variant of participatory
budgeting (Aziz and Shah 2021, Sec. 4).

We now describe the formal model of budget aggregation.
Let N = [n] be the set of agents, where we use [z] to de-
note {1, 2, . . . , z} for each positive integer z. There is a fixed
budget to be distributed among a set C = {c1, c2, . . . , cm}
of candidates. By scaling if necessary, we may assume with-
out loss of generality that the budget is 1. Denote by ∆m the
set of all m-tuples x = (x1, . . . , xm) such that xj ≥ 0 for
each j ∈ [m] and

∑
j∈[m] xj = 1. Each agent i ∈ N sub-

mits her preferred distribution si = (si,1, . . . , si,m) ∈ ∆m

of the budget, and has a utility function ui : ∆
m → R such

that for each x ∈ ∆m, the value ui(x) indicates agent i’s
satisfaction with the distribution x. The most common way
to define an agent’s utility function is to use the ℓ1 distance
from her preferred distribution, i.e., ui(x) := −∥x− si∥1 =
−
∑

j∈[m] |xj − si,j | for any i ∈ N and x ∈ ∆m. An in-
stance I consists of the candidates along with the agents and
their preferred distributions. An aggregation rule F maps
each instance I to an outcome distribution F (I) ∈ ∆m.

What properties might one want an aggregation rule to
satisfy? One of the most frequently studied properties is
truthfulness, also known as strategyproofness. An aggrega-
tion rule is said to be truthful if agents can never benefit
by misreporting their preferences. More formally, for every
pair of instances I and I ′ that differ only in the preferred
distribution of a single agent i, truthfulness requires that
ui(F (I)) ≥ ui(F (I ′)), where ui is agent i’s utility func-
tion in instance I. Achieving truthfulness alone is trivial—
for example, any rule that simply outputs a fixed distribu-
tion regardless of the input is truthful. However, such a rule
is clearly undesirable, as it does not take into account the
agents’ preferences.

As a more sensible aggregation rule, Lindner, Nehring,
and Puppe (2008) and Goel et al. (2019) considered the
utilitarian rule (UTIL), which returns the distribution that
maximizes the utilitarian welfare, defined as the sum of the
agents’ utilities, subject to a certain tie-breaking choice.1
These authors showed that under ℓ1 utilities, UTIL is a truth-
ful aggregation rule. However, Freeman et al. (2021) ob-
served that UTIL has a tendency to overweight majority pref-
erences. As an example, consider an instance with m = 2
candidates and n = 99 agents such that 50 agents prefer
the distribution (1, 0) and 49 agents prefer the distribution
(0, 1). For this instance, UTIL returns the distribution (1, 0),
which leaves almost half of the agents maximally unhappy.

In an effort to obtain truthful aggregation rules that are
“more proportional”, Freeman et al. (2021) introduced the
class of moving-phantom rules. To understand these rules,
it is instructive to focus first on the case with only m = 2

1Namely, among all distributions that maximize the utilitarian
welfare, UTIL outputs the distribution x that minimizes the ℓ2 dis-
tance to the uniform distribution (1/m, . . . , 1/m). This is equiva-
lent to maximizing the entropy of the distribution.

candidates. In this special case, each distribution (x1, x2) =
(x1, 1 − x1) can be specified by a single number x1. Ac-
cordingly, budget aggregation with m = 2 is equivalent to a
basic model of facility location, where each agent submits a
preferred location within the interval [0, 1] and an aggrega-
tion rule decides on the outcome location (Chan et al. 2021).
Given this equivalence, ℓ1 preferences belong to the domain
of single-peaked preferences, a well-studied preference do-
main in the voting literature. Moulin (1980) introduced a
class of rules that, for any set of n values (i.e., locations)
reported by the agents, add a fixed set of n+ 1 “phantoms”
and return the median of the resulting 2n + 1 values. For
example, if n is odd and (n+1)/2 phantoms are placed at 0
while the remaining (n + 1)/2 phantoms are placed at 1,
then the rule simply returns the median of the n original val-
ues. Moulin showed that these “phantom rules” are truthful
under single-peaked preferences, and moreover, under mild
assumptions, they are the only truthful rules.

