
Efficient Evaluation of Multiple Queries
on Streaming XML Data

Mong Li Lee, Boon Chin Chua, Wynne Hsu, Kian-Lee Tan
School of Computing, National University of Singapore

3 Science Drive 2, Singapore 117543
{leeml, chuaboo1, whsu, tankl}@comp.nus.edu.sg

ABSTRACT
Traditionally, XML documents are processed at where they are
stored. This allows the query processor to exploit pre-computed
data structures (e.g., index) to retrieve the desired data efficiently.
However, this mode of processing is not suitable for many
applications where the documents are frequently updated. In such
situations, efficient evaluation of multiple queries over streaming
XML documents becomes important. This paper introduces a new
operator, mqX-scan, which efficiently evaluates multiple queries
with a single pass on streaming XML data. To facilitate matching,
mqX-scan utilizes templates containing paths that have been
traversed to match regular path expression patterns in a pool of
queries. Results of the experiments demonstrate the efficiency and
scalability of the mqX-scan operator.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – query processing.

General Terms
Performance.

Keywords
Streaming XML, Finite State Machines, Regular Path
Expressions.

1. INTRODUCTION
The eXtensible Markup Language is widely used as a standard for
information exchange on the World Wide Web. This has led
database researchers to develop data models and query languages
for XML [2, 3, 6, 8, 9, 10]. An XML document is typically
modeled as a graph and query languages are based on regular path
expressions (RPE) that traverse the logical XML graph model.
Current XML query engines and query processing tools assume
that XML documents are stored in some local repository. As such,
they exploit pre-computed data structures (e.g., indexes) on the
XML data to facilitate efficient query evaluations.

In a dynamic environment such as the Internet, the content of
XML documents changes continuously and we need to process

the XML documents “on the fly”. In other words, the XML
document is processed as it streams in from the network without
prior storage. Furthermore, we frequently find many queries being
issued on one XML document. A resourceful query optimizer
would try to determine the common expressions in these queries
and carry out some group optimization [7]. [11] propose the X-
scan operator to process non-materialized XML data. However,
this operator parses an XML document once for each query. As a
result, if we have m queries on the same XML document, then the
document will be parsed m times. In order to address this
problem, we propose a new mqX-scan operator to handle multiple
queries with a single scan over the XML data.

The input to mqX-scan is an XML data stream and a set of regular
path expression queries. The mqX-scan operator evaluates the
traversal paths of the RPE queries and binds the values to the
variables when matches are found. Our proposed operator has the
following features:

1. A global template containing expressions of the paths
traversed is constructed to facilitate matching of RPE queries
with the document.

2. ID and IDREFs traversals are handled efficiently by using an
IDREF template, ID indexes and a Key-Path (KP) index.

3. Cycles that may be introduced by IDREFs traversals are
detected and resolved using a source-destination pair table.

4. Auxiliary structures such as stacks are used to track changes
in the states of queries during the scanning of the XML
document.

This simple but powerful approach proves efficient in evaluating
multiple RPE queries over streaming XML document. In addition,
we also demonstrate that the technique developed in mqX-scan is
applicable to Selective Dissemination Information system
applications which are currently limited to user profiles (queries)
that do not involve ID and IDREFs.

The rest of the paper is organized as follows. Section 2 briefly
describes how RPE queries are evaluated and Section 3 reviews
some related work. Section 4 introduces our new mqX-scan
operator and details the evaluation of multiple queries. Section 5
reports the results of experiments to evaluate the performance of
mqX-scan. Section 6 concludes our work and discusses some
future research direction.

2. PRELIMINARIES
Figure 1 shows a simple XML document consisting of user-
defined tags, elements, ID and IDREF references. The
corresponding graph representation is given in Figure 2. An
element is represented as an edge and a node is labelled with its
corresponding ID if any. The IDREFs are shown in the graph as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’02, November 4-9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-492-4/02/0011…$5.00.

dashed lines and are represented as edges labelled with the
IDREF attribute name. PCDATA is represented as dotted arrows
pointing to leaf nodes. Given a query db/lab/location/_*/city, we
can evaluate it by traversing the graph in Figure 2 starting from
the root element “db” to find a match for the first outgoing edge,
that is “lab”. Then it will follow the outgoing edge “name” from
the node “central” to node “#1”. Since “name” doesn’t match
“location”, the matching terminates before it matches the entire
path expression in the query, so it is not bound to the query. Next,
we backtrack to the “central” node and follow the next outgoing
edge to node “#2”. From node “#2” we traverse the edge “city”
and come to the end of the path. The path traversed thus far is
db lab location city, which again does not match the path
expression in the query. This process is carried out recursively
until all the matches to the queries are found.

