
Mining Viewpoint Patterns in Image Databases
Wynne Hsu Jing Dai Mong Li Lee

School of Computing, National University of Singapore
3 Science Drive 2, Singapore 117543

{whsu, daijing, leeml}@comp.nus.edu.sg

ABSTRACT
The increasing number of image repositories has made image
mining an important task because of its potential in discovering
useful image patterns from a large set of images. In this paper, we
introduce the notion of viewpoint patterns for image databases.
Viewpoint patterns refer to patterns that capture the invariant
relationships of one object from the point of view of another
object. These patterns are unique and significant in images
because the absolute positional information of objects for most
images is not important, but rather, it is the relative distance and
orientation of the objects from each other that is meaningful. We
design a scalable and efficient algorithm to discover such
viewpoint patterns. Experiments results on various image sets
demonstrate that viewpoint patterns are meaningful and
interesting to human users.

1. INTRODUCTION
Advances in digital technologies have dramatically boosted the
number of image repositories. Finding meaningful patterns from
large sets of images is necessary for automatic indexing,
categorizing, retrieving, and analyzing these images. Early image
mining research has focused on the extraction of appropriate
features from the images and applied traditional data mining
algorithms on the extracted features. However, this approach
relies heavily on the ability to extract the correct image features so
that meaningful patterns can be generated.

Instead of designing tailored image feature extraction algorithms
for each new set of images, a more general approach to image
mining is to discover the invaria nt relationships that exist across a
set of images. Analyzing large set of images, we find that the
absolute positional information of objects do not convey critical
perceptual information, but rather, it is the invariant relationships ,
in the form of the relative spatial relationships among the objects
in images, that are important. We term these invariant
relationships the viewpoint patterns.

Figure 1 shows three kitchen plan images. Each kitchen plan
consists of a subset of {cooktop (C), sink (S), refrigerator (R),
microwave (M), dishwasher (D)}. Table 1 lists the objects found
in the three kitchen plans and the attributes such as type and

location. A quick inspection reveals that while the absolute
positions of the objects in each kitchen plans are unique, there
exist a fixed relationship among three objects in these plans,
namely,

 Sink  → 38,Left
 Dishwasher  → 51,Left

 Refrigerator.

We call this relationship a viewpoint pattern. Such patterns are
insensitive to translational operations, and in some applications,
rotational operations too. To the best of our knowledge, this is the
first work to discover such relative spatial relationships in images.

Figure 1. Sample Image Set & Viewpoint Pattern Found.

Table 1. Sample of Object Table for Images in Figure 1.

Image_id Type Location_X Location_Y

Plan_1 C 140 49

Plan_1 S 79 120

Plan_1 D 117 120

Plan_1 R 168 120

Plan_2 S 64 26

… … … …

In this paper, we propose an efficient , scalable, and domain-
independent method called ViewpointMiner to discover viewpoint
patterns in image databases. We assume that the objects or regions
in the images have already been segmented and that in these
images, the relative position is much more important than
absolute position. The algorithm also allows for rotational-
invariant viewpoint patterns to be generated. Consider the kitchen
plan Plan_3 in Figure 1. If this plan is rotated 90 degrees, we are
still able to discover the same viewpoint pattern shown in Figure 1.
Experiments on large image collections demonstrate that
viewpoint patterns are meaningful and interesting to human users.

The rest of the paper is organized as follows. Section 2 reviews
the related work. Section 3 gives the details of our proposed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redis tribute to lists,
requires prior specific permission and/or a fee.
SIGKDD ’03, August 24-27, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113 -737-0/03/0008…$5.00.

Kitchen plans : Plan_1, Plan_2, Plan_3

Viewpoint pattern found in the 3 kitchen plans

algorithm for mining viewpoint patterns. Section 4 analyzes the
performance of the algorithm and presents our experiment results
on different types of image collections. Finally, we conclude in
Section 5.

2. PREVIOUS WORK
In this section, we briefly survey some existing work in image
mining and spatial data mining.

2.1 Image Mining
Recent image mining approaches apply data mining techniques
after preprocessing the image data to some suitable form for
mining. Existing works adapted data mining algorithms such as
association rule mining [10] [13], clustering [2] and classification
techniques [3] [11] to generate patterns based on pixel level or
object level features. While these approaches can discover hidden
relationships among appearance features in the images, they
ignore the patterns relating to the spatial properties of objects in
the images.

The Attributed Relational Graph (ARG) has recently been used to
represent frequent patterns in image mining [4]. However, [4]
focuses on discovering the adjacent relationships between
different regions in images and hence, it is not suitable for finding
invariant relationships among disconnected image objects. Further,
the patterns represented by ARG are not easy to visualize.

