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Abstract

A novel scheme is introduced that uses a mirror and a single camera to restore the 3D
position of a finger tip. The camera is positioned in such a way that it captures both the hand
as well as its mirror image. The captured images are then processed to extract the contour of
the hand. This extraction process is done using a fast agorithm that integrates Bayesian
estimation into the traditiona chain code generation agorithm. The algorithm works well
with complex abeit fixed background. In addition, we have integrated the smoothness
assumption into the agorithm so as to obtain a smoother hand contour thus improving the
accuracy of our tracking process. Tolerance to noise can be improved by utilizing the
constraints imposed by our system setting to eliminate false signads. A prototype system has
been implemented and the performance of the 3D mouse before different backgrounds has
been andyzed.

1 Introduction

Due to the increased availability of high speed 3D hardware and software on al classes of
computer, 3D interaction is becoming more and more popular [1]. 3D goplications can be
found in domains such as medicd and scientific visudization, computer-aided design,
computer-aided education and entertainment. Compared with electromagnetic 3D input
device such as VPL's DaaGlove [2], a 3D visonbased solution has many advantages. The
chief advantage is that a visonbased solution frees the user from any form of physical
attachment that may constraint his’her movement. For instance, there is no putting on/ taking
off of data glove, the user can simply operate with higher bare hand. Even though some
physical devices [34] have tried to accomplish free hand human-computer interface, their
high cost has inhibited widespread use. Because of this, vison-based approach has dtracted
many efforts in computer vision fields [5]-[10], but their results are currently too sensitive
and computationally too expensive for practica applications. Many of them impose
unacceptable constraints on the user, such as smooth or periodic movement [5], dtatic
supporting points (shoulder or pam) [6, 7, 9]. Some of them tried to achieve a complex
gesture recognition system but finally degraded their system to a 3D mouse [7]-[9] because of
the issues of reliability and computation expense. In this paper, instead of try to achieving the
complex gesture recognition system, we address some of these issues about a 3D mouse from
the practical user interface standpoint. Idedlly, a 3D visonbased mouse solution should
satisfy thefollowing criteria

i. Robustness to movement: There should be as few constraints imposed on the user's
hand movement as possible. Thisisto ensure that the ease of usability is maintained.

ii. Fast pick up: The dgorithm should be able to pick up the target object any time and
anywhere. This dlows the user’s hand to move in and out of the scene just as ghe tends
to pick up anormal 2D mouse now and then.

iii. Low computational cost: Fast response time is a critical factor in the design of a good
user interface. Thus, our 3D visionbased solution should not be too computationaly
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iv. Robustness to false recognition: Since no tracking algorithm can guarantee a 100%
correct recognition rate, it is important for the algorithm to be able to recover from
false recognition.

V. Low cost solution: The solution should not be too costly to implement. In other words,
we need to cut down on the number of hardware equipment needed to implement the
solution.

In this paper, we propose a novel scheme to address these issues. A 3D visionbased mouse is
implemented with the help of a mirror and a single camera. Instead of using 2 cameras to
provide the two views of an object, we position the mirror and camera in such a way that the
reflection from the mirror provides the second image needed to restore the 3D information.
This effectively cut down on the number of camera needed thus saving cost (criterion (v)). To
satisfy criteria (i) - (iv), we propose an agorithm to detect hand contour before a fixed but
complex background. Details of thisagorithm is given in Section 3.

2 Related Work

Vidonbased 3D mouse was mentioned severa times in recent publications [5]-[10]. Many of
them rely on strong prior knowledge about the object, such as 2D shape modd [5] (Kaman
Snakes [11]) or 3D anatomic modd [6]-[9] to guide in deriving the measurement of an image.
Strong movement models such as smooth, slow, affine or periodic properties are aso used in
their next model state prediction. Typicaly, these applications have the following program
structure (see Figure 1).

