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Abstract   
 
Speed, robustness, and cost are three important factors that determine the success of a vision-
based human-computer interaction system. In our system, we introduce a scheme that uses only 
one camera (together with a mirror) to derive the 3D coordinates of a target object. To ensure a 
more natural interaction between the human and the computer, our system allows the user to use 
his/her bare fingers to point to any position in the 3D space. In addition, robustness and speed is 
achieved through the use of the chain-code algorithm. The accuracy of the results is improved 
through the use of suitable post-processing filters. The performance of our system is thoroughly 
evaluated.    
 
1 Introduction 
 
With the increased popularity of 3D applications, researchers are focusing more and 
more on efficient yet cost effective 3D interaction solutions. Most existing 3D 
interaction solutions are electromagnetic-based. One example of an eletromagentic-
based 3D input device is the DataGlove. Compared to electromagnetic 3D input 
devices, the chief advantage of a vision-based solution is that it frees the user from 
any form of physical attachment that may constraint his/her movement. The vision-
based approach has attracted much effort in computer vision fields [1]-[7]. However, 
current vision-based solutions are too sensitive and computationally too expensive 
for practical applications, and many of them impose unacceptable constraints on the 
user. In this paper, we propose a novel 3D vision-based solution using only one 
camera and a mirror. A number of experiments have been performed to show that our 
solution is robust to movement; has a fast pick -up rate so as to allow the user’s hand 
to move in and out of the scene just as s/he tends to pick up a normal 2D mouse now 
and then; and has a low computational cost – thus resulting in fast response time. In 
addition, it is also robust to false recognition. This is important because no 
algorithm is able to achieve 100% accuracy rate. Thus, recovery from false 
recognition is critical. Finally, since our solution uses only one camera and one 
mirror, it satisfies the low cost criterion.  
 
 2 Related Work  
Vision-based 3D mouse was mentioned a number of times in recent publications. 
Most of them rely on 2D shape models [2,3] (Kalman Snakes [8]) or 3D anatomic 
models [4]-[6] to guide in deriving the measurements of an image. Movement 



models such as smoothness, slowness, affinity or periodic properties have also been 
used to predict the next model state. However, when it comes to applying these 
models in practical human computer interaction (HCI)   applications, a number of 
problems surface. The first problem is the difficulty in initiating the model. For 
practical HCI application, the user’s hand should be allowed to re-enter the scene 
easily. This implies that model initiation needs to be done each time the user re-
enters the scene. Such initiation is very expensive without introducing additional 
constraints such as fixed background [4]-[7] or arranged initialization area [2,3]. The 
second problem is the inability to restore from false recognition. In the model-based 
approach, estimation of the image is directly computed from the previous result. If 
the result is false due to the inaccuracy of the feature measurement, lock-loss is 
possible. Once the lock is lost, regaining the lock is difficult because the initiation 
of the model is expensive. In [2], learning is used to prevent lock losing, but this only 
applies to those movements which are used to train the system. Given the fact that 
the false recognition in a vision-based system is inevitable and the user’s movement 
cannot be constrained too much, model-based approach is not suitable for our 
application.  
To reduce hardware cost, people try to use only one camera to extract 3D position 
instead of stereo camera systems [3,7]. Monocular 3D position detection has been 
addressed in the literature [2,4,5,6]. Their approaches fall into two broad categories: 
i.  Using depth cues to restore 3D depth information indirectly 
The cues can be used are shape size, shading and texture. In [2] the area within the 
hand contour is used as the depth cue. This approach assumes the hand doesn’t turn 
around before the camera. We can not expect that using size, shading and texture as 
depth cue can provide accurate outputs.   
ii. Using relative 3D structure to restore the depth 
[4]-[6] are examples  which try to restore the detailed hand or arm gestures using 3D 
hand or arm models. After the 3D model being successfully restored, one part of the 
model’s 3D position can be determined by introducing some constraints (static 
should [4]; palm on a plane [6]). The constraints introduced in these works are too 
strong from the user’s point of view. Actually in [4], the author also mentioned that 
users could not maintain their shoulder static at all and the shoulder’s movement 
caused significant error in the final 3D coordinate outputs. 
 
3 System Setup and Architecture  
 
3.1  System Setup 
To accurately determine the 3D position of an object, we need at least two views. In 
our system, a novel method using one camera and a mirror is introduced. The 
physical setup is shown in Figure 1. A video camera (VC) is placed at an angle of 45° 
to the mirror. We build up XYZ and UVW coordinate systems in the 3D space. XY 
plane is actually VC’s image plane and UW plane is parallel to the mirror. The output 
of our 3D mouse refers to the UVW system, which is more natural for the user, 
instead of XYZ. A (real) object is presented somewhere in the space, we are going to 
derive the 3D coordinates of it.  
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Figure 1. The System Setup. 

