
A Real-time Monocular Vision-based 3D Mouse System

Sifang Li, Wynne Hsu, Pung H. K.
Department of Information Systems and Computer Science

National University of Singapore
Singapore 119260

Abstract

Speed, robustness, and cost are three important factors that determine the success of a vision-
based human-computer interaction system. In our system, we introduce a scheme that uses only
one camera (together with a mirror) to derive the 3D coordinates of a target object. To ensure a
more natural interaction between the human and the computer, our system allows the user to use
his/her bare fingers to point to any position in the 3D space. In addition, robustness and speed is
achieved through the use of the chain-code algorithm. The accuracy of the results is improved
through the use of suitable post-processing filters. The performance of our system is thoroughly
evaluated.

1 Introduction

With the increased popularity of 3D applications, researchers are focusing more and
more on efficient yet cost effective 3D interaction solutions. Most existing 3D
interaction solutions are electromagnetic-based. One example of an eletromagentic-
based 3D input device is the DataGlove. Compared to electromagnetic 3D input
devices, the chief advantage of a vision-based solution is that it frees the user from
any form of physical attachment that may constraint his/her movement. The vision-
based approach has attracted much effort in computer vision fields [1]-[7]. However,
current vision-based solutions are too sensitive and computationally too expensive
for practical applications, and many of them impose unacceptable constraints on the
user. In this paper, we propose a novel 3D vision-based solution using only one
camera and a mirror. A number of experiments have been performed to show that our
solution is robust to movement; has a fast pick -up rate so as to allow the user’s hand
to move in and out of the scene just as s/he tends to pick up a normal 2D mouse now
and then; and has a low computational cost – thus resulting in fast response time. In
addition, it is also robust to false recognition. This is important because no
algorithm is able to achieve 100% accuracy rate. Thus, recovery from false
recognition is critical. Finally, since our solution uses only one camera and one
mirror, it satisfies the low cost criterion.

 2 Related Work
Vision-based 3D mouse was mentioned a number of times in recent publications.
Most of them rely on 2D shape models [2,3] (Kalman Snakes [8]) or 3D anatomic
models [4]-[6] to guide in deriving the measurements of an image. Movement

models such as smoothness, slowness, affinity or periodic properties have also been
used to predict the next model state. However, when it comes to applying these
models in practical human computer interaction (HCI) applications, a number of
problems surface. The first problem is the difficulty in initiating the model. For
practical HCI application, the user’s hand should be allowed to re-enter the scene
easily. This implies that model initiation needs to be done each time the user re-
enters the scene. Such initiation is very expensive without introducing additional
constraints such as fixed background [4]-[7] or arranged initialization area [2,3]. The
second problem is the inability to restore from false recognition. In the model-based
approach, estimation of the image is directly computed from the previous result. If
the result is false due to the inaccuracy of the feature measurement, lock-loss is
possible. Once the lock is lost, regaining the lock is difficult because the initiation
of the model is expensive. In [2], learning is used to prevent lock losing, but this only
applies to those movements which are used to train the system. Given the fact that
the false recognition in a vision-based system is inevitable and the user’s movement
cannot be constrained too much, model-based approach is not suitable for our
application.
To reduce hardware cost, people try to use only one camera to extract 3D position
instead of stereo camera systems [3,7]. Monocular 3D position detection has been
addressed in the literature [2,4,5,6]. Their approaches fall into two broad categories:
i. Using depth cues to restore 3D depth information indirectly
The cues can be used are shape size, shading and texture. In [2] the area within the
hand contour is used as the depth cue. This approach assumes the hand doesn’t turn
around before the camera. We can not expect that using size, shading and texture as
depth cue can provide accurate outputs.
ii. Using relative 3D structure to restore the depth
[4]-[6] are examples which try to restore the detailed hand or arm gestures using 3D
hand or arm models. After the 3D model being successfully restored, one part of the
model’s 3D position can be determined by introducing some constraints (static
should [4]; palm on a plane [6]). The constraints introduced in these works are too
strong from the user’s point of view. Actually in [4], the author also mentioned that
users could not maintain their shoulder static at all and the shoulder’s movement
caused significant error in the final 3D coordinate outputs.