2.2 Spatial Mining
Spatial data mining, on the other hand, mainly focuses on
discovering topological relationships from spatial databases. An
example of spatial association mining in geographic maps is
described in [6]. It has recently been extended to mine topological
relations between object pairs from the general category images
[12]. However, this approach requires a pre-defined concept
hierarchy. In addition, the refinement of the topological relations
requires many passes through the object database, rendering the
algorithm expensive.

Attempts have also been made to find frequent object classes that
typically are close together [5] [8]. In these works , the focus is on
neighboring relation, and does not handle orientation information.

Other major spatial mining research include spatial cla ssification
methods [7] and spatial clustering methods [9]. These approaches
aim to discover patterns in large maps. None of them deal with
relative distance and orientation invariant patterns.

3. MINING OF VIEWPOINT PATTERNS
In this section, we first provide an overview of the viewpoint
discovery process. This is followed by a formal problem
definition and the ViewpointMiner algorithm.

3.1 Overview
We use the example kitchen plan designs in Figure 1 to illustrate
the mining process. Figure 2 shows all the possible 2-object pairs
in the image Plan_1. The corresponding 2-object table is shown in
Table 2. Note that the unit of distance Dist is pixel and the unit of
orientation Orient is radian. This 2-object table is scanned to
determine the frequent 2-object patterns each time after we
generate candidate patterns with increasing number of constrained
attributes. Setting the minimum support to 3, the frequent 2-object
patterns generated from the images in Figure 1 are:

Object1(Type=S)  → 57.1,38 OrientDist
 Object2(Type=D);

Object1(Type=S)  → 57.1,89 OrientDist
 Object2(Type=R);

Object1(Type=D)  → 57.1,51OrientDist
Object2(Type=R).

These 2-object patterns are further generalized to form 2-object
interval patterns. For example , the following two 2-object patterns

 Object1(Type=S)  → 57.1,38 OrientDist
Object2 (); and

 Object1(Type=S)  → 57.1,39 OrientDist
Object2();

can be generalized to a single interval pattern:

 Object1(Type=S)  → 57.1],39,38[OrientDist
Object2 ().

Figure 2. Object Pairs in Image Plan_1.

Table 2. Sample of the 2-Object Table for Plan_1.

Rec # Obj_1
Type

Obj_2
Type

Dist
(Pix)

Orient
(Rad)

Image #

0 S D 38 1.57 Plan_1, _2, _3
1 S C 93 0.71 Plan_1
2 S R 89 1.57 Plan_1, _2, _3
3 D C 74 0.31 Plan_1
4 D R 51 1.57 Plan_1, _2, _3
… … … … … …

Based on the 2-object table, we can build the 3-object table. For
each pair of objects in the 2-object table, we add a new object that
can be found in the same image of the 2-object pa ir to form a new
3-object group (Figure 3).

Figure 3. 3-Object Groups in Image Plan_1.

At the same time, we generate the candidate 3-object patterns by
concatenating two frequent 2-object patterns. Suppose we have

Object1(Type=S)  → 57.1,38 OrientDist
Object2(Type=D); and

Object1(Type=D)  → NULLOrientDist ,97
Object2();

The candidate pattern generated is:

Object1(Type=S)  → 57.1,38 OrientDist
Object2(Type=D)

 → NULLOrientDist ,97
Object3().

When scanning the 3-object table , candidates whose support
counts are greater or equal to the minimum support are output as
3-object viewpoint patterns. The process is repeated until no new
patterns are found. Referring to Figure 1 again, a frequent 3-
object pattern that we discovered is:

Object1(Type=S)  → 57.1,38 OrientDist
Object2(Type=D)

 → 57.1,51 OrientDist
Object3(Type=R).

In order to improve the efficiency of the algorithm, two pruning
strategies are used. The first strategy is to prune the k-object
patterns generated, so that the number of candidates for (k+1)-
object patterns can be reduced. The second strategy is to prune the
k-object table after generating the k-object patterns so as to reduce
the size of (k+1)-object table. In the following section, we
formally define the viewpoint pattern mining problem.

