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ABSTRACT 
 
Accurate measurement and identification of blood vessels 
could provide useful information to clinical diagnosis. A 
piecewise Gaussian model is proposed to describe the 
intensity distribution of vessel profile in this paper. The 
characteristic of central reflex is specially considered in 
the proposed model. The comparison with the single 
Gaussian model is performed, which shows that the 
piecewise Gaussian model is a more appropriate model 
for vessel profile. The obtained model parameters could 
be utilized in the identification of vessel type. The 
minimum Mahalanobis distance classifier is employed in 
the classification. 505 segments of vessels were tested. 
The success rate is 82.46% and 89.03% for the arteries 
and veins respectively. 

 

1. INTRODUCTION 
 
Retinal vessels have been known to provide useful 
information to clinical diagnosis and treatment. 
Abnormalities of retinal blood vessels are usually the first 
clinical finding in diabetic retinopathy [1]. Retinal vessels 
can be classified into arteries and veins. The arteriole-to-
venular ratio that quantifies generalized retinal arteriolar 
narrowing in retinal images is an indication of 
cardiovascular diseases [2]. In order to obtain this ratio, a 
precise model is required for accurate vessel 
measurement. In addition, we need to automatically 
differentiate the arteries from the veins. 

Techniques to automate vessel detection in 2-D 
retinal images can be classified into two categories: 
window-based methods [3] [4] and tracking-based 
methods [5] [6]. Window-based methods estimate a match 
at each pixel against the pixel’s surrounding window. The 
tracking approach exploits local image properties to trace 
the vessels from an initial point. Both approaches detect 
vessels based on the vessel edge. 3-D reconstruction of 
vessels was also investigated [7], while this paper will 
focus on the processing of 2-D images. 

Two common approaches to vessel edge detection are 
edge detector and edge fitting. The former enhances the 
edges of blood vessels by operators such as Sobel or 

Kirsch. The latter minimizes the distance between the 
original data and a predefined edge model. As edge fitting 
is less sensitive to noises, it is employed in vessel 
detection in many research works. Negative step gate 
function [5], blurred half-ellipse [8], and Gaussian 
function [3] [4] [9] have been proposed as models for 
vessel profiling. Among them, the single Gaussian 
function is the most popular model. However, it is unable 
to capture the central reflex (see Figure 1) which 
frequently occurs in retinal vessels. 
 

 

Figure 1. Example of central reflex in retinal vessels 
 
There is not much literature on the identification of 

vessel types. The pixels around optic disc are assumed to 
have a bimodal histogram in [10]. The arteries/veins 
recognition is performed by a simple thresholding around 
disc boundary area. In [11], the recognition was 
performed by initial labeling and then relaxation labeling. 
The parallel segments were searched in the initial 
labeling. The label of artery was given to the brighter 
segment and the dark segment was labeled as a vein when 
the intensity difference between the two segments was 
large. Successful identification of arteries and veins on a 
large number of vessel segments has yet to be reported. 

In this paper, a piecewise Gaussian model is proposed 
to better capture the intensity distribution crossing blood 
vessels. Based on the model obtained, we investigate how 
arteries can be differentiated from veins. 
 

2. MODELING VESSEL PROFILE 
 
The intensity distribution on the cross section of blood 
vessel is investigated in the green component. The green 
plane is the clearest in the retinal images as the red 
component could be saturated and the blue component is 
usually very dark. Some examples of the intensity 
distribution are shown in Figure 2. They were sampled 

central reflex 



from 35 retinal images with the resolution of 3072×2048 
pixels. We can observe that there is a central light reflex 
particularly for the wide vessels. The light reflex of the 
retinal vessel is formed by the reflection from the 
interface between the blood column and vessel wall. 
Retinal images with other resolution such as 2160×1440, 
1440×960, and 768×576 pixels were studied. The central 
reflex can also be observed, while it is more obvious in 
the high-resolution images.  
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Figure 2. Examples of intensity distribution of vessels 
 

Formula (1) represents the single Gaussian model.  
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where A1, m1 and σ1 are the amplitude, position of peak 
and width distribution respectively. The characteristic of 
central reflex is not considered in the single Gaussian 
model. We propose a piecewise Gaussian model in 
formula (2) to describe the intensity distribution. It 
consists of two Gaussian functions, which depicts the 
central reflex in the model as well. A1 and A2 represent the 
amplitude of the vessel and the reflex respectively; m1, m2 
are the positions of the peaks of the Gaussian functions; 
σ1 and σ2 indicate width distribution, and I1 is the 
intensity of retinal background. The meaning of these 
parameters is illustrated in Figure 3. As the intensity of 
vessel is lower than the retinal background, there is a 
negative sign before A1. This is a non-lineal model 
considering the model’s dependence of its parameters. 