3 System Setup and Architecture

3.1 System Setup
To accurately determine the 3D position of an object, we need at least two views. In
our system, a novel method using one camera and a mirror is introduced. The
physical setup is shown in Figure 1. A video camera (VC) is placed at an angle of 45°
to the mirror. We build up XYZ and UVW coordinate systems in the 3D space. XY
plane is actually VC’s image plane and UW plane is parallel to the mirror. The output
of our 3D mouse refers to the UVW system, which is more natural for the user,
instead of XYZ. A (real) object is presented somewhere in the space, we are going to
derive the 3D coordinates of it.

r

vPhysical
image

(magnified)

o

Figure 1. The System Setup.

On the XY plane, let the projection of the real object be (xr, yr) and the projection of
the mirror image be (xv, yv). We call this mirror image the corresponding virtual
object of the real object. Let’s assume that we also know the projection (xvc’, yvc’) of
the virtual camera VC’. We can then decide the 3D position of the real object by
using these three projections - (xr, yr), (xv, yv) and (xvc’, yvc’).
It’s straightforward that the X and Y positions of the real object are xr and yr
respectively. From the symmetric property provided by the mirror, we have
z = xvc’ - xv.
By a simple geometry transform, we transform the real object’s XYZ co-ordinates
into the UVW coordinate system (see Figure 1) where P is the translation vector that
maps the origin of the XYZ coordinate system to the origin of the UVW coordinate
system.

u
v
w

x
y
z

P
x
y

x x
P

r

r

vc v

















=

−

− −























•

















+ =

−

− −























•
−

















+

sin cos

cos sin

sin cos

cos sin

'

π π

π π

π π

π π
4

0
4

4
0

4
0 1 0

4
0

4

4
0

4
0 1 0

(1)
Consider the starting point O(0,0,0) of UVW system. We denote the XY coordinates
of the projection of O and the projection of its corresponding virtual object as (xr0,
yr0) and (xv0, yv0), respectively.
From (1), we have (2).

0

0
0

4
0

4

4
0

4
0 1 0

0

0

0

















=

−

− −























•
−

















+

sin cos

cos sin

'

π π

π π
x

y
x x

P
r

r

vc v

(2)
Subtract (2) from (1), we get (3).

u
v
w

x x
y y
x x

r r

r r

v v

















=

−

− −























•
−
−

− −

















sin cos

cos sin
()

π π

π π
4

0
4

4
0

4
0 1 0

0

0

0

(3)
Now we can restore the 3D position of the object using (3) provided we know the
XY projections of the following points: UVW origin O and its mirror image, the
object and the virtual object. Because the XY plane is actually the video camera
image plane, we can consider a physical video image frame is miniature of the
projections of all things before the camera (A orthographic camera model is
assumed here) . So any point’s projection can be found in the video image, if the
camera can “see” the point.
After we set up the system, (xr0, yr0) and (xv0, yv0) are fixed. As long as the camera can
“see” the object (xr, yr) and its virtual object (xv, yv), we know the object’s 3D co-
ordinates in UVW system using (3). With this method, we merely need one camera
to obtain the accurate 3D position. This results in substantial cost saving.

3.2 Overview of the System Architecture
Figure 2 shows an overview of the system architecture. The initialization module is
responsible for building up the background models describing the intensities
properties of each background pixel. Next, a target object is introduced into the
scene and an object model is built for this target. When all models have been built,
the chain-code algorithm is invoked to detect the contour of the target object. This
contour is then analyzed and interpreted. Finally, post-processing is performed to
obtain a more accurate 3D position of the target object. In our implementation, the
target object is a human hand. The index finger is used to specify the desired 3D
position while the thumb is used to specify the desired operation. For example, an
erected thumb signifies the releasing of the mouse button while a bent thumb
signifies the pressing of the mouse button (see Figure 3).

 Initialization
 Module

 Contour
 Detection

 Contour
 Analysis

 Post-Processing

3.3 Initialization Module
Background knowledge is probably the most powerful knowledge in video
segmentation. In our system, we assume a fixed but complex background, and instead

Figure 2. Overview of System Architecture Figure 3. The Two Thumb States

of using the hand shape knowledge, we use prior background and hand intensity
knowledge to perform feature measurement, which guarantees the robustness for a
practical 3D mouse. The background and hand intensity knowledge are modeled
using simple Gaussian models. To learn the background models, an initial startup
time of n continuous frames is required to build the Gaussian models:

m x y
n

i x y x y
n

i x y i x y m x y m x yk

k

n

k

k

n
T

k
T(,) (,) , (,) (,) (,) (,) (,)= = −

=

−

=

−

∑ ∑1 1

0

1
2

0

1

σ (4)

where i is the intensity vector expressed in RGB space.
Based on the background Gaussian models, a single Gaussian model describing the
hand intensity is built up by placing the hand before the learned background. Hand
pixel segmentation is achieved by:

{f x y
i x y if m x y i x y x y

if m x y i x y x y
(,)

(,), (,) (,) (,)
, (,) (,) (,)

=
− >

− ≤
τσ

τσ0

(5)
where τ is the threshold value.
After the segmentation, the Gaussian model for all hand pixels can be built in a
similar way:

m
n

f x y
n

f x y f x y m mh
h f x y

h
h f x y

T

h
T

h= = −
≠ ≠

∑ ∑1 1

0

2

0

(,) , (,) (,)
(,) (,)

σ (6)

where nh is the total number o f non-zero pixels in segmented image f.
Using these models, we can classify all the pixels in an image by thresholding (7).

P I H
P I B

i m i m

h

h

h

(|)
(|)

exp()=
−

−
−σ

σ σ σ

2

2

2

22 2
 (7)

where H, B and I denote the following events respectively: the pixel belongs to the
hand (H); the pixel belongs to the background (B) and the pixel intensity is I (I).
Figure 4 shows the results when we compute (7) over all image pixels. The pixel
brightness reflects the magnitude of the results (value of the right side of (7)). The
bright area in the figure is the hand and its mirror image with some noise caused by
the shade and illumination. Some pixels in the hand is not very bright because they
are too similar to the local background.

3.4 Detection of Hand Contour
The chain code algorithm [10] does not require any prior shape knowledge is thus
robust to fast and drastic changes in shape. Note that the chain code generation are
usually carried out on a grid that is imposed on the image. In [11], Scholten et. al
proved theoretically that a hexagonal grid can describe a curve more accurately as
compared to the triangle or square grid. The chain coding algorithm on hexagonal
grid is given below.
Algorithm chain-code
Let N and V be two functions where

Nj(C) returns the j th neighbor of vertex C, and
V(Ci,Cj) = t, if C i is the t th neighbor of Cj;
V(Ci,Cj) = -1, otherwise;

Given the initial contour queue “C0C1,” the algorithm is:
1. k=1;
2. t=V(Ck, Ck-1);
3. j=(t+3) mod 12 ;
4. Ck+1= N j(Ck);
 if (Ck+1 in the boundary) goto 6;
 else j=(j-1) mod 12;
5. goto 4

6. add Ck+1 to the contour queue, k=k+1;
 if (Ck=C0) then halt;
7. goto 2

In Figure 4, we make all pixels above the dotted line hand pixels, thus we apply the
above algorithm on the image and constrain the algorithm to search the whole image
from left to right instead of terminating too early. The detected contour is shown in
black solid line in Figure 4.

Hand

Line
passing
finger
tips

Hand’s
mirror
image

Dotted
line

4 Contour Analysis

To achieve real -time performance, the de tected contour is not analyzed in an
elaborated manner. To obtain the position of the index finger tip, we constrain the
user’s index finger tip to be farthest point from the dotted line. After the rough
position of the two index finger tips (the real finger and its mirror image) are
detected from Figure 4, we still use the similar chain coding algorithm on a denser
square grid to search for more accurate finger tip positions in the neighborhood
based on the rough finger tip positions. Because only a small neighborhood needs to
be searched, the search is very fast.
After that, the thumb state detection is done by measure finger tip features. Using
the discovered index finger tip position as reference, we “guess” a range within the
contour whereby the thumb must lie. If the contour bends significantly within the
selected range, we say that the thumb has been found.

5 Post-processing

Figure 4. The Hand Contour.

Figure 5. A Simulated 3D Room

After the finger tips are fixed, (3) is used to restore the 3D coordinates of the finger
tip thus a stream of 3D coordinate signals is generated from the video stream. Due
to the incorrect detection or noise, the signals generated are not stable thus need to
be post-processed.

5.1 Screening the False Signals
From the geometry constraint provided by our setup, we find all straight lines, that
pass through the real finger (R’) and its mirror image (V’) (the white solid line in
Figure 4), converge to single point in the image plane [12]. This properties is used to
filter out most false signals. In our experiment, less than 5% of the raw signals are
filtered by this constraint. When a signal has been filtered, there is a “hole” in the
signal stream. Such holes are filled by the predictions of Kalman filters (see below).