When m ≥ 3, inserting fixed phantoms no longer works,
as it may lead to outcomes that violate the unit-budget con-
straint. To address this, the moving-phantom rules proposed
by Freeman et al. (2021) replace the n + 1 fixed phan-
toms with n + 1 “phantom functions” f0, . . . , fn : [0, 1] →
[0, 1], each weakly increasing and satisfying fk(0) = 0 and
fk(1) = 1 for all k ∈ {0, 1, . . . , n}.2 Given an instance
with preferred distributions (si)i∈N , a moving-phantom rule
finds a value t∗ ∈ [0, 1] such that the sum of the coordinate-
wise medians is equal to 1, i.e.,∑

j∈[m]

med(s1,j , . . . , sn,j , f0(t∗), . . . , fn(t∗)) = 1.

The rule then returns the distribution x given by xj =
med(s1,j , . . . , sn,j , f0(t∗), . . . , fn(t∗)) for each j ∈ [m].
By definition, x is a valid distribution, and although multiple
values of t∗ may exist, every such value yields the same dis-
tribution x. An important moving-phantom rule put forward
by Freeman et al. is the independent markets (IM) rule, de-
fined by setting fk(t) = min(kt, 1) for all k ∈ {0, . . . , n}
and t ∈ [0, 1]. Figure 1 illustrates an example of IM applied
to an instance with n = m = 3.

Remarkably, Freeman et al. (2021) proved that, regard-
less of the phantom functions, a moving-phantom rule al-
ways ensures truthfulness. The intuition behind the proof is
as follows. When an agent i reports a different distribution ŝi
instead of her true preferred distribution si, the effect on the
aggregate distribution returned by a moving-phantom rule
can be decomposed into two stages. In the first stage, we
hold the phantoms fixed as in the truthful instance, and up-
date the medians according to i’s report ŝi. In the second
stage, we update the phantoms to account for the change
from si to ŝi. Freeman et al. showed that the first-stage ef-
fect can only hurt agent i, and while the second-stage effect
could potentially benefit the agent, the magnitude of the lat-
ter effect never exceeds that of the former.

2In fact, Freeman et al. (2021) showed that it is sufficient that
there exists a permutation σ : {0, . . . , n} → {0, . . . , n} such that
fσ(k)(1) ≥ k/n for all k ∈ {0, . . . , n}; see their Proposition 3
and the remarks thereafter.
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Figure 1: An illustration of the independent markets (IM) moving-phantom rule on an instance with n = m = 3. The agents’
preferred distributions are (0.7, 0.2, 0.1), (0.5, 0.1, 0.4), and (0.1, 0.4, 0.5). Each column corresponds to a candidate, the black
bars indicate the agents’ preferred amounts on that candidate, the red horizontal lines indicate the phantom functions f0, . . . , f3
parameterized by t, and the white rectangles denote the resulting medians in the respective columns. The values of t in the four
snapshots are 0.15, 0.2, 0.25, and 1/3, respectively. Normalization occurs at t∗ = 0.2 (second snapshot), and IM returns the
distribution x = (0.4, 0.2, 0.4).

Theorem 1 (Freeman et al. 2021). In budget aggregation
under ℓ1 utilities, every moving-phantom rule is truthful.

Moving-phantom rules form a large class of truthful rules.
Within this class, Freeman et al. (2021) identified IM as a
particularly appealing rule. Indeed, IM satisfies a fairness
notion called single-minded proportionality. This means that
in any “single-minded instance”—that is, an instance where
each agent’s preferred distribution assigns the entire budget
of 1 to some candidate—the rule returns the average of the
agents’ preferred distributions.3 Moreover, the IM outcome
can be interpreted as clearing prices in a market system, and
as the unique equilibrium of a natural voting game. These
interpretations allowed Freeman et al. to demonstrate that
IM satisfies classic social choice properties such as partici-
pation—an agent cannot become worse off by participating
in the rule—and reinforcement—if the rule returns the same
distribution for two instances, then it also returns this distri-
bution when both instances are combined.

