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Diabetic-related eye disease is the most common cause of blindness 
worldwide. The most effective treatment is early detection through regular 
screenings. This produces a large number of retinal photographs for the 
medical doctors to review. In our work, we employ a combination of 
innovative image processing and data mining techniques to automate the 
preliminary analysis and diagnosis of diabetic-related eye disease from the 
digitised retinal photographs. Our experimental results show that we are 
able to accurately detect abnormal symptoms such as: abnormal optic disc 
to cup ratio, presence of exudates and tortuous blood vessels. With this, 
our system is able to classify the retinal images into normal and abnormal 
ones, thus cutting down on the number of retinal photographs a doctor 
needs to review. 

1 Introduction 

More than half (57.6%) of all newly registered blindness in Singapore is 
caused by retinal diseases, as reported by Lim (1999).  Diabetic 
retinopathy (19.4%) is one of the main contributors.  As Singapore has one 
of the fastest ageing population in the world and about 10% of 
Singaporeans are diabetic, as reported by Goh (1998), diabetic-related 
eye diseases are set to rise.  Industrialised countries in the world are 
facing the same problem. For example, in the United States blindness has 
been estimated to be 25 times more common in people with diabetes than 
in those without the disease (Kahn and Hiller, 1974; Palmberg, 1977), and 
yearly 5000 new cases of blindness are reported as a result of diabetic 
retinopathy (Klein et al., 1995; Javitt et al., 1989) In the United Kingdom, 
diabetic eye diseases are the most common cause of blindness in the 
country for the age group of 20 to 65 (Ghafour et al., 1983). 



The most effective treatment to combat these eye diseases is early 
detection through regular screening of the fundus to detect early signs of 
diabetic retinopathy, as reported by Singer et al. (Singer et al., 1992). Early 
detection screenings consist primarily of obtaining fundus images through 
photography. However, with a large number of patients undergoing regular 
screenings, tremendous amount of time is needed for the medical 
professionals to analyse and diagnose the fundus photographs. As a 
result, this may delay the patients from being referred to ophthalmologist 
for further examina tion and treatment. Therefore, by automating the initial 
task of analysing the huge amount of retinal photographs for symptoms of 
diabetic retinopathy, the efficiency of the screening process can be greatly 
improved. At the same time, patients that require the attention of the 
ophthalmologist would be timely referred. 

We have developed an Automatic Diabetic Retinal Image Screening 
system (ADRIS), which combines novel image processing techniques with 
data mining technique to analyse digitised diabetic retinal photographs. 
Based on the rules given by medical experts, the system classifies the 
retinal images into normal (healthy) and abnormal (unhealthy) ones. Once 
a diabetic retinal image is found to have any abnormal feature, the system 
would highlight it to the doctor for review. Initial studies indicate that the 
system can potentially reduce the number of retinal photos a doctor needs 
to review by more than 60%. 

2 Understanding the Problem Domain 

It has been estimated that to implement a regular screening programme 
for diabetic patients, 30,000 patients per million total populations would be 
involved (Retinopathy Working Party, 1991). Hence over the years, there 
have been quite a number of developments in automatic screening and 
detection of diabetic retinopathy and other age-related diseases. Gardner 
et al. (1996) concluded in their studies that a neural network program 
could be trained to detect retinal images with diabetic retinopathy features. 
Numerous systems (Ward et al., 1989; Spencer  et al., 1992; Spencer  et 
al., 1991; Katz et al., 1988; Katz et al., 1990) reported some successes in 
the automatic detection of glaucoma, exudates, microaneurysm and 
maculopathy in diabetic retinopathy. However, an application in automatic 
diabetic retinal screening has yet to be developed and implemented. 

Cox et al. (1991) used grey level information around the vicinity to 
automatically extract the boundary of the optic disc with initial approximate 
location given by the user input. Morris et al. (1994) employed dynamic 
contour to map out the boundary of the optic disc. Their approach is 



dependent on image pre-possessing where there is a heavy emphasis on 
enhancing the image contrast. 

Phillips et al. (1993) used simple thresholding method to detect and 
quantify exudates. Global and local thresholding levels are used for 
extracting large and small exudate respectively. However, their 
straightforward approach generated some false-negatives due to the 
presence of exudates with low grey level intensity. Leistritz et al. (1994) 
acquired retinal images through scanning laser ophthalmoscope with 
monochromatic illumination to detect exudates with the highest contrast. 
However, images have to be captured with a suitable wavelength for this 
approach to be reliable.  

Zhou et al. (1994) used match-filtering approach with priori knowledge to 
automatically extract and track retinal vessel in digital fluorescein 
angiograms. Zana et al. (1997) used mathematical morphology and linear 
processing techniques that include Laplacian filter and curvature 
differentiation to extract retinal blood vessel in retinal angiography. Both 
approaches are targeted at retinal angiograms. Capowski et al. (1993) 
employed relative length variation (arc/chord information) to ascertain the 
tortuousity of retinal blood vessel manually.  