≤≤+

><+−
==

−
−

−
−

BxAIeA

BxAxIeA
xfy

mx

mx

2

2
22

2)2(

2

1

2
12

2)1(

1 ,
)(

σ

σ

 (2)

 

x

A1

A2

I1

I2

m1m2

σσσσ1

σσσσ2

 A B

y = f (x) 

 
Figure 3. Meaning of parameters in the piecewise 
Gaussian model 
 

The merit function that measures the agreement 
between the data and the model is defined as 
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where ),( ii yx is the data point. Best-fit parameters are 
obtained by minimizing the merit function in formula (3) 
by Marquardt method [12]. The vessels can be considered 
as piecewise linear segments. The curve fitting is 
performed on the average intensity of five cross sections 
along vessel length to suppress noises. 
 

3. DIFFERENTIATING ARTERIES AND VEINS 
 
Having obtained the piecewise Gaussian model, we can 
employ it in the classification of arteries and veins. The 
arteries appear lighter and narrower than the dark-red or 
purplish veins in the color retinal images. Normally the 
width ratio of artery to vein is about 2:3. Figure 4 shows 
examples of an artery and a vein in a practical retinal 
image. Simple thresholding will not work for the 
automatic identification of arteries/veins due to the 
uneven illumination. The pattern of the central reflex in 
vein and artery is different. The reflex is more apparent in 
arteries than in veins based on our observation. The 
central reflex can only be observed obviously for the wide 
veins. Those characters can be described by the 
parameters in equation (1). For example, there is a linear 
relationship between σ1 and the vessel diameter [9] [13]; 
A1 represents the darkness of the vessel, which is larger 
for veins than for arteries; A2 stands for the brightness of 
the reflex, which is larger for arteries than for veins. 
Those parameters obtained by model fitting are proposed 
to classify arteries and veins in this paper. 
 



 

 
Figure 4. Examples of an artery and a vein 
 

The parameters obtained from curve fitting for the 
segments on the same vessel are analyzed. Experiments 
shows that the parameters obtained in curve fitting are 
quite consistent, which indicates that the parameters in the 
piecewise Gaussian model can describe a certain pattern 
of a vessel. The different pattern of arteries and veins can 
be observed from Figure 2, in which the first and the 
fourth vessel profiles from the top are obtained from 
segments of veins, and the center two profiles are from 
arteries. It is noted that the amplitude of central reflex in 
arteries is larger than that in veins when the vessel 
diameters are around the same. 

Based on the background knowledge, the brightness of 
the central reflex (A2) respective to A1 and σ1 are selected 
as the features to classify arteries and veins. The minimum 
distance classifier, which is a supervised classification, is 
applied in two dimensions (A2 /A1 and A2 /σ1.) 
Mahalanobis distance [14] is used in the classification, 
which scales the difference in each coordinate by the 
inverse of the variance in that dimension. 
 

4. RESULTS AND DISCUSSION 
 
(A) Modeling vessel profile 
 
The profile on the cross-section of vessels is fitted to the 
proposed piecewise Gaussian model. An example of the 
original data and the fitted curve is shown in Figure 5. 
The vessel profile is indicated by the crosses in the figure. 
The solid line represents the fitted piecewise Gaussian 
model and the dash line shows the fitted model of the 
single Gaussian function represented in formula (1). It can 
be observed that the residual errors for the proposed 
model are mainly from the periphery due to the uneven 
illumination of retinal background. The comparison also 
shows that the piecewise Gaussian model fits the intensity 
distribution better than the single Gaussian model as the 
central reflex is considered. 

505 segments of vessels from different fundus images 
were fitted to the piecewise Gaussian model. The average 
squared error e defined in equation (3) corresponding to 
σ1 is shown in Figure 6. The solid line demonstrates the 
distribution of the squared error for the piecewise 
Gaussian model, and dash line illustrates the distribution 

for the single Gaussian model. The fitting error is similar 
between the two models when σ1 is small, but the error for 
the single Gaussian is much larger than that of the 
proposed model when σ1 becomes larger. This 
comparison indicates that the piecewise Gaussian model 
describes the vessel profile better than the single Gaussian 
model especially when the vessels are wide (σ1 is large). 
The performance of the proposed model for different type 
of vessels is also analyzed in the Figure 6. It can be seen 
that the model is suitable for both arteries and veins, while 
the fitting error is slightly less in arteries than in veins. 
The different performance of the proposed model between 
arteries and veins is due to the more obvious central reflex 
in arteries. 
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Figure 5. Vessel profile and the fitted models 
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Figure 6. Average squared errors for the two models 
 

The proposed piecewise Gaussian model is closer to 
the actual intensity distribution of blood vessel in retinal 
image than the single Gaussian model. The proposed 
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model can be further utilized in the detection and 
measurement of blood vessels to give more accurate 
result. 
 
(B) Classification of arteries and veins 
 
268 segments of arteries and 237 segments of veins were 
tested by the proposed algorithm of artery and vein 
identification. The results obtained by minimum 
Mahalanobis distance are shown in Table 1. The success 
rate is defined as the true positive rate, which is 82.46% 
for the segments of arteries and 89.03% for the segments 
of veins. It can be seen from these figures that the ratios of 
A2 /A1 and A2 /σ1 are suitable features to identification 
vessel type. 
 