Figure 1 is dmost a standard procedure for model -based video analysis. It provides partia
solutions to the transient occlusion problem and is able to handle dynamic backgrounds.
However, when it comes to applying these modds in practica user interface (Ul)
applications, a number of problems surface. The firgt problem is the difficulty in initiating
the modd. For practical Ul application, the user's hand should be adlowed to re-enter the
scene easily. This implies that initiation needs to be done each time the user re-enters the
scene. Such initiation is very expensive without introducing additional constraints such as
fixed background [6,7,9,10] or arranged initialization area [5,7]. The second problem is the
inability to restore from false recognition. In the model-based approach, estimation of the
image is directly computed from the previous result. If the result is false due to the inaccuracy
of the feature measurement, lock-loss is possible. Once the lock is lost, regaining the lock is
difficult because the initiation of the model is expensive. In [5], learning is used to prevent
lock losing, but this only applies to those movements which are used to train the system.
Given the fact that the false recognition in a visonbased system is inevitable and the user’'s
movement cannot be constrained too much, model-based approach is not appropriate for our
application.

3 TwinsArchitecture
3.1 Gesture

In place of a physical mouse, our system, Twins, alows the use of the bare hand to operate as
a 3D mouse. This means that our system must be able to simulate typically mouse operations
such as moving the mouse and pushing the mouse button. The gesture used in Twins is
described in Figure 2. The index finger is used to specify the 3D position of the mouse while
the thumb is used to specify the state of the mouse button. An erected thumb means that the
button is not pressed. A bend thumb signifies the pressing of the mouse button. This gesture
is similar to the gesture used in [7]. The next question is how we obtain the 3D position of the
index finger accurately.



3.2 Twinssetup

To accurately determine the 3D position of an object, we need at least two views. Many
stereo vision systems use two or more cameras to restore the 3D position. On the other hand,
there are also indirect methods to restore 3D position of an object using just one camera
These methods utilize shading, texture or size information [5] or 3D structure [6,7,9] as cues
in order to estimate the depth information. However, they tend to be unreliable because the
depth information cannot be obtained directly.

In Twins, a novel method usng one camera and a mirror is introduced, this is shown in
Figure 3. A video camera is placed such that it is projecting at an angle of 45° to the mirror.
The coordinate system XYZ is described in Figure 3 with Y axis sticking out from the paper
surface. In the image plane, we have two views of an object (the actuad object and its image).
In general, the camera lens may cause the image formed to be smaller than the projection of
the object on the image plane. For this paper, we magnify the image to a particular size and
assume the image formed can be considered as the projection of the object on the image
plane. This assumption is true so long as the object distance is much further than the foca
length of the camera lens. In fact, none of the visonbased user interface application ever
takesthisinto consideration.

In Figure 3, r is the read object and v is the mirror image (virtua object) of r. Their
coordinates in the magnified image plane are (x;, ;) and (x,, Y,) respectively. Let us assume
that we aso know the projection (X,¢, W) Of the virtua camera VC' which is the mirror
image of the camera. We can now decide the 3D position of the real object using these three
projections (images) - (X, ¥r), Xv, ¥) and (X, We). Note that the X and Y positions of the
real object are x and y respectively. The Z vaue is a little more tricky. From the symmetric
property of reflection, we have z = x,¢ - X, thuswe have equation (1)
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Using a simple geometry transform, we transform the XYZ coordinate system to a more
natural coordinate system UVW with W axis sticking out of the paper (see Figure 3). P is the
trangd ation vector.
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In equation (3), al the variables are known except x,c. This is because the virtuad camera,
VC', is outside the scope of our camera. Instead, we select the origin, O, of the UVW system
such that both O and its virtua object can be seen in the image plane. In other words, we
know both (%o, yro) and (X0, Yvo). From (3), we have (4).
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Thus, after fixing the origin, O, of the UVW coordinate system, the 3D position of an object
can be eadsly restored using (6) as long as both the real object and its virtua object are
vishle. This setup helps to save hardware cost as compared to multi-camera systems, and is
particularly important for wide user's acceptance as computers with one camera are
becoming common nowadays whereas multiple-camera system is till largely a speciadized
commaodity.