2.1 Data Mining Applications On Medical data 

The prevalence of large databases created a need to devise new tools that 
can sift out useful and interesting knowledge from these data. As a result, 
a new research area, data mining and knowledge discovery is rapidly 
gaining popularity.  

Data mining is the application of specific algorithms for extracting 
interesting patterns from data, (Fayyad et al., 1996). Large databases 
contain vast amount of data which is most often left hidden from the user. 
These hidden data might harbour some very useful relationships (e.g. in 
the diabetic retinal screening database patients of certain race with a 
minimum number of years of illness might have a certain percentage of 
likelihood that eye disease may develop within a certain number of years), 
trends (e.g. the deterioration of a particular eye disease might localise 
around a certain race or gender based on patient’s lifestyle and age of 
employment) and prediction (e.g. based on past data, a prediction of 
certain accuracy can be made on whether a new patient is going to 
develop diabetic-related eye disease), etc.  

Classification-Based on Association (CBA, Liu et al., 1998) is a data 
mining tool that combines classification rule mining and association rule 
mining to take advantage of the benefits of both methods. Classification 



rule mining separates the data into different classes based on a small set 
of rules in the database. And the target of classification rule mining is pre-
determined. In association rule mining, constraints such as minimum 
confidence and minimum support are used to discover all the rules in the 
database. And the targets in association rule mining are not pre-
determined. 

Some of the research and applications carried out using knowledge 
discovery techniques in medical domains (notably medical diagnosis) 
includes oncology, Elomaa and Holsti (1989); liver pathology, Lesmo et al. 
(1984); urology, Bratko and Kononenko (1987) ; thyroid disease diagnosis, 
Hojker et al. (1988); rheumatology, Kern et al. (1990); neuropsychology, 
Muggleton (1990); abdominal pain diagnosis, Provan et al. (1996) and 
gynaecology, Nunez (1990). 

In our system, we use an association based data mining classification tool 
developed by Liu et al. (1998) to discover the association rules between 
the different curvature definitions of retinal blood vessels. 

3 Understanding the Data 

Figure 1 shows a healthy normal fundus image which has the following 
features: 

I. Optic disc  
Colour: Red-yellow; the yellowish colour (optic cup) is more 

pronounced on the temporal and the nasal side part may 
appear pale. 

Form and size: Round to oval with diameter ranging from 1.5mm to 
1.7mm. 

Margins: Sharply outline. 
Vessels: They originate within the perimeter of the disc and both 

the arteries and veins appear distinct. 

II. Vessels 
Colour: Arteries appear light red while veins appear dark red. 
Form and size: Largely straight with gentle curves. The arteries appear 

somewhat narrower than the veins, with an average ratio 
of 2:3 between arteries and veins. Average diameter of 
veins is 125µm. 

Margins: Generally more sharply outline in the centre than at the 
peripheral. 



III. Macular 
Colour: Appears darker than the surrounding retina. 
Form and size: Lies in the optic axis of the eye and is situated about 2 

disc (3 ~ 4 mm) diameter temporal from the optic disc. 
Margins: Not clearly defined in normal illumination. Marginally 

visible in red free illumination. 

IV. Choroid 
Colour: Reddish colour. 
Margins: Normal even appearance throughout the inter-vascular 

space. 

Figure 1. Sample of a healthy normal fundus image 

On the other hand, a diabetic retinopathy fundus will exhibit some of the 
following symptoms as shown in Figure 2: 

i. Abnormal Optic Disc and Cup ratio 

The centre of the optic disc has a small white depression, optic cup 
(physiologic excavation). Under normal healthy circumstances, the size of 
the optic cup is about 40% or less compared to the optic disc.  Abnormal 
condition appears when the optic disc is not visible, the outline is not 
circular, or it appears completely white (only the optic cup is visible). 

ii. Presence of Exudates 

Exudates show up as random white patches around the inter-vascular 
region. They vary  in shapes and sizes. 

iii. Tortuous Vessels 

Normal retinal blood vessels appear largely straight or gently curved. In 
some diseases, the blood vessels become tortuous, i.e. they become 
dilated and take on a wavy path. 



   
(a) (b) (c) 

Figure 2. Sample of unhealthy retinal images. (a) Abnormal 
disc/cup ratio, (b) Presence of exudates, (c) Tortuous 
vessel. 

The specifications of the types and conditions of diabetic retinopathy are 
identified and defined into rules. These rules are built into the algorithm to 
detect the normal healthy features of the ocular fundus and common 
symptoms of diabetic retinopathy. 

In order to determine whether a retinal image is normal or not, we employ 
image processing techniques to extract the features of the fundus. The 
extraction of optic disc seems relatively simple, as the disc is usually the 
brightest region on retinal images. However, we find that simple edge 
detection and thresholding image processing techniques do not yield the 
expected results. Figure 3 shows that the optic disc is inaccurately 
detected due to the presence of comparatively bright regions near the 
optic disc. 

(a)  (b)  

Figure 3. Detecting optic disc using simple thresholding 
techniques. (a) Original image, (b) Inaccurately 
detected optic disc. 



4 Preparing the Data 

A whole range of different image processing techniques is used to detect 
the main fe atures of retinal images as well as the clinical symptoms that 
indicate the presence of diabetic retinopathy. The following subsections 
describe each of them in detail. 