5.2 Kalman Filtering and Adaptive Filtering
A set of linear Kalman filters are used both to suppress the Gaussian noise in the
signal and to make predictions for the holes in the signal. To ensure a more stable
signal with short delay, a set of adaptive filters are also used to smooth the signal.

6 System performance

A 3D mouse application (Figure 5) is built to demonstrate the final performance of
our system on a SGI Indy workstation. A simulated 3D room with several cubes
inside the room is displayed on the screen. User is asked to manipulate the cubes in
3D space and arrange the cubes in some pre-defined patterns.
• Sampling rate -- Because only the boundary pixels are analyzed, the

computation cost is low and we are able to achieve a rate of 25 frames per
second (each frame is 640X480).

• Robustness -- We tested the system with different backgrounds, hand sizes,
hand colors, and even with hands holding objects. The test results indicate that
our system is robust to dramatic shape changes, fast movements, and frequent
re-entry. A experiment in which a hand is doing fast (1-2 Hz) circular movement
before a clustered background is shown in Figure 6. The results indicate that our
system are able to follow the finger tip in real-time and the output are relatively
stable and smooth. Since false recognition has little effect on the later frames
recognition, it doesn’t have lock loss problem which is quite normal in strong
model approach (see results in [2]).

• Resolution -- We map the 3D coordinates into a 320x240x200 space. Because
of finger thickness, the hand shaking and noise, we achieved an 80x60x100
effective resolution, that is to say the user can effectively specify 80x60x100
positions in 3D space. This result is good enough for most entertainment and
education applications.

• Lag -- The lag in our system is mainly caused by the Kalman filters and adaptive
filters which are used to stabilize the signal. This lag in our system is 0.08 -
0.16 sec. The lag is acceptable from the user’s point of view.

7 Conclusions
We have proposed a novel low cost system setup to achieve accurate 3D position
and address the constraint provided by the setup. Using the setup, a practical 3D
mouse is designed and implemented. Successful post-processing utilizing the
constraint provided by the setup is applied to stabilize the outputs. Experimental
results show that our system satisfies the requirements for a robust and user friendly
3D input device.

8 0

-80

4 0

-40

80 f rame4 0

V

U

W

Figure 6. An Example of Clustered Background.

REFERENCES

1. F. K. H. Quek, “Eyes in the Interface,” Image and Vision Computing, Vol. 13,

No. 6, Aug. 1995. pp. 511-525.
2. A. Blake, M. Isard and D. Reynard, Learning to Track the Visual Motion of

Contours, Artificial Intelligence, Vol 78, 1995, pp. 101-133.
3. R. Cipolla and N.J. Hollinghurst. Human--robot interface by pointing with

uncalibrated stereo vision. Image and Vision Computing, 14(3):171--178,
1996.

4. L. Goncalves and E. D. Bernardo, Monocular tracking of the human arm in 3D,
Proc. Of 15 th International Conference on Computer Vision, 1995, pp 764-
770.

5. J. Kuch and T. Huang, Virtual Gun: A Vision Based Human Computer Interface
Using the Human Hand, Proc. IAPR Workshop on Machine Vision Application,
Tokyo, 1994, pp. 196-199.

6. J. Rehg, DigitEyes: Vision-Based Human Hand Tracking for Human-Computer
Interaction, Proc. of the 1994 IEEE Workshop on Motion of Non-rigid and
Articulated Objects. 1994, pp. 16-22.

7. A. Utsumi Real-time Hand Gesture Recognition System, Proc. of ACCV'95,
1995, pp. 249-253.

8. M. Kass, A. Witkin, and D. Terzopoulos Snakes: Active Contour Models, Proc.
Ist Int. Conf. On Computer Vision, 1987, pp. 259-268.

9. C. R Wren., A. Azarbayejani, and A. Pentland, “Pfinder: Real -time Tracking of
the Human Body,” Proc. of the 2nd International Conference on Automatic
Face and Gesture Recognition, 1996.

10. Freeman, H., “Computer Processing of Line-drawing Data,” Comput. Surveys, v.
6, Mar. 1974, pp. 57-59.

11. D. K. Scholten and S. G. Wilson Chain Coding with Hexagonal Lattice, IEEE
Trans. PAMI, No. 5, Sept. 1983, pp. 526-533.

12. Sifang, Li, A Vision-based 3D Mouse, MSc. Thesis, National University of
Singapore, 1997.