Besides truthfulness and fairness, another fundamental
desideratum of aggregation rules is economic efficiency.
This is often captured by Pareto optimality, which states
that, compared to the outcome of the rule, no other outcome
makes at least one agent better off and none of the agents
worse off. Freeman et al. (2021) showed that not only does
IM fail Pareto optimality, but there is also an inherent trade-
off between Pareto optimality and single-minded propor-
tionality, at least among moving-phantom rules. In particu-
lar, the only moving-phantom rule that satisfies Pareto opti-
mality is UTIL, which can be formulated in terms of moving
phantoms by letting the phantoms move from 0 to 1 one after
another, with each phantom leaving 0 only after the previous
one has reached 1. Brandt et al. (2026) extended the incom-
patibility between truthfulness, single-minded proportional-
ity, and Pareto optimality beyond moving-phantom rules. In

3Freeman et al. (2021) simply called this notion “proportion-
ality”. However, as the notion only applies to single-minded in-
stances, it is rather weak compared to proportionality notions in
other contexts such as fair division (Procaccia 2016).

fact, their impossibility also holds for ℓ∞ preferences, where
ui(x) := −∥x− si∥∞ = −maxj∈[m] |xj − si,j |.
Theorem 2 (Brandt et al. 2026). In budget aggregation un-
der ℓ1 or ℓ∞ utilities, for any n,m ≥ 3, no rule satisfies
truthfulness, Pareto optimality, and single-minded propor-
tionality.

A stronger version of truthfulness is group-truthfulness,
which demands that no group of agents can misreport their
preferences in such a way that all agents in the group benefit.
While the phantom rules of Moulin (1980) for m = 2 are
group-truthful, Freeman et al. (2021) observed that moving-
phantom rules do not satisfy this property in general. This
suggests the following question.
Open problem 1. In budget aggregation under ℓ1 utilities,
does there exist a rule that satisfies group-truthfulness and
single-minded proportionality?

In an effort to capture proportionality beyond single-
minded instances, Caragiannis, Christodoulou, and Protopa-
pas (2024) considered the ℓ1 disproportionality, defined as
the maximum ℓ1 distance between the distribution output by
a rule on some instance and the average distribution of that
instance, where the maximum is taken across all instances.4
Caragiannis et al. showed that for each m ≥ 2, the ℓ1 dispro-
portionality of any moving-phantom rule is at least 1−1/m,
and for m = 2, IM achieves the tight bound of 1/2. In
addition, the ℓ1 disproportionality of any truthful rule is at
least 1/2, so the IM guarantee is again tight. However, when
m = 3, these authors proved that the ℓ1 disproportionality
of IM is higher than 0.68, which does not match the lower
bound of 2/3 for moving-phantom rules. They therefore pro-
posed a different moving-phantom rule called the piecewise
uniform rule, and showed that the ℓ1 disproportionality of
this rule is 2/3+ ε for ε ≤ 10−5, with the error term arising
from solving a non-linear program.

Another interesting moving-phantom rule in the litera-
ture is the ladder rule, introduced by Freeman and Schmidt-
Kraepelin (2024). This rule works by setting fk(t) =

4Caragiannis et al. (2024) called this measure the ℓ1-loss.



max(t − k/n, 0) for each k ∈ {0, . . . , n} and t ∈
[0, 1]. Intuitively, one can think of the phantoms being uni-
formly spread in the interval [−1, 0] initially and, as t in-
creases, pulled upwards with equal speed until they are
uniformly spread in [0, 1]. Freeman and Schmidt-Kraepelin
showed that the ladder rule attains the optimal ℓ∞ dis-
proportionality—defined in an analogous manner as ℓ1
disproportionality—among all moving-phantom rules; in
particular, this disproportionality is 1/2 − 1/(2m). More-
over, these authors proved that the rule also yields the op-
timal ℓ1 disproportionality of 2/3 for m = 3, thereby clos-
ing the tiny gap left by Caragiannis, Christodoulou, and Pro-
topapas (2024). Nevertheless, the optimal disproportionality
in general remains intriguingly open.
Open problem 2. In budget aggregation under ℓ1 utilities,
for each m ≥ 4, what is the optimal ℓ1 disproportionality
among moving-phantom rules? For each m ≥ 3, what is the
optimal ℓ1 or ℓ∞ disproportionality among truthful rules?