4.1 Optic Disc and Cup Detection 

The optic disc is the region on the fundus where optic nerves and blood 
vessel emerge. It appears relatively brighter than the rest of the choroid 
due to the absence of retina layer. It ranges from round to oval in shape 
and has an average diameter size of 1.5 to 1.7mm. The optic cup is 
situated near the centre of the disc and is more pronounced on the 
temporal half as opposed to the nasal half. The optic cup appears brighter 
than the optic disc and usually covers less than 40% of the optic disc, 
although its position, shape and size may vary. 

In our approach we employ a combination of the various image processing 
techniques to accurately detect the optic disc and cup. These include: 
Sobel edge extraction, varying ellipse fitting, neighbourhood accumulation, 
and histogram thresholding. 

I. Sobel Edge Extraction 

An edge is the boundary between two regions of different constant 
intensity (or grey level).  An edge detector looks for regions in an image 
where the grey levels are changing too quickly to be a random effect, and 
some look for changes in a specific direction. Basically, locating an edge 
involves detecting points that fall on the edges.  However, the edge points 
detected at this stage are discrete points and they do not directly show up 
as an edge.  Therefore, a special algorithm is necessary to group all the 
similar edge points into boundaries. In recent years, many edge point 
detection algorithms (Davis 1975) have been developed.  The most 
common edge detection method is to analyse the change of intensity 
gradient where an edge point is said to be present when the magnitude of 
the gradient exceeds a pre-defined threshold. 

Sobel is one of the most well known edge detectors in sensing gradient 
variation in an image because of their low computation costs and easy 
implementation, as pointed out by Pitas (1993).  Figure 4 shows the 
convolution masks of the edge detector. Convolution is accomplished by a 
simple multiplication, followed by an addition, and then finally a shifting 
operation. Sobel edge detector is efficient for different types of edges, 



including the “sudden step” edge , the “slanted step” edge , 
the “roof” edge  and the “planar” edge . 

 

Figure 4. Sobel edge detector mask of 3 × 3. 

The principal approach of the Sobel operator, G x y( , )  is to compute the 
magnitude of the gradient at each pixel location using the relation, 
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where f is the mask value. 

In Figure 4, the left mask represents the column gradient while the right 
mask represents that of the row gradient of the Sobel filter. Sobel filter 
combines both the row and column gradients to create two orthogonal 
directions in an image. The mask values of Sobel operator enable it to be 
more sensitive to both the horizontal and vertical edges. 

In our system, the colour retinal image is converted to grey level image 
before using the simple and fast Sobel edge filter to extract the edges. 
This filtering operation produces a binary image where the positive (black) 
data represents edges and the negative (white) data represents uniform 
texture. The edges detected could be the outline of the optic disc, blood 
vessel, macular, or any abnormal lesion in the retinal.  

II. Ellipse Fitting 



Since the shape of a normal optic disc varies from round to oval, it makes 
sense to generate a range of ellipses and try to fit them to the edges 
extracted as described above. The ellipse that has the highest fit is 
considered to be the optic disc outline. However, we observe that the top 
and bottom regions of a normal retinal disc rim usually contain main blood 
crossings from which blood supply is transported to the retina. Therefore it 
would not be easy for the ellipse fitting function to obtain a perfect fit to the 
extracted optic disc outline. Hence, some percentage of minimum fit would 
have to be imposed so that the badly fitted ellipse would not be passed off 
as the detected optic disc. The numerical figure of the minimum fit is 
described next. 

III. Neighbourhood Accumulation 

The fitting of the ellipse is done by running the generated ellipse over 
extracted optic disc outline and accumulating the pixel values along the 
way when the ellipses’ outline coincide with optic disc outline. To increase 
the accuracy of the fitting, the accumulation of edge pixel (those pixels that 
coincide with the ellipses’ outline pixels) points includes the neighbouring 
pixels around the edge pixel. Varying the horizontal and vertical radii of the 
ellipse generates a range of different sizes of the fitting ellipse. The ellipse 
that returns the maximum response of accumulated pixel points is 
regarded as the boundary of the detected optic disc. If the maximum 
response of accumulated pixel points is lower than the minimum fit then 
the algorithm have failed to find a normal optic disc; such retinal images 
would be classified as abnormal. 

The minimum fit figure is arrived at by averaging over all the maximum 
accumulated pixel points of each positively and negatively detected optic 
disc from a specially chosen set of 20 test retinal images. This set of test 
images are chosen to give a good measure of the average good fit and 
bad fit of the ellipse to the extracted optic disc outline. 

The range of horizontal and vertical radii of the ellipse is selected so that it 
is greater than the average normal size of the optic cup to prevent falsely 
detecting the optic cup as that of the optic disc. Figure 5 shows samples of 
the optic discs detected. 

 (a)  (b)  



   

  

 

 

 

 
(c) (d) 

Figure 5. Detection of optic disc and cup. (a), (b) Sample of extracted 
optic disc and cup . (c), (d) Histograms of the corresponding 
optic disc showing the threshold grey level (arrow) where the 
optic cup is segmented from the optic disc. 