3.3 TwinsArchitecture

3.3.1 Background and Hand Intensity M odels

Having described the setup of the Twins system, we now describe the underlying agorithm
used by our 3D mouse application. As mentioned in Section 2, model-based approach faces
many problems. An dternative approach is to use background information to perform video
segmentation. In fact, many practical work such as Pfinder [12] uses background knowledge
to perform segmentation. Similarly, in Twins, we assume a fixed background and use prior
background and hand intensity knowledge to perform feature measurement. The background
and hand intensty knowledge are modeled using smple Gaussan models. To learn the
background modeds, Twins require an initid startup time of n continuous frames to build the
Gaussian models:
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wherei istheintensity vector expressed in RGB space.
Based on the background Gaussan modds, a single Gaussan model describing the hand
intensity is  hbuilt up by placing the hand before the learned background. Hand pixe
segmentation is achieved by:
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After the segmentation, the Guassian mode for al hand pixels can bebuiltinasmilar way:
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where n, isthe total number of non-zero pixelsin segmented image.

3.2.2 Chain Code Generation Algorithm I ntegrating Smoothness Assumption

The next task is to extract the hand contour so as to perform effective tracking. This is
achieved by integrating the smoothness assumption to a well-known chain code generation
algorithm so as to obtain a smooth hand contour. The proposed agorithm does not require
any prior shape knowledge and is thus robust to fast and dramatic changes in shape. Let us
first give abrief review of the tradition chain code generation agorithm.

Tradition chain code generation algorithm
The well known chain code generation algorithm [13] for 8-direction chain code is listed as
Algorithm 1.
Let N and V be two functionswhere
N;(C) returns thej M e ghbor of vertex C, and
V(C,C)=t,  ifC;isthet™ neighbor of C;
V(C,C) =-1, otherwise
Giventheinitia contour queue “CoC;,” thedgorithmis.

Algorithm 1

1 k=1,

2. t=V(C, Cia);
3. j=(t+2) mod 8;
4 Ck+1: Nj(Ck);

if (G inthe boundary) goto 6;
elsej=(j-1) mod 8;

5. goto4

6. add C.,tothe contour queue, k=k+1,;
if (G=Cy) then halt;

7. goto?2

The neighbor function, N, is defined by a grid that is imposed on the image. Algorithm 1 uses
a square grid and hence each node has 8 neighbors. In generd, the grid size and its pattern
have an effect on the performance of the chain code. Figure 4 shows the hexagona pattern
with the neighbors of grid point A and B marked out. In [14], Scholten et. a proved
theoretically that a hexagona grid can describe a curve more accurately as compared to the
triangle or square grid. In Twins, we tried both square and hexagona grid and found the latter
to provide much more accurate result Though the chain coding agorithm on hexagona grid
is dightly more complex in terms of locating a point's neighborhoods, that can be
implemented efficiently. Thus, we have chosen the hexagonal grid for our implementation
and itsdiameter is 12 pixels.

The chain coding agorithm on hexagona grid is described bel ow.

Algorithm 2

1 k=1,

2. t=V(G Cya);

3. j=(t+3) mod 12;
4. Ck+1: Nj(Ck);

if (G inthe boundary) goto 6;



elsej=(j-1) mod 12;

5. goto4

6. add Cy.,tothe contour queue, k=k+1;
if (G=Cy) then halt;

7. goto?2

In Algorithm 2 that the condition in step 4, “C,,4 in the boundary” is not yet defined. An
obvious approach to test the condition in step 4 is to use the Gaussian models (Section 3.2.1)
we have built up to threshold the pixels. In this case, the value used for the threshold process
is defined to be:
PUIH) _s (Ii- i "L|2) (10)
PUIB) s, PUos? ~ pg2
where | denotes that the intensity of the pixel is i; H denotes that the pixd is a hand pixel; and
B denotes that the pixel isabackground pixel.

Figure 5 shows the results when we compute (10) over al image pixels. The intensity of
Figure 5 reflects the magnitude of the results. Using (10) as a thresholding condition for step
4in Algorithm?2, weobtain Algorithm3 where| isapre-determined threshold value.