When an IDREF is encountered, the traversal will skip to the
node that the IDREF points to. For example, the node “central” in
Figure 2 has an IDREF attribute advisor = “Smith1”. We will
then follow the path from the node “central” to the node “Smith1”
and traverse down the “Smith1” node to find potential matches.
The path for this particular IDREF example would be

db lab(“central”) lastname. We observe that each path
traversal over the document is the potential answer to a regular
path expression query. In Section 4, we will show how the mqX-
scan operator makes use of this fact to efficiently process multiple
queries on an XML document.

3. RELATED WORK
Streaming data gained prominence with the advent of the Internet
and its many applications. An overview of the issues involved in
evaluating queries over data stream is given in [5]. With the
increasing use of XML as a standard for data exchange and
querying, much research has been carried out on the efficient
evaluation of regular path expressions [11, 12]. [12] proposes
several algorithms for processing regular path expressions. These
algorithms deal with searching paths from an element to another,
scanning sorted elements and attributes to find element-attribute
pairs and finding Kleene-Closure on repeated paths or elements.
These methods are applicable in the case where the XML
documents are stored in local repositories.

[11] proposes an operator called X-scan to evaluate a set of
regular path expressions occurring in a query over an XML data
stream. X-scan accepts one query at a time. When m queries (m >
1) are issued on the same document, the performance of X-scan
degrades as it will need to parse the same document m times. The
mqX-scan operator is designed to address this problem.

[1] develops XFilter, an XML-based system for supporting
Selective Dissemination of Information (SDI). In XFilter, user
profiles or interests are modeled using Xpath queries. When
XML documents stream in, queries are evaluated against a query
index that has been pre-built on the queries. If a query matches at
least one path of the document, then the document is considered
to match the query and will be channeled to the user. On the other
hand, the mqX-scan operator requires that the queries must match
all the paths of a document before it can return the bindings to the
queries.

4. THE MQX-SCAN OPERATOR
Our proposed new operator, mqX-scan, as its name implies,
supports multiple queries in a single pass of the XML document.
The input to the operator is a pool of regular path expression
queries and an XML document. The output of mqX-scan is a set
of bindings to the queries. Figure 3 shows the overall architecture
and data structures used in mqX-scan.

Figure 1. A sample XML document.

Figure 2. Graph representation for XML document in
Figure 1.

Figure 3. Overview architecture and data structures.

The mqX-scan operator employs several data structures to aid in
its query processing:

• A global template that contains the element names
encountered on the paths traversed so far. This template
facilitates matching of multiple queries in the query pool.

• A Key-Path (KP) index to provide fast ID and IDREFs
traversals. The KP index consists of two parts, a key and its
corresponding paths.

• An ID index that keeps track of the element IDs that the
parser has seen.

• An unresolved ID index that stores yet-to-be-seen IDs. The
entries in this index contain suspended IDs in which the KP
index has yet to contain the corresponding nodes.

• An IDREF template that contains the paths traversed by
IDREFs. This template provides fast matching of queries
when the document involves IDREFs.

• A (source, destination) pair table that detects cycles caused
by IDREFs traversals.

Figure 4 shows the architecture of the KP index. When we
encounter a node with “central” as the ID, we will keep all the
sub-elements of the ID node in its corresponding paths. Thus we
have the key “central” and the set of paths {<name>},
{<location><street>}, {<location><city>} and
{<location><country>}. Note that even though the path name
<location> occurs multiple times, the KP index will only store it
once. We can easily trace all the sub-elements of the ID node
using pattern recognition. For example, in Figure 4, there are two
paths from ID node “lab2” to another node: via the edge labeled
“name” and the edge labeled “location”. This is followed by two
paths labeled “street” and “city” emanating from the node the
“location” edge points to. This index is clean and small compared
to the traditional structural graph index proposed in X-Scan. This
is because the KP index only stores the portion of the XML
document that involves IDs.