IV. Histogram Thresholding 

The optic cup is defined to be the brightest region within the optic disc. In 
the detection of the optic cup, a survey of the histogram distribution of the 
optic disc region reveals an interesting pattern. When a threshold is set at 
the second highest ‘peak’ of grey levels in the histogram with respect to 
the maximum grey level (walking from the right side of the histogram of 
256), a reliable and accurate optic cup region is extracted.  

Thresholding is used in image processing to separate an object’s pixels 
from the background pixels.  This technique converts a multi-grey level 
image into a binary image containing only two distinct grey levels.  The 
threshold operation may be defined as  

  

 (4) 

 

where y)f(x,  is the original image, y)g(x,  is the threshold-processed  
image, T is the threshold value, Go  is the object grey level value after 

thresholding operation, and Gb  is the background grey level value after 

the thresholding operation.  The objects in an image can be separated 
effectively from a background by grouping the pixels that share common 
grey levels. 
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Figure 6. Principle of thresholding a grey level histogram. 

In Figure 6, a dark object in an image y)f(x,  can be extracted from a light 
background by choosing a suitable threshold T (a particular intensity level) 
between the two grey regions.  Then, any point y)(x,  in the image that 
has a grey level lower than the value of T is considered an object point; 
otherwise, the point is called a background point.  In other words, the 
objective is to generate a binary image y)g(x,  containing only the object 
points as defined in (4). The ratio of the optic cup to disc is calculated as 
the pixel area of the detected optic cu p to the corresponding area of the 
detected optic disc.  

4.2 Exudates Detection 

The presence of exudates indicates retinal disorders and is associated 
with patches of vascular damage. Exudates usually show up as white 
patches (in grey images; yellowish in colour images) of varying sizes and 
shapes scattered randomly in vascular spaces. Simple thresholding 
techniques do not give a satisfactory result as some smaller exudates 
have about the same intensity as the background of the retinal. Hence, we 
used a more effective method that employs the minimum distance 
discriminant (Kressel U and Schurmann, 1997; Castleman, 1996) to detect 
the exudates. 

4.2.1 Minimum Distance Discriminant 

Each pixel in colour digital image consists of three basic spectrum features 
(or colour features) in red, green and blue planes and each plane has its 
own illuminance. In general, different types of objects in digital images 
have their own range of spectrum features so that they appear in various 
colours and form different clusters (or classes) based on their spectrum 
features in the RGB colour space. In general, the greater the spectrum 



distance between the centres of different classes, the easier it is to identify 
the boundaries of different objects that belong to different clusters.   

Utilising Bayes’ theorem (Bayes, 1763) we can reliably carry out the 
classification of different objects belonging to each class. Bayes’ theorem 
states the rule for updating belief H given state of evidence E, and 
background knowledge (context) I:  

p(H|E,I) = p(H|I)* p(E|H,I) / p(E|I)  (5) 

The term p(H|E,I) is called the posterior probability, and it gives the 
probability of H after considering the effect of evidence E in context I. The 
p(H|I) term is just the prior probability of H given I alone; that is, the belief 
in H without the evidence E being considered. The term p(E|H,I) is called 
the likelihood, and it gives the probability of the evidence assuming H and 
background knowledge I is true. The last term, 1/p(E|I), is independent of 
H, and can be regarded as a normalising or scaling constant. The 
information I is a conjunction of all of the other statements relevant to 
determining p(H|I) and p(E|I). 

Let Ci(cr,cg,cb) be the mean value vector of spectrum feature of class i in 
RGB space, where i=1,2,…N and N is a class number in an image. Let 
X(xr,xg,xb) be the measurement vector of pixel X, that is, X’s illuminance in 
RGB space. Let Fi(X) be the discriminant function for classifying pixel X 
into class i.  

Let p(Ci/X) be the conditional probability (posterior probability). It 
represents the probabili ty of X belonging to class i using the particular 
pixel's spectrum feature vector X(xr,xg,xb). If it is found that p(Ci/X) > 
p(Cj/X), where j=1,2,…N and j≠i, then it can be concluded that X belongs 
to class i. 

According to Bayes’ theory, p(Ci/X) can be expressed as: 

 p(Ci/X)= p(C i) * p(X/C i) / p(X)           (6) 

Where p(Ci) is the priori probability of class i in the image to be classified. 
p(X/Ci) indicates the class specific probability distribution of X. 

In (6), p(X) is independent of class i so it can be safely discarded here. So 
the discriminant factor can be defined as,  

Fi(X)= p(Ci) * p(X/Ci) (7)  

Here it is reasonable to assume p(X/C i) is a normal distribution, 
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and p(Ci) is constant for i=1,2,…N.  

It can be further assumed that the covariance σ  is almost constant for all 
classes. So the  

simplified discriminant F i(X) is redefined as 
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where TX  and T
iC  refer to the matrix component of illuminance X and 

feature spectrum iC  of class i, respectively. Finally the concept of 
"minimum distance" is used to replace the maximum discriminant F i(X),  
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The minimum distance discriminant from (11) is the classification function 
that is used to detect exudates in retinal images. 