Algorithm 3
1 k=1
2. t=V(G, Ce);
3. j=(t+3) mod 12;
4. CGwu= Nj(Ck);
it (PUH) 1y gotoss;
P(11B)
elsej=(j-1) mod 12;
5. goto4

6. add Cy.,tothe contour queue, k=k+1,;
if (G=Cp) then halt;
7. goto2

Thus far, we have assumed equa probability for each pixel to be a hand pixe. Further
improvement of the algorithm is possible if we realize that most parts of the hand contou are
smooth.

For example, suppose in Figure 6 we have detected the contour points A and B, and we are
now trying to determine the next point, C, in the contour. In the hexagond grid case, C has 10
options. They are distributed in the directions as depicted in Figure 6. Algorithm 3 will
examine Xo, Xi.. until it finds Xy which is in the object and X is considered as the next
boundary pixel C. Given the fact that most part of the contour are smooth, it is reasonable to
assume, before we perform the intensity test, that X5 is the most probable candidate and Xq
and X are least probable candidates. Based on the above assumption, we can assign different
weight vaues {w;} reflecting the relative probabilities of these 10 directions. The criterion in
assigning these weight values is to reflect the relative probabilities of being the next contour
pixel. In our experiment, we assign theweight values asfollows:
. 2

w = (- L (11)
where m,, and r are real numbers and they control the two independent properties of such an
assgnment. The integer that is closest to m, defines the direction which has the largest
weight vaue — in our case, it must be near to 3. r reflects the relative difference between the
weights. If r® ¥, {w} becomes a constant series. If r is smadler, the difference between
adjacent weight values will be larger which means that the contour is expected to be



smoother, for example, a circle. When choosing r, we should consider the smoothness of the
contour. In our experiment we choose r as 6.0 and m, as 3.1. Having assigned these weight
values, we are able to refine Algorithm 3 to obtain a smoother contour. Before we discuss the
refinement, let usfirst define afunction M.

M(Ce.1,C, C1) = V(G ,C) - V(Gor,C)) MOD 12 (12)

where MOD is dightly different from the standard mod function in that it returns a result
from-5to 6 instead of 0to 11 in the following way:

nMCDm:?nmodmif nmodeg;

f(h md m - m othewise
The function M maps the neighboring 3 grid points Ci1, G, Cis1in Algorithm 2 to a signed
integer represating the deflection of the contour at point Cx (See Figure 7). From the

execution of the algorithm, function M only returns value from -3 to 6.

Now let us look at how we can refine Algorithm 2 to obtain a smoother contour. Algorithm 2
examines each X; in turn until it finds the boundary pixel C. Suppose Algorithm 2 has
examined Xy, Xi... X1 (O£ k < 9) and yet to find the boundary pixel C, we can conclude the
following:

i. Xo,X1...X1aredl background pixels;

ii. Cmust beoneof the pixel inthe pixel set{ X, Xy1... Xo}.

By normalizing the weight vaues, {w}, we obtain Equation (7) which gives the probability
that X, is the boundary pixel C. This probability estimate has not taken into consideration
the pixel intensity, and it isjust aprior guess.

Wy (X ,B,A)+3
P(C = X,) = 9
a w, (13)
=M (X,.,B,A)+3
Now we need to take the intensity of the pixel into consideration. Let’ s evduate
P(C=Xy| pixd intengity of X isi).
Using Bayesian rule[15], the posterior probabilities can be computed by:
_ _P(C=X,)P(IC=X,) 14
P(C = X,I1) = 0 (14)
P(Clxk“):P(mxk)P(||c1xk) (15)

P(1)
where | denotesthe event that “pixd intensity of X isi”.
Comparingp(c=x,|1) With p(ct x, 1), we achieve the condition which can be used in
step 4in Algorithm 2. The condition becomes (16):
PUIIC = X,) _ P(C* X,) (16)
P(IICt X,) P(C=X,)
Consider theitemsin (16):
i. P(C=Xy ): This quantity can be caculated from Equation (13). Note that the vaue
changes dynamicadly as the algorithm proceeds;
i. P(Ct Xy):1-P(C=X);
iii. P(|C=Xy): If X\ is in the contour, we can use the hand Gaussan modd depict by
Equation (9) to obtain an estimate. Thus, we have:
1 |i - mh|2
NI h exp(- 25 2
iv. P(I|C* X\): From the nature of chain code  generation Algorithm

we know that if C is not in the contour it must be a background pixel. Using Equation (7),
we have:

P(I|c = x,) =

)Di

. 2
f-m]|

1
exp(-
A/2ps P 2s ?