 
On the XY plane, let the projection of the real object be (xr, yr) and the projection of 
the mirror image be (xv, yv). We call this mirror image the corresponding virtual 
object  of the real object. Let’s assume that we also know the projection (xvc’, yvc’) of 
the virtual camera VC’. We can then decide the 3D position of the real object by 
using these three projections - (xr, yr), (xv, yv) and (xvc’, yvc’). 
It’s straightforward that the X and Y positions of  the real object are xr and yr 
respectively. From the symmetric property provided by the mirror, we have  
z = xvc’ - xv. 
By a simple geometry transform, we transform the real object’s XYZ co-ordinates 
into the UVW coordinate system (see Figure 1) where P is the translation vector that 
maps the origin of the XYZ coordinate system to the origin of the UVW coordinate 
system.  
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(1) 
Consider the starting point O(0,0,0) of UVW system. We denote the XY coordinates 
of the projection of O and the projection of its corresponding virtual object as (xr0, 
yr0) and (xv0, yv0), respectively. 
From (1), we have (2). 
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(2) 
Subtract (2) from (1), we get (3). 
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(3) 
Now we can restore the 3D position of the object using (3) provided we know the 
XY projections of the following points: UVW origin O and its mirror image, the 
object and the virtual object. Because the XY plane is actually the video camera 
image plane, we can consider a physical video image frame is miniature of the 
projections of all things before the camera (A orthographic camera model is 
assumed here) . So any point’s projection can be found in the video image, if the 
camera can “see” the point.  
After we set up the system, (xr0, yr0) and (xv0, yv0) are fixed. As long as the camera can 
“see” the object (xr, yr) and its virtual object (xv, yv), we know the object’s 3D co-
ordinates in UVW system using (3). With this method, we merely need one camera 
to obtain the accurate 3D position. This results in substantial cost saving.  
 
3.2  Overview of  the System Architecture 
Figure 2 shows an overview of the system architecture. The initialization module is 
responsible for building up the background models describing the intensities 
properties of each background pixel. Next, a target object is introduced into the 
scene and an object model is built for this target. When all models have been built, 
the chain-code algorithm is invoked to detect the contour of the target object. This 
contour is then analyzed and interpreted. Finally, post-processing is performed to 
obtain a more accurate 3D position of the target object. In our implementation, the 
target object is a human hand. The index finger is used to specify the desired 3D 
position while the thumb is used to specify the desired operation. For example, an 
erected thumb signifies the releasing of the mouse button while a bent thumb 
signifies the pressing of the mouse button (see Figure 3).  
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3.3  Initialization Module  
Background knowledge is probably the most powerful knowledge in video 
segmentation. In our system, we assume a fixed but complex background, and instead 

Figure 2. Overview of System Architecture Figure 3. The Two Thumb States 
 



of using the hand shape knowledge, we use prior background and hand intensity 
knowledge to perform feature measurement, which guarantees the robustness for a 
practical 3D mouse. The background and hand intensity knowledge are modeled 
using simple Gaussian models. To learn the background models, an initial startup 
time of n continuous frames is required to build the Gaussian models: 
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where i is the intensity vector expressed in RGB space.  
Based on the background Gaussian models, a single Gaussian model describing the 
hand intensity is  built up by placing the hand before the learned background. Hand 
pixel segmentation is achieved by:  
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(5)                                              
where τ is the threshold value. 
After the segmentation, the Gaussian model for all hand pixels  can be built in a 
similar way:  
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where nh is the total number o f non-zero pixels in segmented image f.  
Using these models, we can classify all the pixels in an image by thresholding (7). 
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where H, B and I denote the following events respectively: the pixel belongs to the 
hand (H); the pixel belongs to the background (B) and the pixel intensity is I (I).  
Figure 4 shows the results when we compute (7) over all image pixels. The pixel 
brightness reflects the magnitude of the results (value of the right side of (7)). The 
bright area in the  figure is the hand and its mirror image with some noise caused by 
the shade and illumination. Some pixels in the hand is not very bright because they 
are too similar to the local background.    
 