4.2.2 Extraction of Exudates 

We observe that a colour retinal image consists of two main classes, 
yellowish patches (exudate) and reddish vessel and background. The 
spectrum feature centre, Cexdt and Cbkgrnd of the two classes can be easily 
obtained by selecting a small window in the exudates region and the 
background region respectively in the training samples. The training 
samples are specially chosen from a set of retinal images that contain 
exudates. Then the mean illuminance of the two windows can be tabulated 
and stored as prior information as Cexdt(C r,Cg,Cb) (ie. Cexdt) and 
Cbkgrnd(Cr,Cg,Cb) (ie. C bkgrnd), respectively. 

During the processing of retinal images, for each pixel X(xr,xg,xb), the 
distance D(X,C i) from itself to class center Ci (Cexdt and Cbkgrnd) is 
calculated. If Dexdt(X,Cexdt) is smaller than Dbkgrnd(X,Cbkgrnd), then the pixel X 
is classified as exudates otherwise it is being classified as background 
pixel. Figure 7 shows a sample of detected exudate. 



(a)   (b)  

Figure 7. Detection of exudate. (a) Original image, (b) 
Detected exudate. 

4.3 Vessel Detection 

The cross section profile of the retinal blood vessel resembles a ‘ridge’ 
with the points running through the centre of the vessel having the highest 
intensity and these intensity levels tend to taper off toward the boundaries 
of the vessel. Figure 8 shows the cross section profile of a typical retinal 
blood vessel. Chaudhuri et al. (1989) used a two-dimensional matched 
filter, approximated by Gaussian fitting function to detect the retinal blood 
vessels. Gaussian kernel is a popular filter used for smoothing or fitting 
function as it models after ‘bell’ shape characteristics. Our approach to 
detect retinal vessel is adapted from this method.  

 

Figure 8. Cross section profile of a typical retinal blood 
vessel. 

We investigated the properties of retinal blood vessels to develop image 
processing algorithms to detect the outlines of the vessels precisely.  The 
main properties observed are: 



If the vessel is divided into segments along its length, then the segment 
direction will vary continuously.  The change of direction between 
segments is a smooth continuous function. 

The width of the segment varies continuously.  There is no abrupt step 
change in the width of the vessel segments and there is always a smooth 
transition between adjacent segments. 

The density distribution of a blood vessel cross sectional profile can be 
estimated using Gaussian shaped function.  The density distribution is 
smooth and never exhibits any step-like appearance. 

Our vessel detection algorithm is as follows: 

I. Smoothing 

The input grey image is smoothed by a 5×5 mean filter to reduce the 
spurious noise effects. Low pass spatial filters are used to smooth high 
spatial frequencies and accentuate low spatial variations in an image.  
These filters are characterised by positive values in their masks, which 
clearly yields an additive, hence smoothing effect between neighbourhood 
pixels during the convolution process.  The overall effect is to smooth 
noisy edges and they are also known as smoothing filters. Neighbourhood 
can be achieved using the relation, 

∑=
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where ),( yxp  and ),( yxq  are the original and smoothed images 
respectively, S is a set of co-ordinates of points in the neighbourhood of 

),( yx , and N  is the total number of pixels in the neighbourhood.  Each 
pixel is replaced with the average of itself and its neighbours.  

II. Matched-filter Convolution 

The smoothed-image is convolved with a set of two-dimensional matched 
filters. The two-dimensional matched filters are approximated with the 
Gaussian fitting function, as its profile matches the cross-sectional profile 
of a typical vessel. The filters consist of twelve different kernels, with each 
kernel specifically rotated to optimise for a different vessel angular 
direction. The angular difference between each kernel is chosen to be 15°. 
Hence, a total of twelve kernels are needed to accommodate the 180° of 
possible vessel directions. Each kernel is a set of 15×15 matrix-floating 
points. Each pixel of the smoothed-image is convolved with the twelve 
filters and only the maximum response of each convolution is retained.  

III. Histogram Thresholding 



The matched-image is then converted into a histogram and an automatic 
thresholding algorithm, where the threshold is selected to be the highest 
few percentage of response, is applied to retrieve the enhanced vessels 
from the background. 

Figure 9 shows an example of the original retinal image and extracted 
vessel. 

 

(a)  (b)  

Figure 9. Detection of retinal vessel. (a) Original image, (b) 
Extracted vessel. 

4.3.1 Vessel Tortuosity Detection 

One of the symptoms of diabetic retinopathy is the presence of new vessel 
formation, often appears as tortuous vessel. Hence, the detection of 
tortuous vessel is important in the screening of diabetic retinopathy. In our 
system, a skeletonisation algorithm is used to extract the centre line of the 
vessel points. The resulting output contains only the centre line pixels 
outlining the extracted blood vessel, as shown in Figure 10. The 
Skeletonisation operation involves thinning an image to remove extra 
redundant pixels until it produces a simpler image. The characteristics of a 
skeletoned image are: (i) it should consists of thin regions of one pixel 
wide; (ii) the pixels that make up the skeleton should lie near the centre of 
a cross section of the region; and (iii) the skeletonisd pixels must be 
connected to each other to form the same number of regions as in the 
original image. 