RPE queries will be kept in a query pool for subsequent
interaction with the mqX-scan operator during the traversal of the
XML document. The operator will match the RPE queries with
the path expressions stored in the global template. Any bindings
to these queries will be output as they become available. When
mqX-scan has finished scanning the whole document, all the
bindings to the queries would have been found.

4.1 Matching Queries
Recall the XML document in Figure 2. Conventional approaches
to find matches to a query such as db/lab/_*/city will traverse a
path starting from the “db” edge to an outgoing edge that satisfies
the next element, “lab”. This is followed by any outgoing edges
that will eventually lead to “city”. This traversal can be visualized
easily by representing the XML document as a graph.

In contrast, the mqX-scan operator uses a global template as a
source to match the regular path expressions in the queries. The
underlying mechanism of the global template is based on finite
state machine (FSM) model. Figure 5 gives the algorithm to find
matches for queries. When the parser encounters an element tag,
it will call the startElement event and pass in the element name,
level of the element, and any XML related attribute to the event.
A global template will be created to store the element name.

Consider the graph in Figure 2, when the first element tag <db> is
encountered, the startElement event is fired, and mqX-scan
constructs a global template to store “db”. The global template is
set to an initial state. Next, the parser reaches “lab” and triggers
another startElement event. Now the global template contains two
elements “db, lab”. This process is repeated until the parser
encounters an end element tag. It will then invoke the endElement
event handler to check if the last element in the global template
matches the end element tag and set the template to a steady state.
Figure 6 shows the state transition diagram for the global
template.

When the global template reaches its first steady state, it will
invoke the matching function. The matching function matches

Figure 5. Algorithm to evaluate queries.

Figure 4. Structure of the Key-Paths (KP) index.

every element in the global template with every regular path
expression in the query pool. In our example, when the global
template reaches its first steady state, it will contain “db, lab,
name”. Queries matching this expression in the template will be
bound. Suppose we have two queries, “db/lab/_*” and “db/_*”,
the matching function will recognize that the template matches
these two regular path expressions. Each query in the query pool
is associated with a state machine. Initially, all the queries are in a
“Wait” state, waiting to be evaluated. The query that is currently
being matched is in an “Active” state. The query is placed in a
“Bind” state if its regular path expression matches the global
template.

Figure 7 shows the State Transition diagram for each query in the
query pool. Each query in the queue is evaluated in turn. This
round of evaluation ends when all the queries have been
examined and are set back to their “Wait” states. Note that when
the XML graph is being traversed, only the paths in a “Steady”
state template will be matched against the regular path
expressions in the queries. When the template is in an
intermediate state, no queries will be in an “Active” state.

4.2 Handling IDREFs and Cycles
We distinguish two types of IDREFs in an XML document:
backward references and forward references. As mqX-scan
traverses the XML document, it builds a KP index to track the
parent-child relationship between the nodes. The index facilitates
fast traversal of backward IDREFs. In order to ensure that the
overheads needed for the index structure are minimal, we do not
store the leaf nodes. In forward references, the IDREF points
ahead to a node that has yet to be processed by the operator and
hence, will not appear in the KP index. To handle this, we
maintain an ID index on the nodes that has already been

processed, and a list of unresolved IDREFs that specifies the ID
values and addresses of nodes yet to be “seen” by the parser.
When a forward reference is encountered, its ID is suspended and
added to the unresolved IDREF list. When a startElement event is
fired, we check whether the ID of this particular element has been
previously suspended. If it is, then the suspended ID will be
activated. After all the sub-elements of this element have been
processed, its ID will be removed from the list of unresolved
IDREF and added to the ID index.

In addition, we introduce another template, called the IDREF
template, which is similar to the global template except that it has
an initial “Inactive” state. Figure 8 depicts the state transition
diagram for IDREF template. If the XML document does not
contain IDREF, then the ID index will be empty and the IDREF
template remains inactive. When some IDREF is encountered, the
IDREF template will search for the ID in the ID index. Using this
ID as the starting point (key), we will probe every sub-element in
the KP index. Once the IDREF template has found the desired
paths, it will invoke the matching function. For example, when
mqX-scan encounters the “Smith1” IDREF reference, it will look
up the ID index for “Smith1”. Since “Smith1” has not yet been
processed, it will put it into the unresolved ID index. When
“Smith1” is reached, the mqX-scan operator will traverse down
the “Smith1” node and append “lastname” to “db, lab”. The
IDREF template will now have “db, lab, lastname”. This
template is used to match the queries.