When m = 2, subject to mild conditions, phantom rules
constitute the only truthful rules (Moulin 1980; Massó and
de Barreda 2011; Freeman et al. 2021; Brandt et al. 2026).
Are moving-phantom rules the only truthful rules for any m
as well? This question was answered negatively by de Berg
et al. (2024), who exhibited a rule that is truthful, continu-
ous, anonymous, and neutral,5 but is not a moving-phantom
rule for any m ≥ 3 and n ≥ 1.6 The same authors also ex-
tended the lower bound of 1−1/m (resp., 1/2−1/(2m)) for
the ℓ1 (resp., ℓ∞) disproportionality from moving-phantom
rules to all truthful, continuous, anonymous, and neutral
rules. Their work leaves the fascinating question of whether
one can characterize the space of truthful rules.
Open problem 3. In budget aggregation under ℓ1 utilities,
does there exist a characterization of all rules that satisfy
truthfulness (possibly together with all or some of continuity,
anonymity, and neutrality)?

Despite its importance, truthfulness is far from the only
desirable property in budget aggregation. Elkind et al.
(2024) conducted an axiomatic analysis of aggregation rules
with respect to several properties. They found that the av-
erage rule, which simply returns the average of the agents’
preferred distributions, satisfies most of the properties de-
spite failing truthfulness. These authors further cemented the
case in favor of the average rule by providing two charac-
terizations of it. Wagner and Meir (2024) adapted Thiele’s
rules from multiwinner voting to the continuous setting, and
derived bounds on the welfare and fairness of the resulting
rules. Garg et al. (2019) assumed ℓp utilities and proposed an
algorithm that iteratively allows agents to move the current
distribution towards their preferred distribution.

While ℓp utilities are natural and have received due in-
terest from researchers, they do not represent agents’ pref-
erences in certain applications. As an example, for any
p ≥ 1, an agent who prefers a (10%, 40%, 50%) distri-
bution of time among three countries at an international

5A rule is anonymous (resp., neutral) if its outcome does not
depend on the identity of the agents (resp., candidates).

6Brandt et al. (2026) also proposed such a rule, though their
rule coincides with a moving-phantom rule when n > 1.

conference finds the distribution (0%, 45%, 55%) to be as
good as (5%, 50%, 45%), even though the former distribu-
tion leaves the first country unrepresented. In light of this,
Brandt et al. (2026) considered Leontief utilities drawn from
the economics literature, where each agent’s utility for a
distribution is the minimum ratio among all candidates that
the distribution preserves compared to the agent’s preferred
distribution—formally, ui(x) := minj∈[m] xj/si,j . Brandt
et al. showed that the Nash product rule, which chooses a
distribution maximizing the agents’ utilities, satisfies group-
truthfulness, single-minded proportionality, and Pareto opti-
mality. An important future direction is to identify and ex-
amine further utility domains in budget aggregation. Amster
et al. (2025) empirically tested the utility functions of human
participants, while Becker et al. (2025) studied the compu-
tation of equilibria under various utility models.

We end this section by discussing a few related lines of
work. Intriligator (1973), Fishburn (1975), and Rice (1977)
addressed a probabilistic social choice setting, where indi-
vidual probability distributions are aggregated into a social
probability distribution. However, these authors did not as-
sume that agents have utility functions, so properties such
as truthfulness were not considered.7 Intriligator provided
a characterization of the average rule, which was later cor-
rected by Rice. Other similar models include probabilistic
opinion pooling (Genest and Zidek 1986; Clemen 1989) and
belief aggregation (Varloot and Laraki 2022). Specifically,
in the model of Varloot and Laraki, the candidates are lin-
early ordered: for example, candidate cj may represent an
earthquake of magnitude j. Then, an agent who predicts the
outcome c3 with probability 1 would prefer the outcome c5
with probability 1 to the outcome c7 with probability 1, even
though the ℓp distance is the same in both cases.

3 Fair Mixing
In budget aggregation, both the input and output are in
the form of distributions. However, the most common in-
put formats in voting are approval preferences (also known
as dichotomous or binary preferences) and ranked prefer-
ences (also known as ordinal preferences). The problem of
computing a desirable output distribution in this setting has
been referred to as fair mixing or portioning, with the case
of approval preferences receiving significant attention. Ap-
proval preferences are not only simple—since each agent
only needs to specify whether she approves each candidate
or not—but are also expressive, allowing agents to approve
as many (or as few) candidates as they wish.