(a)   (b)   



Figure 10. (a) Original image with tortuous vessel. (b) Centre line 
pixel outline of the extracted vessel of (a). 

The detection of tortuous vessel is carried out by walking along the centre 
line of the extracted vessel and tabulating the curvature of the outline. 
Curvature can be defined in a number of ways which we will describe in 
the following subsections. 

4.3.2 Absolute Direction Change 

When tracking a centre line of a chosen segment of the blood vessel, each 
direction change along the path can be accumulated. At the end of the 
tracking, the number of direction changes indicates how tortuous is the 
segment. The direction change, hereby refer to as DirChg, of each pixel of 
the centre line is calculated by drawing an imaginary line from the fifth 
pixel point prior to the current pixel to the fifth pixel point ahead. The 
direction of this imaginary line is differentiated with the imaginary line 
collected from the previous pixel point. This differentiation value 
determines that there is a DirChg if the angle difference between the two 
imaginary lines is greater than a fixed angle, in this case it is chosen as 
30°.  The integration of all the DirChg of all the pixel points along the 
centre line of the segment of blood vessel gives a measure of tortuosity of 
this segment of the vessel. However, this DirChg only gives an indication 
of a measure of curvature at localised regions along the segment and it 
does not give an indication of how straight the segment is just before or 
after the DirChg. It can be seen in Figure 11 that both segments of the 
vessel contain almost the same curvature of DirChg. However, if the range 
of pixel points near the DirChg pixels is taken into account, then the 
segment of vessel in Figure 11b can be observed to be more tortuous than 
that in Figure 11a. This is due to the fact that the vessel in Figure 11a has 
a gradual curve while that of Figure 11b has a more abrupt curve. 

 

 

 

 

 

 

Figure 11. Curvature as a measure of DirChg. (a) Gradual change of 
direction. (b) Localised abrupt change of direction. 

(a) 

(b) 



4.3.3 Arc to Chord Ratio  

Another definition of curvature is the simple arc to chord ratio, hereby 
known as ACurve . If a segment of the vessel is chosen which contains 
some degree of curvature, then this curvature can be calculated by taking 
the arc length and dividing it by its chord length, as shown in Figure 12. 
The arc length is the length of the blood vessel while the chord length is 
the Euclidean distance between the start and end point of the blood 
vessel. The greater the ratio is, the higher is the curvature or tortuosity of 
the blood vessel. The arc to chord ratio can be normalised with respect to 
the arc length and the chord length to give an average value over the 
length of the vessel, known as ACURVEarc and ACURVEchord  
respectively. However, this measure of tortuosity is accurate only if the 
start and end point of the segment of vessel contains a single arc. This 
measure of tortuosity of a segment of a blood vessel only indicates 
whether a segment contains any curves and would not indicate what 
degree of curvature the segment holds (Figure 12b).  

 

 
  

 
 
 

 

 

 

 

 

Figure 12. Curvature as a measure of arc to chord ratio. (a) Start 
and end point containing single arc. (b) Start and end 
point containing multiple arcs. 
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4.3.4 Curvature Based on Paths  

Mokhtarian and Mackworth (Mokhtarian and Mackworth, 1986) introduce 
the curvature of a particular point on a line with respect to its x and y 
components as, 
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where k(t) is the curvature measure at point t, (x
0
(t), y

0
(t)) is the pixel co-

ordinates at point t, (x1(t), y1(t)) is the co-ordinates chosen to be five pixels 

ahead of point t. k(t) is hereby referred to as kCurve. The normalised 
version of kCurve  is kCurvearc and kCurvechord, where the former is 
normalised with respect to the total segment’s arc length and the latter is 
normalised with respect to the total segment’s chord length. 

4.3.5 Curvature Based on Line Fitting 

Anderson et al. (1984) and O’Gormann (1988) propose an alternate 
definition of curvature estimation of a particular point on a line which is 
based on the angular difference between two straight lines fitted to the 
curve at some fixed pixels apart. Then the curvature point t can be defined 
as, 

(t)K(t)
sd

da
=  (14) 

where K(t) is the curvature measure at point t, α is the difference of the 
angle of the two tangent lines at point t, s is the arc length between the 
tangent line at point t and the other tangent line, which is chosen to be five 
pixel ahead of point t. K(t) is hereby referred to as αCurve . The normalised 
version of αCurve  is αCurvearc and αCurvechord, where the former is 
normalised with respect to the total segment’s arc length and the latter is 
normalised with respect to the total segment’s chord length. 

5. Data Mining 

The above definitions of curvature do not individually give a reliable and 
consistent indication of the overall measure of tortuosity of the vessel 
segment under consideration. However, we observe that if some of the 
attributes of the different curvature definitions are used collectively, then 



the degree of reliability and accuracy in measuring the curvature of a 
particular segment of the retinal vessel is increased. In ADRIS, we 
combine all the data of the 12 attributes associated with the four curvature 
definitions and feed the data into an association based data mining 
classification tool, CBA. The output of CBA consists of a set of association 
rules governing the relationship between the 12 attributes that reliably and 
accurately classify the input vessel segment. 