Finally, we maintain a (source, destination) pair table to detect
and handle cycles. When we encounter the ID “central” and its
IDREF pointing to the other ID of “Smith1”, we store “central” as
a source in the table. When the ID index contains the ID
“Smith1”, we store this ID as a destination. Thus, we have the
pair (central, Smith1) in the table. Next, we will follow the path
to the node with the ID “Smith1” and traverse down every sub-
element of the node. We will encounter an IDREF to “Smith2”,
and store ID “”Smith1” as source and “Smith2” as destination in
the table. Some point later, we will encounter again an IDREF
from “Smith2” to “central”. Since the pair (central, Smith1) is
already in the table, we terminate the traversal.

5. PERFORMANCE STUDIES
We implemented the mqX-scan operator in Java. The experiments
are conducted on a Pentium III 866 MHz machine running
Windows 98. All structures are kept in memory during the
experiments. We use the XOO7 benchmark [4] to generate our
XML documents, and Xerces Java Parser 1.4.3 [15] with SAX 1.0

Figure 6. State transition diagram for the global template.

Figure 7. State transition diagram for each query.

Figure 8. State transition diagram for IDREF template.

[14] enabled to parse the documents. The XOO7 benchmark
provides several parameters to change the size of an XML
document both depth-wise and breadth-wise. We modify the
XML document generator to associate IDs with attribute fields.
IDREFs will point to randomly selected Ids. For each experiment,
we run the document generator to produce a random XML
document and stream the document to our operator. The query
generator produces a set of queries on the document. The
performance metric used is the time taken to parse the document
from the root until all the queries have been bound. The cost of
creating the document and queries are not included in the metric.
Every experiment is run 8 times and the average value is taken.
Table 1 shows the parameters and the range of values used.

Table 1. Parameters used in experiments.

F denotes the file size used in the experiments. We vary this
parameter to study the scalability of the system in terms of file
size under the context of supporting many queries in a single pass
of the XML document. The file size ranges from 50KB to 1000
KB. We found that when the file size reaches 24MB, the time
required for parsing 500 queries is more than two hour.

Q is the number of queries in the system. Varying Q allows
us to measure the scalability of our new operator in terms of
number of queries issued. Q is fixed at 1000 in the comparative
experiments.

D denotes the maximum level of a query. D is set to an
average of 6 in most of the experiments. When a query involves
_* wild card, the query level may differ from the level of the
document. This is because the document generator always starts
from the root while the query generator may begin a query with
_*.

The rest of the parameters are used to shape the query workload.
W is the percentage of queries in the set of the queries generated
that will contain a Kleene_Star wild card (_*). This parameter is
varied to evaluate the scalability and robustness of mqX-scan
when dealing with wildcard. Another parameter, R, is varied to
test the scalability and navigational functionality of mqX-scan
when the documents contain ID and IDREF references.

M is the percentage of irrelevant queries. This parameter
simulates the situation where users issue queries that do not
contain any element name found in a document that is being
parsed. When M is 0, the queries generated by the query
generator are all relevant queries. That is, all the element names
in a query can be found in that document. When M is 1, the
queries generated will contain irrelevant queries based on a ratio
in the setting when distributing the relevant queries and irrelevant

queries in the queries generated. For example, if the ratio is 1:1, it
means the queries generated will contain 50% relevant queries
and 50% irrelevant queries.

We use θ as a parameter of Zipf distribution to determine the
skewness of the choice of element names at each level in the
query generation based on an input DTD. When θ is 0, each
element name in the query is selected randomly from the sets of
element names allowed at its level with a uniform distribution.
When θ is 1, the choice is highly skewed. The level of skewness
is set to 0.8.

5.1 Sensitivity Experiments
In this section, we investigate the performance of the mqX-scan
operator under the following settings:

• No KP index is built (mqX-1).
• A KP index is built but no IDREF traversals (mqX-2).
• A KP index is built, together with IDREF traversals

(mqX-3).