In the model of fair mixing with approval preferences,
each agent i ∈ N submits her approval set Ai ⊆ C,
which indicates the set of candidates that she approves.
Agent i’s utility for a distribution x ∈ ∆m is defined as
ui(x) :=

∑
j : cj∈Ai

xj , that is, the total amount that x as-
signs to candidates approved by i. We remark that this model
can be seen as a variant of budget aggregation under ℓ1 util-
ities. To see this, observe that ℓ1 utilities are equivalent to
overlap utilities given by ui(x) :=

∑
j∈[m] min(xj , si,j)

7Intriligator (1973) considered a property called “Pareto opti-
mality”, but his definition is very different from the standard usage.



(Goel et al. 2019). Indeed, this equivalence holds because∑
j∈[m] |xj − si,j | = 2 − 2

∑
j∈[m] min(xj , si,j), which

follows from the relation∑
j∈[m]

|xj − si,j |+ 2
∑
j∈[m]

min(xj , si,j)

=
∑
j∈[m]

(xj + si,j) =
∑
j∈[m]

xj +
∑
j∈[m]

si,j = 2.

Therefore, one can view fair mixing as a version of budget
aggregation that lets each agent i choose a subset of can-
didates fully (i.e., set si,j = 1 for such candidates cj) and
derive utility min(xj , si,j) = xj for these candidates.

Bogomolnaia, Moulin, and Stong (2005) initiated the
study of fair mixing with approval preferences. They intro-
duced the concept of individual fair share (IFS),8 which re-
quires each of the n agents to receive utility at least 1/n.
These authors showed that no rule can simultaneously sat-
isfy anonymity, neutrality, truthfulness, Pareto optimality,
and IFS. However, they proved that the utilitarian rule satis-
fies all of these properties except IFS, whereas the random
priority rule, which selects an ordering of the agents uni-
formly at random and maximizes the utilities lexicographi-
cally, satisfies a weaker version of Pareto optimality along
with the four remaining properties.

Duddy (2015) subsequently noted that, while IFS guar-
antees fairness for individual agents, it does not do the
same for groups. For example, consider an instance with
m = 2 candidates and n = 100 agents, where 51 agents
approve only c1 and 49 approve only c2. The outcome that
assigns 0.99 to c1 and 0.01 to c2 satisfies IFS, but is intu-
itively unfair to the latter group. To address this, Duddy pro-
posed a strengthening of IFS called group fair share (GFS),9
which requires that for any subset of agents N ′ ⊆ N , the
candidates approved by at least one member of N ′ must
collectively receive a total amount of at least |N ′|/n in
the outcome. Duddy showed that GFS is compatible with
anonymity, neutrality, truthfulness, and Pareto optimality if
and only if n ≤ 4 or m ≤ 3. Michorzewski, Peters, and
Skowron (2020) quantified the loss of utilitarian welfare in-
curred by imposing fairness constraints such as IFS and GFS
using the “price of fairness” framework.10 Tang, Wang, and
Zhang (2020) extended this analysis to egalitarian welfare,
defined as the minimum utility obtained by any agent.

Aziz, Bogomolnaia, and Moulin (2020) highlighted three
rules with notable axiomatic guarantees in this model, all
of which satisfy anonymity, neutrality, and IFS. Firstly, the
egalitarian rule (EGAL) selects a distribution that maxi-
mizes the minimum utility among all agents. If multiple
such distributions exist, it breaks ties in a leximin manner:
by maximizing the second-smallest utility, then the third-
smallest, and so on. In addition to being Pareto optimal,

8Referred to as the fair welfare share in their original work.
9Duddy referred to this as the proportional share. Note that IFS

imposes the same requirement only in the case where |N ′| = 1.
10The price of fairness has been extensively studied in fair divi-

sion, with respect to both utilitarian and egalitarian welfare (Cara-
giannis et al. 2012; Aumann and Dombb 2015; Bei et al. 2021).

EGAL satisfies a weakening of truthfulness known as exclud-
able truthfulness, which ensures that an agent cannot bene-
fit by misreporting her preference assuming that she is ex-
cluded from deriving utility from candidates she reportedly
disapproves. Secondly, under the conditional utilitarian rule
(CUT), each agent considers her approved candidates that
are also approved by the largest number of other agents, and
splits her “share” of 1/n uniformly among these candidates.
CUT satisfies truthfulness and GFS, but fails Pareto opti-
mality. Lastly, the maximum Nash welfare rule (MNW) re-
turns a distribution that maximizes the product of the agents’
utilities, a quantity known as Nash welfare.11 While MNW
satisfies Pareto optimality as well as strong fairness proper-
ties including GFS, it violates excludable truthfulness.