3.4 Detection of Hand Contour 
The chain code algorithm [10] does not  require any prior shape knowledge is thus 
robust to fast and drastic changes in shape. Note that the chain code generation are 
usually carried out on a grid that is imposed on the image. In [11], Scholten et. al 
proved theoretically that a hexagonal grid can describe a curve more accurately as 
compared to the triangle or square grid. The chain coding algorithm on hexagonal 
grid is given below.  
Algorithm chain-code   
Let N and V be two functions where 

Nj(C) returns  the j th neighbor of vertex C, and 
V(Ci,Cj) = t,  if C i is the t th neighbor of Cj; 
V(Ci,Cj) = -1,  otherwise; 



Given the initial contour queue “C0C1,” the algorithm is: 
1.   k=1; 
2.   t=V(Ck, Ck-1); 
3.   j=(t+3) mod 12 ; 
4.   Ck+1= N j(Ck); 
        if (Ck+1 in the boundary) goto 6;   
        else j=(j-1) mod 12;  
5.     goto 4 

6.     add Ck+1 to the contour queue, k=k+1; 
        if (Ck=C0)  then halt; 
7.     goto 2   
 
In Figure 4, we make all pixels above the dotted line hand pixels, thus we apply the 
above algorithm on the image and constrain the algorithm to search the whole image 
from left to right instead of terminating too early. The detected contour is shown in 
black solid line in Figure 4.   
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4 Contour Analysis 
 
To achieve real -time performance, the de tected contour is not analyzed in an 
elaborated manner. To obtain the position of the index finger tip, we constrain the 
user’s index finger tip to be farthest point from the dotted line. After the rough 
position of the two index finger tips (the real finger and its mirror image) are 
detected from Figure 4, we still use the similar chain coding algorithm on a denser 
square grid to search for more accurate finger tip positions in the neighborhood 
based on the rough finger tip positions. Because only a small neighborhood needs to 
be searched, the search is very fast.  
After that, the thumb state detection is done by measure finger tip features. Using 
the discovered index finger tip position as reference, we “guess” a range within the 
contour whereby the thumb must lie. If the contour bends significantly within the 
selected range, we say that the thumb has been found.  
 
5 Post-processing 
 

Figure 4. The Hand Contour. 
  

Figure 5. A Simulated 3D Room 



After the finger tips are fixed, (3) is used to restore the 3D coordinates of the finger 
tip thus a stream of 3D coordinate signals is generated from the video stream. Due 
to the incorrect detection or noise, the signals generated are not stable thus need to 
be post-processed. 
 
5.1 Screening the False Signals 
From the geometry constraint provided by our setup, we find all straight lines, that 
pass through the real finger (R’) and its mirror image (V’) (the white solid line in 
Figure 4), converge to single point in the image plane [12]. This properties is used to 
filter out most false signals. In our experiment, less than 5% of the raw signals are 
filtered by this constraint. When a signal has been filtered, there is a “hole” in the 
signal stream. Such holes are filled by the predictions of Kalman filters (see below).     
 
5.2 Kalman Filtering and Adaptive Filtering  
A set of linear Kalman filters are used both to suppress the Gaussian noise in the 
signal and to make predictions for the holes in the signal. To ensure a more stable 
signal with short delay, a set of adaptive filters are also used to smooth the signal.  
 
6 System performance  
 
A 3D mouse application (Figure 5) is built to demonstrate the final performance of 
our system on a SGI Indy workstation. A simulated 3D room with several cubes 
inside the room is displayed on the screen. User is asked to manipulate the cubes in 
3D space and arrange the cubes in some pre-defined patterns.  
• Sampling rate -- Because only the boundary pixels are analyzed, the 

computation cost is low and we are able to achieve a rate of 25 frames per 
second (each frame is 640X480).  

• Robustness -- We tested the system with different backgrounds, hand sizes, 
hand colors, and even with hands holding objects. The test results indicate that 
our system is robust to dramatic shape changes, fast movements, and frequent 
re-entry. A experiment in which a hand is doing fast (1-2 Hz) circular movement 
before a clustered background is shown in Figure 6. The results indicate that our 
system are able to follow the finger tip in real-time and the output are relatively 
stable and smooth. Since false recognition has little effect on the later frames 
recognition, it doesn’t have lock loss problem which is quite normal in strong 
model approach (see results in [2]).  

• Resolution -- We map the 3D coordinates into a 320x240x200 space. Because 
of finger thickness, the hand shaking and noise, we achieved an 80x60x100 
effective resolution, that is to say the user can effectively specify 80x60x100 
positions in 3D space. This result is good enough for most entertainment and 
education applications.  

• Lag -- The lag in our system is mainly caused by the Kalman filters and adaptive 
filters which are used to stabilize the signal. This lag in our system is 0.08 - 
0.16 sec. The lag is acceptable from the user’s point of view.   



 
7 Conclusions  
We have proposed a novel low cost system setup to achieve accurate 3D position 
and address the constraint provided by the setup. Using the setup, a practical 3D 
mouse is designed and implemented. Successful post-processing utilizing the 
constraint provided by the setup is applied to stabilize the outputs. Experimental 
results show that our system satisfies the requirements for a robust and user friendly 
3D input device.  
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Figure 6. An Example of Clustered Background. 
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