 Tested 
segments 

Successful 
identification 

Success 
rate 

Artery 268 221 82.46% 
Vein 237 211 89.03% 

Table 1. Results of artery and vein identification 
 

The chosen of classification method should be further 
investigated and the test on a larger data set should be 
carried out to improve and verify the performance of the 
identification algorithm. Since the difference between 
arteries and veins is not obvious in small vessels, whether 
a vessel segment is classifiable should be evaluated in the 
future research. The same kinds of vessels, either arteries 
or veins, never cross each other and it is a rule that the 
vein dips below the artery at the crossing in the retinal 
image. This information should be utilized in the 
verification of the classification later. 
 

5. CONCLUSION 
 
A piecewise Gaussian model is proposed to describe the 
vessel profile in this paper. The central reflex is 
considered in the proposed model. 505 segments of 
vessels were tested and the comparison shows that the 
proposed model gives a better description of vessel profile 
than the single Gaussian model. The parameters in the 
proposed model are employed to classify arteries and 
veins. The minimum Mahalanobis distance classifier is 
applied in the identification of vessel type. The success 
rate obtained is 82.46% for arteries and 89.03% for veins 
based on the tested vessel segments. This is the first report 
of acceptable vessel classification drawn on a large 
number of vessel segments in retinal images according to 
the available literature. It can be seen that the piecewise 
Gaussian model is a promising model to describe the 
vessel profile and to identify vessel types. 
 
 

6. REFERENCES 
 
[1] S. S. Feman, Ocular Problems in Diabetes Mellitus, 

Boston: Blackwell Scientific Publications, pp. 245-267, 
1992. 

[2] L.D. Hubbard, R. J. Brothers, et al., “Methods for 
evaluation of retinal microvascular abnormalities 
associated with hypertension/sclerosis in the 
atherosclerosis risk in communities studies,” 
Ophthalmology, Vol. 106, pp. 2269-2280, 1999. 

[3] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson and M. 
Goldbaum, “Detection of blood vessels in retinal images 
using two-dimensional matched filters,” IEEE Transactions 
on Medical Imaging, Vol. 8, No. 3, pp. 263-269, 1989. 

[4] A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating 
blood vessels in retinal images by piece-wise threshold 
probing of a matched filter response,” IEEE Transactions 
on Medical Imaging, Vol. 19, No. 3, pp. 203-210, 2000. 

[5] S. Tamura, Y. Okamoto and K. Yanashima, “Zero-crossing 
interval correction in tracking eye-fundus blood vessels,” 
Pattern Recognition, Vol. 21, No. 3, pp. 227-233, 1988. 

[6] Y. A. Tolias, S. M. Panas, “A fuzzy vessel tracking 
algorithm for retinal images based on fuzzy clustering,” 
IEEE Transactions on Medical Imaging, Vol. 17, No. 2, 
pp. 263-273, 1998. 

[7] J. A. Fessler, “Object-based 3-D reconstruction of arterial 
trees from a few projections,” Ph.D. dissertation, Stanford 
University, Stanford, CA, 1990. 

[8] F. P. Miles and A. L. Nuttall, “Matched filter estimation of 
serial blood vessel diameters from video images,” IEEE 
Transactions on Medical Imaging, Vol. 12, No. 2, pp. 147-
152, 1993. 

[9] G. Luo, O. Chutatape, and S.M. Krishnan, “Detection and 
measurement of retinal vessels in fundus images using 
Amplitude modified second-order Gaussian filter,” IEEE 
Transactions on Biomedical Engineering, Vol. 49, No. 2, 
pp. 168-172, 2002. 

[10] J. J. Yu, B. Hung, and H. Sun, “Automatic recognition of 
retinopathy from retinal images,” Proceedings of 
International Conference of the IEEE Engineering in 
Medicine and Biology Society, Vol. 12, No. 1, pp. 171-173, 
1990. 

[11] K. Akita and H. Kuga, “A computer method of 
understanding ocular fundus images,” Pattern Recognition, 
Vol. 15, No. 6, pp. 431-443, 1982. 

[12] D. W. Marquardt, “An algorithm for least-aquares 
estimation of nonlinear parameters,” Journal of the Society 
for Industrial and Applied Mathematics, Vol. 11, pp. 431-
441, 1963. 

[13] L. Zhou, M. S. Rzeszotarski, L. J. Singerman, and J. M. 
Chokreff, “The detection and quantification of retinopathy 
using digital angiograms,” IEEE Transactions on Medical 
Imaging, Vol. 13, No. 4, pp. 619-626, 1994. 

[14] P.C. Mahalanobis, “On tests and measures of groups 
divergence,” Journal of the Asiatic Society of Benagal Vol. 
26, pp. 541, 1930. 