The trade-off between efficiency, truthfulness, and fair-
ness is evident in the results of Bogomolnaia, Moulin, and
Stong (2005) and Aziz, Bogomolnaia, and Moulin (2020).
Brandl et al. (2021) strengthened the impossibility result of
Bogomolnaia et al. by showing that IFS can be weakened
to positive share, which only requires each agent to receive
nonzero utility, and that anonymity and neutrality can be
dropped altogether.
Theorem 3 (Brandl et al. 2021). In fair mixing with ap-
proval preferences, no rule satisfies truthfulness, Pareto op-
timality, and positive share.

Interestingly, the proof of this result was obtained using
a computer-aided technique and involves analyzing 386 in-
stances.12 The result holds for n ≥ 6 agents and m ≥ 4
candidates, and both bounds are tight. When anonymity and
neutrality are assumed, Brandl et al. (2021) provided a sim-
pler proof for the case of n = 5 and m = 4.

A model closely related to fair mixing is donor coordina-
tion, in which the resources to be distributed (e.g., money)
are owned by the agents themselves (Brandl et al. 2022;
Brandt et al. 2025). In this setting, a key goal of a distri-
bution rule is to incentivize agents to contribute their re-
sources to the shared pool rather than spending them on their
own. Notably, an agent who withholds her contribution can
still derive utility from the allocation of resources to her ap-
proved candidates. Brandl et al. (2022) formalized this goal
of a distribution rule via the notion of contribution incentive-
compatibility, which requires that for each agent, contribut-
ing her resource to the pool and benefiting from the distribu-
tion returned by the rule (with her preference) yields no less
utility than spending her resource on her own and benefit-
ing from the distribution that the rule chooses (without her
preference). As their main result, Brandl et al. showed that
MNW satisfies contribution incentive-compatibility. Since
MNW violates truthfulness, or even its weakening called
monotonicity—which demands that if an agent approves an
additional project, the amount given to that project should
not decrease—this raises the following question.
Open problem 4. In fair mixing with approval preferences
and private endowments, does there exist a rule that satisfies

11Aziz, Bogomolnaia, and Moulin (2020) referred to this rule as
max Nash product.

12For an overview of computer-aided methods in social choice,
we refer to the survey by Geist and Peters (2017).



Pareto optimality, monotonicity, and contribution incentive-
compatibility?

Aziz et al. (2025) introduced the “maximum payment
rule”, which allows each agent to control an equal part of
the budget. In each step, the rule identifies a candidate cj
approved by the maximum number of agents who have not
spent their budget, and allocates the entire budget of these
agents to cj . Aziz et al. showed that the maximum payment
rule satisfies consistency and monotonicity properties along
with approximate fairness guarantees. Moreover, they inves-
tigated a broader class of sequential payment rules.

Besides approval preferences, fair mixing has also been
studied in the context of ranked preferences. Airiau et al.
(2023) considered a setting in which each agent submits a
strict ranking over the candidates. They introduced “posi-
tional social decision schemes”, which are rules that con-
vert each input ranking into candidate scores and then se-
lect a distribution that maximizes a welfare function based
on these scores. In addition to analyzing standard social
choice properties, Airiau et al. examined computational as-
pects of these rules and identified score conversion schemes
that guarantee rational-valued outcome distributions. With
ranked preferences, the setting is formally equivalent to
probabilistic social choice, a rich and well-established do-
main by itself (Brandt 2017). However, in probabilistic so-
cial choice, the outcome distribution is viewed as a random
device for implementing a single outcome. As such, it is de-
sirable for a rule to randomize as little as possible, and fair-
ness notions become less relevant.

Finally, we remark that some authors have explored fair
mixing beyond approval or ranked preferences (Fain, Goel,
and Munagala 2016; Kroer and Peters 2025).