Put al theseitemsin (16), we can rewrite (16) as.

P(llc® X,) = )Di



s i-m|" - m. 1- Pc=xy (17)
5. X7 " s 2 )7 Thc=x,)
Now we can decide whether apixel isahand pixel or abackground pixel using (17).
Integrating (17) into Algorithm 2, we have the following algorithm.

Algorithm 4
1 k=1
2. t=V(C Ck);
3. j=(t+3)ymod 12;
2
4. if S ,i-m| |i'”11|2 1- P(C=N,(C)), goto6;
G s 52 )7 N cy) ’
elsej=(j-1) mod 12;
5. goto4
6. Cui=Ni(C);
add Cy,1 to the contour queue, k=k+1;
if (G=Co) then halt;
7. goto2

In addition, we also introduce a simple technique to make sure that the chain code generation
algorithm will search the whole image ingead of terminating too early. The technique
introduces a special line caled the “wrist ling’ to the image. The wrist line is a horizontal line
in the image which pass through the wrist position of the hand. Wrist line is an assumed line
that needs to be updated congtantly while the finger tip moves. The parameter of such a line
depends on the previous position of the finger tip. The horizontal wrist line in frame k, Y
can be described as:

V" =yea-d, (18)
where Y 1 is the y position of the finger tip in the k-1 frame and d, is the length between the
finger tip and the wrigt. The wrist line in Figure 8 is marked as a dotted line in the image. All
the pixels above the wrist line are marked as the hand pixels. This alows us to constrain the
contour tracking to be carried out from left to right through the entire image each time. After
introducing wrist line, the terminating condition in chain code agorithm becomes “if the
contour tracing arrives at theright side of theimage.”

Though Algorithm 4 works well in most circumstances, it falls in some particular situations.
One exampleisshownin Figure 8.

Initialy, the algorithm traced the contour (the solid line) correctly starting from the left and
dowly proceeding to the right. However, hdfway through the tracing, it entered a loop as
shown in Figure 8. The reason for the loop is due to inconsistent pixe classification. Consider
Figure 9. Let us assume that the agorithm has detected A then B and is going to determine
the next point. The agorithm examines Y first. Suppose at this stage, Y fails to be classified
as a hand pixel and so does X. Note that dthough Y and X fail to be classified as hand pixels
this time, they may possibly be classfied as hand pixels in the future as the algorithm
proceeds. This is because condition (17) depends not only on the intensity of the pixels but
also on P(C=Xy) which is dynamic during the execution of the algorithm. Thus, for Figure 9,
the agorithm detects C, D, E, ... W and X, where X is classified as hand pixd now —
inconsistent classification! After that, C is classified as the hand pixel for the second time and
aloop occurs.

The only way to prevent the loop is to avoid such inconsistent classification. If a pixel has
been classified before, the previous classification is retained. Condition (17) is used only if
the pixel has not been classified before. This modification givesriseto Algorithm5.

Algorithm 5
1 k=1
2. t=V(C, Cir);



3. j=(t+3) mod 12
4. if (Ny(C,) was ever classified as hand pixel)

goto 6;

elseif (N;(Cy) wasever classified asbackground pixel) {
j=(j-1) mod 12;
goto 5;};

dseif s fp-m[ -mf 1 PE=N(C)) {

P A TN I

mark N;(Cy) in the classification history as hand,
goto 6; };

dse {

mark N;(Cx) in the classification history as background;
j=(j-1) mod 12; };
goto 4
Cii1= Nj(Ck);
add Cy+ to the contour queue, k=k+1;
if (the contour tracing arrives at theright side of theimage) then hdlt;

o u

The history can be maintained in a 2 dimensiona array for fast access. If we aso record the
current frame number as well as the classification result in the array element, we do not need
to renitidize the array each time. Thus the computational complexity is not changed as
compared to the traditiona chain code generation agorithm.