The rules generated by CBA are incorporated into the vessel tortuosity 
detection algorithm. Each of the rules generated indicates the association 
between the tortuosity measure given by each curvature definition. 
Collectively, when these rules are applied to each unseen segment of the 
vessel under consideration, the algorithm would classify whether the 
vessel is tortuous or otherwise.  

6 Evaluation of the Discovered Knowledge 

In Singapore, all diabetic patients are required to undergo an annual eye 
screening in Government-run medical clinic. We obtained a total of 310 
retinal photographs from this screening exercise and digitised them to 
generate the retinal images. These images are used in our experiments to 
detect the optic disc and cup, and exudate. In addition, more than 1000 
vessels are automatically extracted for the vessel detection experiment. 

There are two types of retinal images, normal and abnormal. Normal 
retinal images shows healthy retina. Abnormal retinal images contains 
symptoms of diabetic retinopathy or age-related disease such as cataracts 
and glaucoma where the former causes the retinal image to appear hazy 
or opaque, and the latter exhibits high optic cup to disc ratio. 

There are three main phases in the development of the ADRIS: (1) image 
preparation, (2) image processing and (3) review. The first phase includes 
digitising the retinal photos and pre-processing them. The second phase 
consists of processing those images which involve medical expert input to 
specify the features that discriminate normal and abnormal retinal images. 
Any abnormal retinal images are presented to the doctor for review in the 
last phase. We discuss each of these phases in detail: 

 

 

I. Image Preparation 



The inputs to the system consist of a pair of digital fundus images obtained 
from a colour fundus camera for each patient. The images are converted 
from high-resolution Polaroid colour photographs to digital format through 
an image scanner device. These digital images are expected to exhibit a 
relatively distinct outline of the main features of a healthy retina, namely 
the optic disc, optic cup, main blood vessels and macular.  For unhealthy 
retina, symptoms of the corresponding eye diseases must be clearly 
visible and distinctly detectable with human vision.  The resolution of the 
digital images are scanned with a minimum of 1k × 1k × 24 bits. 

This phase is also known as the pre-processing phase where the images 
are digitally prepared prior to feeding them to the next processing phase. 
Pre-processing operations include removal of noise and artefacts 
(introduced during digitising process) with smoothing filter, and re-sizing 
the digital image to a standard size of 400×400×24bits.  

II. Image Processing 

Retinal digital images are first filtered through the specifications of Normal 
(healthy) retina. The initial phase detects the optic disc and cup , followed 
by the presence of main blood vessel of a minimum total length and 
average width. The next phase detects symptoms of diabetic eye diseases 
which includes abnormal optic cup to disc ratio and the presence of 
exudates and tortuous vessels. The cho roid intervascular region should 
contain only uniform background and should not contain any patches of 
variation. 

III. Review 

This last phase classifies the retinal images into Normal and Abnormal 
cases.  Input images with healthy fundus features and with no detected 
abnormal conditions are classified as Normal. Otherwise, the images are 
classified as Abnormal. Abnormal images are highlighted for the doctor’s 
attention. 

6.1 Optic Disc and Cup Detection 

Out of 310 retinal images used for this experiment, 252 images has visible 
and normal optic disc to cup ratio, 58 images has poor visibility and/or blur 
optic disc outline, 75 images has poor visibility of optic cup and/or incorrect 
optic cup to disc ratio. The experimental results of optic disc and cup 
detection are discussed separately in the following two subsections. 



6.2 Optic Disc Detection 

The optic disc processing algorithm is able to correctly classify 227 images 
with disease free optic disc as Normal (true-positives), 25 images with 
disease free optic disc as Abnormal (false-positive) and all the 58 images 
with symptoms of irregular optic disc as Abnormal (true-negatives). In 
other words, the detection performance is 90.1% for true-positive, 9.9% of 
false-positive, and 100% of true -negative. An image is considered to be 
true-positive when the automatically detected optic disc outline is visually 
compared with the visually detected ellipse outline and the difference 
between the two centres of the ellipses is found to be less than 5 pixels 
apart. That means with an image resolution of 400×400 pixels, the 
maximum error rate is 6.25% (100%*5*5/400). Figure 13 shows examples 
of false-positive and true-negative detections. 25 images with normal optic 
disc are detected as abnormal because of poorly defined outline of optic 
disc. 

(a)  (b)  

Figure 13.  Detection of optic disc. (a) False-positive due to ill-defined 
optic disc outline (circle registers falsely detected optic 
disc), (b) True-negative (square-enclosed-circle represents 
the approximate disc area which the algorithm identified as 
abnormal optic disc due to normal disc area not found → 
disc area larger than normal). 