4 Cake Sharing
In both budget aggregation and fair mixing, there is a dis-
crete set of candidates C = {c1, . . . , cm}. By contrast, in
cake sharing, which is a public-good counterpart of cake
cutting (cf. Section 1), the candidate itself is continuous. As
is standard in cake cutting, this candidate is represented by
the unit interval C = [0, 1].

The model of cake sharing was introduced by Bei, Lu,
and Suksompong (2025), who studied it for approval pref-
erences, also known as “piecewise uniform utilities” in the
cake-cutting literature. Specifically, each agent i ∈ N sub-
mits an approval set Ai ⊆ [0, 1] corresponding to a piece
of cake, i.e., a union of finitely many intervals. Moreover,
there is a given parameter α ∈ (0, 1). An aggregation rule
maps any approval instance to a piece of cake of length at
most α. The utility of an agent i for a piece of cake S is
ui(S) := ℓ(S ∩Ai), where ℓ(·) denotes the length function.
Observe that cake sharing is a generalization of fair mixing
(with approval preferences). Indeed, one can let the interval
[(j − 1)/m, j/m] represent candidate cj for each j ∈ [m],
require each agent to approve any such interval either in its
entirety or not at all, and set α = 1/m to ensure that the
chosen fractions of the intervals sum up to 1. Similarly, cake
sharing also generalizes budget aggregation (with ℓ1 prefer-
ences), as we can let agent i approve the first si,j-fraction of

the interval [(j − 1)/m, j/m]; this allows us to assume that
the output cake contains a prefix of each of these intervals.

Bei, Lu, and Suksompong (2025) considered both EGAL
and MNW, defined analogously to their counterparts in fair
mixing (Section 3). Both rules are Pareto optimal by defini-
tion. For EGAL, Bei et al. extended the fact that it satisfies
excludable truthfulness from fair mixing to cake sharing.
Theorem 4 (Bei, Lu, and Suksompong 2025). In cake shar-
ing with approval preferences, EGAL satisfies excludable
truthfulness.

As for MNW, the result of Aziz, Bogomolnaia, and
Moulin (2020) from fair mixing implies that it violates ex-
cludable truthfulness in cake sharing. Bei et al. strengthened
this result by showing that the violation remains even if each
agent is only allowed to report a subset of her true desired
piece. In contrast, MNW fares better than EGAL when it
comes to fairness: it satisfies the notion of average fair share
(AFS), which is stronger than the natural adaptation of ex-
tended justified representation (EJR) from multiwinner vot-
ing. Moreover, it is the only rule within the class of “welfare-
maximizer rules” that satisfies either of these notions.

A promising future avenue is to explore cake sharing be-
yond approval preferences. In this context, a particularly in-
triguing fairness notion to investigate is the core. An out-
come belongs to the core if no subset of agents N ′ ⊆ N can
choose a piece of cake of length α · |N ′|/n in such a way
that no agent in the subset becomes worse off and at least
one agent becomes better off. In fair mixing with approval
preferences, Aziz, Bogomolnaia, and Moulin (2020) showed
that MNW always returns an outcome in the core.
Open problem 5. In cake sharing (not necessarily with ap-
proval preferences), is the core always non-empty?

Lu et al. (2024) proposed a more general model which
combines cake sharing with multiwinner voting by allowing
both divisible and indivisible candidates. Again focusing on
approval preferences, they presented adaptations of the EJR
notion and multiwinner voting rules to their setting.

5 Conclusion
As we have seen throughout this survey, despite the predom-
inant emphasis of the voting literature on discrete scenarios,
voting in divisible settings constitutes a rich and distinct do-
main in its own right. The models of budget aggregation, fair
mixing, and cake sharing are each fundamental and deserv-
ing of further study. In light of the relationships among these
models, results established in one model can sometimes be
translated to corresponding results in the others.

A recurring direction for future research is to investigate
broader preference classes, such as those beyond approval
or ℓ1 preferences. Another common consideration in practi-
cal applications is the presence of constraints—for instance,
there may be limits on the amount that each candidate can
receive (Suzuki and Vollen 2024; Kroer and Peters 2025).
Last but not least, it would be valuable to explore how in-
sights from continuous contexts could be applied to discrete
domains; an example is the adaptation of moving-phantom
rules (Freeman et al. 2021) to discrete budget aggregation
(Schmidt-Kraepelin, Suksompong, and Utke 2025).
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