4 Experimental Results

A number of experiments have been conducted to compare the performance of Algorithm 3
(without integrating the smoothness assumption) and Algorithm 5 (integrating the smoothness
assumption). In al the experiments, the contour pixel classifications in Algorithm 3 and 5 are
done on a cross mask on the image pixels to enhance the reiability. Of course, the wrist line
and the dtered termination condition introduced previoudy are used in both agorithm
implementations. Our experimentd results indicate that Algorithm 5 outputs a smoother
contour and is also more accurate in extracting the contour in most cases. Figure 10 shows
two frames obtained from a single tracking session. The thresholds and configure values used
inthistracking session arelisted in Table 1.

The thick line is the contour obtained using Algorithm 5 while the thin line is the contour
obtained using Algorithm 3. The differences between the contour results are numbered and
highlighted using arrows. In  the postion marked 1, it is obvious that the Algorithm 5's
performance (thick line) is better. Algorithm 3 failed here because the threshold, | , is too
small which makes the agorithm too sensitive. To improve the performance of Algorithm 3
here, we need to increase the value of | . This is indicated in the first column of Table 2.
Similar comparisons are carried out for al the differing points (marked position 2 to marked
position 10). Theresults of analysisare summarized in Table 2.

From the Figure 10 and Table2, we see that:

i. Algorithm5 givesasmoother contour result;

ii. Since the hand contour is smooth, Algorithm 5 has a better performance in terms of
accuracy;

iii. Since a smoother contour is usudly shorter, Algorithm 5 saves unnecessary
computational costs;

iv. Changing the threshold value in Algorithm 3 does not improve its performance globaly.
We can see this from the second row of Table 2, 5 columns suggest decreasing |, while 2
columns suggest increasing |, and 3 columns suggest no change.



Figure 11 and 12 show the contour length results of four contour tracking sessions performed
on 26 continuous frames captured under normal lighting condition. Out of the four tracking
sessions, one session uses Algorithm 5 while the remaining sessions use Algorithm 3 with
different threshold values. The values used in these sessionsare al shownin Table 3.

The results indicate that the performance of Algorithm 3 is hardly affected in terms of the
contour length when we vary | between 1.25 and 1.75. Although Algorithm 5 occasionaly
performs worse than Algorithm 3, in most cases, it outperforms Algorithm 3. This
improvement is not achieved by introducing additiona feature measurement or post-
processing, so ho significant computation cost is added to the algorithm.

5 Contour Analysis

Recall that the two gestures that are needed for our 3D mouse application are the user’s index
finger tip and the thumb state. Hence, elaborate features recognition is not necessary. For our
purpose, we constrain the user's index finger tip to be farthest from the wrist line (Section
3.2.2). In Twins, the two points that are farthest from the wrist line are tagged as the index
finger tip podtions corresponding to the “real finger” and “finger's mirror image”
respectively.

Thumb state detection is done by measuring finger tip features. We select a specific range
within the hand contour as likely positions for the thumb finger tip. This is possible because
we dready know the index finger tip positions in the contour. Within the specific range, we
detect whether the contour bend significantly (corresponding to the tip of the thumb). If such
bend isfound, we have found the thumb. The bending value can be cd culated incrementally.

6 Post-processing

After the finger tips positions have been determined, (6) is used to restore the 3D coordinates
of the finger tip. Over time, a stream of 3D coordinate signds is generated from the video
stream. This stream of 3D coordinate signas are unstable and succeptable to noise, hence,
post-processing is needed to make the 3D mouse practical.

6.1 Screening the False Signals
The firgt post-processing is to screen out the fase signas. After the two index finger tips are
detected, we apply the law of physicsto derive a constraint for screening out false signals.