6.3 Optic Cup Detection 

The optic cup processing algorithm correctly classifies 204 images with 
disease free optic disc as Normal, 31 images with disease free optic cup 
as Abnormal (false-positive) and 75 images with symptoms of irregular 
optic cup to disc ratio as Abnormal (true-negative). In other words, the 
success rate is 86.8% of true-positive, 13.2% of false-positive, and 100% 
of true-negative. Part of the reason that there are 31 images being wrongly 
classified as false-positives is due to incorrect detected optic disc, as 
shown in Figure 14. The other reason for false-positives is the poor 
contrast brightness of the optic cup and disc, inherent in the retinal 



photographs. The optic cup is considered to be correctly detected by 
comparing the automatically extracted cup with the manually extracted 
one. 

  (a)    (b)  

Figure 14. False-positive detection of optic cup. (a) Original image. (b) 
The wrongly detected optic cup (black region within the 
circle) where it’s location is not in the middle of the 
inaccurately detected disc (circle). 

6.4 Exudates Detection 

A total of 23 images with visible exudates are identified by medical expert. 
ADRIS is able to correctly classify 23 of the images that contain exudates 
as Abnormal (100% true-negatives), 75 images with no presence of 
exudates as Abnormal (26.1% of false-negatives) and the remaining 212 
with exudate free images as Normal (73.9% true-positives). There are 75 
images that do not contain any symptoms of exudates but are incorrectly 
classified as having exudates. These errors are due to the presence of 
relatively bright patches of variation scattered around the choroid regions 
and as a result, the algorithm incorrectly identified them as having the 
same spectrum features as that of exudate. These relatively bright patches 
of variation are mainly due to artefacts introduced during the fundus 
photography or digitisation process. Figure 15 shows an example of 
incorrectly detected images (false-negatives). 

(a)  (b)  



Figure 15. Errors in exudate detection. (a) Original image. (b) False-
positive reflected on the upper right region (black pixels) 
due to the its relative brightness (same spectrum features 
as the exudates). 

6.5 Vessel Processing 

The processing of retinal vessels consists of two stages. First, the main 
vessels, those with average width greater than 90µm (5 pixels) and 
average length greater than 30 pixels (540µm) are extracted. Second, 
these extracted vessels are processed into single pixel width of connected 
lines from which the tortuosity of the vessel is measured.  

Each of the main vessels is automatically extracted from the retinal 
images. On average about 4 vessel segments are successfully extracted 
from each image and they are visually verified. In Figure 16, an example of 
tortuous vessel is highlighted. 

(a)  (b)  

Figure 16. Detection of tortuous vessel. (a) Original image, (b) Some of 
the detected tortuous vessel (darken portions) 

Out of the total 310 images, 35 of them contain almost featureless image, 
possibly caused by cataracts. A total of 1205 main vessel segments are 
automatically extracted. The vessel tortuosity detection algorithm extracted 
12 attributes (Sections 3.4.1 to 3.4.4) from each vessel segment and fed 
them into the CBA classification tool. We configure CBA to mine at 35% 
minimum support11, 50% minimum confidence22, 30% of data used as 

                                                             
1  Minimum support refers to a constraint in classification technique whereby it 

gives a minimum percentage of the number of transactions in the data set that 
supports a rule. 

 
2 Minimum confidence is a constraint that gives the minimum percentage of 

confidence that the number of transactions in the data set satisfy both the left-
hand-side and right-hand-side items in an association rule. For example in an 
association rule, X ⇒ Y C implies that X (a set of items in data set T) is 
associated to Y (a single item in T and which is not present in X) has a 
confidence that C% of transactions in T that satisfy X also satisfy Y. 



training cases and 10 times cross validation33. CBA generated 11 
association rules with a cross-validation error rate of 12.1%.  

7 Using the Discovered Knowledge 

We used these association rules to determine whether a vessel is normal 
or tortuous. If a retinal image contains at least one tortuous vessel, then it 
will be classified as abnormal. In total, the rules detected 95 vessels as 
tortuous. 

8 Conclusion 

In this paper, we have shown that images captured from Diabetic 
Retinopathy Screenings can be fed into a computer system for automatic 
classification. ADRIS can detect symptoms such as the size of optic disc 
and cup, and its ratio; exudates or unspecific lesion in the intervascular 
region; and the presence of tortuous main vessel. Experimental results 
show that the basic features of the retina and diabetic retinal disease can 
be detected.  

The performance of the optic disc and cup detection algorithm as well as 
its ratio calculation is found to be up to expectation, as verified by the 
various doctors working with us on this system. Likewise the detection of 
the exudate and the detection of tortuous vessel is within expectation. We 
also found out that a large proportion (74%) of the retinal images obtained 
from the screening exercise is normal, where only 80 retinal images are 
abnormal out of the total 310 images. 

                                                                                                                                            
 
3   Cross-validation is a way to test how accurate is the classification. It is done 

through executing the system over a number of folds (or times) over the data 
which is being split into training case and testing case. The output of cross 
validation gives the average error rate accumulated after applying the 
classification rules on the unseen test data. 

 
    

 



Most importantly, the occurrence of false-negatives, where the presence of 
abnormal features fails to be detected by the system does not happen in 
ADRIS.  

Our future works include identifying more advanced diabetic retinopathy 
symptoms with an ophthalmologist’s input. 
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