Since mqX-scan is applicable to tree-structured data as well, we
examine the scalability of our operator for tree-structured data
which do not require the construction of the KP index. This is
because such an index provides no benefits for tree-based RPE
evaluation. This leads to the first setting: mqX-1

When a document contains IDs and IDREFs, we need to evaluate
the queries under the environment where IDREF traversals must
be carried out. In such a situation, we have the third setting: mqX-
3. The second setting: mqX-2, aims to show the cost incurred
when the KP index is built but with no IDREF traversals.

Effect of Number of Queries: F, D, W, M, θ: Default
In this experiment, we vary the number of RPE queries from
20000 to 100000. We use a uniform distribution to randomly
select the element names in the query from a set of element
names. The result of the study is shown in Figure 9. First, we
observe that all the total response time for all the three queries
increases linearly with the number of queries. Second, we see that

 Range Default Description
F 50 – 1000K 231K File size
P 100 – 100K 1000 Number of queries
R 50 – 2000 Nil Number of IDREF references

D 2 – 8 6 Depth of queries
W 20% to

80%
0% Percentage of queries containing a

Kleene-star wildcard (_*).
M 0 or 1 0

(Relevant)
Parameter to generate relevant
queries or mixed queries.

θ 0 or 1 0 Zipfian distribution

Figure 9. Effect of Number of Queries.

mqX-3 takes the longest time to bind all the values to the queries.
This is caused by the extra traversals required by IDREFs. The
cost of building the KP index is small, and it is nearly equivalent
to the time taken by mqX-1 to complete the bindings.

Effect of Depth: F, P, W, M, θ: Default
Next, we vary the depth of the queries from 2 to 8. Figure 10
shows that when the depth of the queries increases, the response
time also increases. This is expected since there is an increase in
the number of paths to traverse. Again, mqX-3 has the largest
response time due to the IDREFs traversals. However, we note the
mqX-scan operator still gives fairly good performance under all
the three settings even when the depth reaches 8.

Effect of Wild Card: P, D, M, θ: Default, F=231KB
This experiment evaluates the effect of Kleene-star wild card
occurring in queries. W=2 indicates that two out of ten queries
have a Kleene-star. Figure 11 shows that mqX-3 has the largest
response time. However, the performance of mqX-1, mqX-2, and
mqX-3 are not sensitive to the occurrence of Kleene-star wild
card. Overall, the performance of mqX-scan operator does not

degrade even when large number of queries containing Kleene-
star wild card is issued.

5.2 Comparative Experiments
In this set of experiments, we compare the performance of mqX-
scan (mqX-2 and mqX-3) with X-scan on both skewed and
uniform query distributions. To provide a fairer comparison with
mqX-2 and mqX-3, we implemented two versions of X-scan: X-2
and X-3. The former disables IDREFs traversals while the latter
involves IDREFs traversals.

Effect of File Size: P, W, M: Default
Figure 12 shows the results when the file size varies. Each scheme
is appended with (U) for uniform distribution, and (S) for skewed
distribution. It is clear that mqX-2 outperforms X-2 because the
former avoids repeated parsing of the same document. We note
that mqX-2 is slower when the query distribution is skewed. This
is expected as the waiting time for some queries will be increased.

Effect of Ratio of Relevant vs. Irrelevant Queries:
P, D, W, M: Default, F=56KB
We also implemented a version of mqX-scan with query indexing,
mqX-3(index). The latter uses techniques similar to XFilter [1]
whereby an index is built on the queries. Figure 13 shows that
mqX-3 gives the best performance while the response time for
mqX-3(index) grows exponentially due to repeated probing of the
elements in the hash table. We observe that mqX-3(index) is
superior when the ratio of irrelevant queries is very high. This is
due to the absence of keys found in the hash table, eliminating the
need for traversals. In contrast, graph traversals are required in
mqX-3 and X-3 although the queries contain irrelevant names.

Effect of Number of Queries and IDREFs Traversals
F, P, D, M: Default, W=4
Next, we compare the cost of building the KP index and the
response time when IDREFs traversals are involved. Each scheme
is appended with (_*) when wild card is used. From Figure 14, we
see that mqX-2 outperforms X-2 when the number of queries
increases. X-2 incurs high cost in building the structural index

Figure 10. Effect of Query Depth.