In Figure 12, the XYZ coordnate system is set up. R and V correspond to the rea finger and
its mirror image respectively, and they share a single projection (x',y’) in the mirror plane
(XOY plang). Let L denote the optical center of the len used in the video camera. The
coordinates of L is (XoYaZo)- L&t R and V' be the image of R and V in the image plane
respectively. Then, lines VV’' and RR' should pass through L. Since the camera is projecting
a an angle of 45° to the mirror, the image plane can be simply specified as.
X=z (19)

Assume T is a point on the line RV and the coordinates of T is (X', y', h). Then, TL can be
X-X _y-y z-h
X-X Y-V Z-h
From (19) and (20), we can obtain the position of T's image which is the intersection between
TL and theimage plane.

specified as: (20)

I oyzgz= XBo XN

I Z- h- X, +X

.:.y:yzo-y'xo+x'yo-y0h (21)
t Z- h-%+x

In(21), ash® -¥, wehave:
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1X= %,
|

Y=Y (22)
12=%

Thus, we can conclude that dl straight lines that pass through an object and its mirror image
must converge to one point intheimage plane. We cal this point the RV center (Figure 13).

The RV center is used to screen out the false contour anadysis results. If the gdtraight line,
which passes through the 2 index finger tips (red object and its mirror image), does not pass
through the RV center, the signa is consdered an invalid signal and will be screened out. In
our experiment, less than 5% of the raw signals are screened out by this process. In the event
that the signa has been screened out, a “hol€’ is created in the cortinuous 3D coordinate
sream. Such holes are filled by using the predictions of Kaman filters (see below) and a
constant signal stream is till maintained.

6.2 Kalman Filtering and Adaptive Filtering

A set of linear Kaman filters [16] are used both to suppress the Gaussian noise in the 3D co-
ordinates signal and make predictions for the holes in the signal. This is the second step of
our post-processing task. Preliminary experiments show that the Kaman filtering results are
not sable. This is partly due to the fact that the noise in the signal is not purely Gaussian and
partly due to our desire to maintain short signa delay. To smooth the signals further, we add
aset of adaptive filters. The filtering results are shown in Figure 14.

By combining Kaman filtering and adaptive filtering, we smooth the signals while reducing
errors. The post-processing is surprisingly successful in the sense that the outputs are fairly
smooth and accurate and the delay caused by the filtering is relatively minimum (between 2 -
4 frames that is 0.08 - 0.16 sec at the 25 frame per sec video rate). The thumb state signal
(mouse’ s switch gtate) isaso filtered by an adaptivefilter.

The thumb status signal is also processed by an adaptive filter. Because the dgnd is
interpreted as mouse switch thus more critical and the user is less senditive to the lag of this
signal, we configure the adaptive filter in such a way that the delay is longer (<0.3 sec) but
the output ismore stable.

7 System performance

The time complexity of Algorithm 5 is O(n), where n is the number of points aong the
contour. Since the bending vadue can be caculated incrementaly, the complexity of the
contour analysis process is O(m), where m is the length of the possible range in the contour
where the thumb may occur. It is obvious that m<n. In the post-processing stage, the results
of Kaman filter and adaptive filter are both recursively caculated from the previous results
and their time complexity is O(1). Hence, the time complexity of the entire systemis O(n).

A 3D mouse demon (Figure 15) is built to demonstrate the final performance of Twins on
SGI Indy. A 25 frames (640X480) per sec rate has been achieved in the 3D mouse demon.
(After the post-processing, the system produces 25 stabilized 3D co-ordinates per sec.) A 3D
room with severd cubes in are drawn on the screen. The user use her/his index finger tip and
thumb to operate the 3D mouse in a3D room to pick up and place the cubes.

We tested our system against different backgrounds to evaluate the system’'s sendtivity to
background properties. The system displays strong adaptability to different backgrounds.
Three backgrounds were used in our experiments as shown in Figure 16, 17 and 18
respectively.