Figure 12. Effect of File Size.

Figure 11. Effect of Kleene-star.

[11] by repeatedly parsing the same document. The occurrence of
the Kleene-star in either uniform or skew distributions does not
affect the response time as shown in Figures 14 and 15. Again this
explains that the performance of the mqX-scan operator is not
affected by the occurrence of Kleene star wild card.

Figures 16 and 17 show that the presence of IDREFs causes the
response times for X-2 and X-3 to increase dramatically.
However, mqX-2 and mqX-3 exhibit stable response times. This
demonstrates that when more IDREFs are encountered, more
paths need to be traversed. Note that the difference in the
response times between mqX-2 and mqX-3 reflects the time taken
to traverse the IDREFs, which is negligible. It is also clear from
the graphs that the distribution has no effect on the response time.

Figure 14. Effect of Varying Number of Queries.
(Uniform Distribution).

6. CONCLUSION
In this paper we have presented the mqX-scan operator that
evaluates multiple queries using a single pass of XML documents.
The proposed operator is pipelined and produces bindings as the
XML document streams into the system. The results of our
experiments demonstrate the scalability of mqX-scan in terms of
number of queries and file size. We also note that mqX-scan can
handle IDREFs and can be reused in SDI applications without the
need to index the queries.

We found that by using the indexing technique proposed in
Xfilter, the mqX operator performs badly due to the heavy
probing and searching required when the percentage of relevant
queries is high. One possible enhancement would be to tune the
mqX-scan operator such that it becomes sensitive to the

Figure 15. Effect of Varying Number of
Queries. (Skewed Distribution).

Figure 13. Relevant vs. Irrelevant Queries.

Figure 16. Effect of IDREFs (Uniform
Distribution).

fluctuation of the composition of queries. A future direction
would be to improve the efficiency of the indexing technique and
group optimization for RPE queries when similar RPE queries are
issued to a streaming XML document.

Figure 17. Effect of IDREFs (Skewed Distribution).

7. REFERENCES
[1] M.Altinel, M.J.Franklin. Efficient Filtering of XML

Documents for Selective Dissemination of Information,
VLDB, 2000.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom and J.
Wiener. The Lorel Query Language for Semistructured
Data, International Journal on Digital Libraries, Vol
1(1), pp. 68-88, 1997.

[3] D.Chamberlin, D.Florescu, J.Robie, J.Simon,
M.Stefanescu. XQuery: An XML Query Language,
W3C Working Draft, 2001.

[4] S.Bressan, G.Dobbie, Z.Lacroix, M.L.Lee, Y.Li, U.
Nambiar and B.Wadhwa: XOO7: Applying OO7
Benchmark to XML Query Processing Tools, 10th
ACM CIKM, 2001.

[5] S. Babu and J. Widom. Continuous Queries over Data
Streams. Stanford University Tech. Report, 2001.

[6] J.Clark and S.DeRose. XML Path Language (XPath),
W3C Technical Report, 1999.

[7] J. Chen, D. DeWitt, F. Tian and Y. Wang. NiagaraCQ:
A Scalable Continuous Query System for Internet
Databases, ACM SIGMOD, 2000.

[8] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An
XML Query Language for Heterogeneous Data
Sources. WebDB Workshop, 2000.

[9] S. Cluet and J. Simeon. YATL: A functional and
declarative language for XML. Working draft, 2000.

[10] A. Deutsch, M.F. Fernandez, D. Florescu, A. Levy, D.
Suciu. A query language for XML. 8th WWW
Conference, 1999.

[11] Z.G. Ives, A.Y. Levy and D.S. Weld. Efficient
Evaluation of Regular Path Expressions on Streaming
XML Data. Technical Report, University of
Washington, 2000.

[12] Q. Li and B. Moon. Indexing and Querying XML Data
for Regular Path Expressions, VLDB, 2001.

[13] J. Robie. The design of XQL, 1999.
http://www.texcel.no/whitepapers/xql-design.html

[14] SAX 1.0: The Simple API for XML.
http://www.saxproject.org/

[15] Apache XML Project. The Xerces Java XML parser.
http://xml.apache.org/ xerces-j/index.html