Figure 16a shows a colorful and complex background. Figure 17a shows a normal office
background. Figure 18a shows a dark background. The test results demongrate the strong
adaptability of our agorithm. In the experiments, we move the finger tip in a circular motion.
The circle movement performed in these tests is 1-2 Hz. The periodical outputs of the 3
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coordinates UVW of the finger tip movement is shown in Figure 16b, 17b and 18b
respectively. The results indicate that our system can follow the finger tip movement very
well and the output signals are smooth in general. We aso tested the 3D mouse using a pencil
held in a human hand. The system is able to track the pencil just as well as it tracks the finger.
This is because we do not make any assumption regarding the shape of the object to be
tracked. Hence, our system is robust to fast movement and adaptive to shape changes. In
addition, the system does not have lock loss problem. In terms of the gesture recognition rate,
we found that in a cluttered environment like Figure 16a, the error rate (before the signas are
being post-processed) is less than 5% for the bent thumb gesture and less than 10% for the
erected thumb gesture. The results are derived when the hand is moving at a fast pace. For
critical dgnas such as mouse switch dates, this error rate is not acceptable. Careful
examination shows that the errors occur randomly and are sparsely distributed over time.
With the use of an adaptive filter in the post-processing stage, we are able to suppress and
screen out al such errors from the final output

7 Conclusions

In this work, we propose a novel low cost solution that uses one camera and a mirror to
derive accurate 3D position of a finger tip. Bayesian estimation is used in our agorithm to
improve the chain code generation. We have aso addressed the chain loop problem in this
paper. It is shown that our improved dgorithm results in a smoother and more accurate
contour tracing. In video analysis, it can be used to track fast moving object over a known
complex background where shape information is not avalable. Using the dgorithm, a
practicdl 3D mouse is designed and implemented. Post-processing is done to stabilize the
outputs. Experimental results show that our 3D mouse satisfies the requirements for a robust
and convenient 3D input device.
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Figure 1. Program structure of model -based approach in video tracking.
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Figure 2. Gestures used in the 3D mouse.
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Figure 3. Twins setup arrangement that uses amirror to provide another view of the object.
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Figure 4. The hexagona grid is used in the chain code generation.
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Figure 5. The pixd classification results using hand and background intensity models.
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Xa
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Figure 6. After detecting A and B, there are 10 possible positions for the next point
Xo-Xg in the chain code agorithm and their possibilities are not identical
considering the contour should be smooth.
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Figure 7. The deflection of the contour at point Cy.. Cie1 is the 0" neighbor of G, and
Cy is the 11" neighbor of C,4, thus M(Ceq, Cy, Ci1,) =(0-11) MOD 12 = -
1. We can see that the vector C, C,.; deflects from the vector C, C,.; with
one unit in the clockwise direction.
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Figure 8. All the pixels above the wrigt line (dotted) are Ified as hand pixels
forcefully. Loop occurs occasionally in the improved algorithm.
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Figure 9. Inconsistent classification of pixel which cause the loop chain code.
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Table 1. Values used in the experiment.
| inAlg.3 m,in Alg. 5 rinAlg.5
1.5 3.1 6.0
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Figure 10. Comparable contour tracking results using traditionad chain code
generation agorithm (thin line) and our improved agorithm (thick ling).
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Table 2. The summary of the experiment result.

1| 2| 3| 4] 5| 6| 7| 8 9 10
Contour error’ ol -T-T-T-T-1+ -
Contour length” | -[-[o]-[-[+-[-] 0] -
| tobechanged™ | -|=[=[-| 17| 1= ~
" +:thethick linehasalarger -1 tobeincreased;
value ;1 tobedecreased;
-: thethinlinehasalarger vaue = no suggestions to the change.

0: performances are almost equal.
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Table 3 Threshold values used in the tracking sessions

Algorithm 3 Algorithm5

[in(1) | Iin I in my, r
(2) (©)

15 1.25 1.75 3.1 6.0
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Figure 11. Comparison of the contour length in the number of pointsin the contour.
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Figure 12. The congtraint provided by our equipment setting.
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Figure 13. The dtraight lines passing through a real object and its mirror image converge to
one point in theimage plane.
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Figure 14. The filtering process and the signals comparison. Kaman filter's output is till
unstable while only using adaptive filter causes dgnificant error. Their

combination produces better results.
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o

Figure 15. The 3D room:demon with cubes in. A user can operate the cross cursor to pick up
and place these cubesin theroom by his/her index finger tip.
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Figure 16a. Background with colorful newspaper.
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Figure 17a Background in an office environmert.
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Fgure 17b. Output sgnds of the normd office background experimert.
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Figure 18a Dark background.
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Fgure 18b. Output signds of the dark background experiment.