3.2 Problem Definition
As mentioned, viewpoint patterns refer to patterns that
demonstrate the invariant relationships of one object from the
point of view of another object. Here, we focus on the distance
and orientation relationships of objects with respect to another
object. Formally, a viewpoint pattern involving N objects, each
having K attributes can be described as follows:

Object1((a11, v11); (a12, v12); … (a1K, v1K))

 → 11 , oOrientdDist
Object2((a21, v21); (a2 2, v22); … (a2K, v2K))

 → 22 , oOrientdDist
…

 → −− 11 , NN oOrientdDist
ObjectN ((aN1, vN1); … (aNK, vNK)) (Support)

where

1. (a ij, vij) denote the jth attribute value pair used to describe
Objecti. Note the object here is an abstract object as defined by
the constraints on its attribute values;

2.  → ii oOrientdDist ,
connects Object(i+1) with respect to Objecti.

Note that vij, di and oi can be null, a single -value, or an interva l.
We order these objects by imposing the constraint that Objecti
must appear to the left of Object(i+1);

3. Support refers to the number of times the pattern appears in the
image collection. It is sensitive to reoccurrence in one image;

Our goal is to generate frequent rotational-variant and rotational-
invariant viewpoint patterns from image databa ses. Details of the
mining algorithm ViewpointMiner are described in the next
subsection.

3.3 ViewpointMiner Algorithm
Let D be the image object database, where all the continuous
value attributes have been discretized. Figure 4 gives the Apriori
[1] based ViewpointMiner algorithm.

The output SIk stores all the frequent k-object viewpoint patterns
which consist of Sk, m and Ik. Sk, m are the frequent k-object
patterns with the constraint that there are exactly m values in the
set {d(k-1), o(k-1), vkj, for all j} that are single -valued, while others
are all null. Ik are the frequent k-object patterns where there are
some values in the set {d(k-1), o(k-1), vkj , for all j} that are interval.
When k=2, S2, m have m single-valued attributes and no interval
attributes, while I2 have some interval attributes.

The preprocessing step in the Figure 4 prunes away the
insignificant objects that are either too small or with low contrast
to the background. The pattern generation process begins with k =
2. From line 4 to 14, the program generates the candidates, counts
the frequent ones and generalizes them to interval patterns. Lines
15 and 16 prune the redundant interva l patterns and useless object
groups. This process is repeated until no new patterns are
generated.

Next, we describe in greater details the six functions that are
called from within the loop.

Figure 4. Algorithm ViewpointMiner

build (D’, k, (k-1)-object table): This is the most time
consuming part of the algorithm. This function scans the database
and records all combinations of k objects that appear in each
image into k-object table . The k-object table is indexed by a hash
function. The size of the k-object table is controlled by function
preprocess (D). In this function, the distance and orientation
among the k objects are calculated and stored (Figure 5).

Figure 5. Function build (D’, k, (k-1)-object table)

candidate-gen1 (SI(k-1), S(k-1), 1): This function generates the
candidates of Sk, 1 patterns. It is similar to the candidate generation
function of the Apriori algorithm [1]. The difference is that each
candidate is a sequence of objects where the order of the objects is
important. In this function, each candidate for Sk, 1 pattern is
generated by adding Object(k-1), o(k-2) and d(k-2) of a S(k-1), 1 pattern

build (D’, k, (k-1)-object table):
Input: preprocessed object database D’, number of objects k,

(k-1)-object table;
Output: k-object table ;

1) For each image I in D’
2) S = set of objects occurring in I;
3) IdSet = ids of the (k-1)-object records that occurs in I;
4) For each id in IdSet
5) Find (k-1)-object record R via hash function;
6) For each object O in S
7) If O is not contained in R
8) Generate a candidate k-object record C by

inserting O to R sorted by location;
9) If all the k-1 object subsets of C are in (k-1)-

object table
10) If C is already in the k-object table
11) Increment the count of C;
12) Else add C to the k-object table ;
13) Delete the (k-1)-object table ;
14) End

Algorithm ViewpointMiner:
Input: Image object database D;
Output: SIk patterns for all k;

1) D’ = preprocess (D);
2) For (k = 2; S(k-1), 1 != NULL; k++)
3) k-object table = build (D’, k, (k -1)-object table);
4) If (k > 2)
5) CSk, 1 = candidate-gen1 (SI(k-1), S(k-1), 1); // Candidates

for Sk, 1
6) Else
7) CS2, 1 = set of all attribute value pairs in D’;
8) Sk, 1 = { c ∈ CSk, 1 | is_frequent (c) };
9) Ik = generalize (Sk, 1);
10) F = # of object attributes + 2;
11) For (f = 2; f <= F and Sk, f-1 != NULL; f++)
12) CSk, f = candidate -gen2 (Sk, (f-1)); // Candidates for Sk, f
13) Sk, f = { c ∈ CSk, f | is_frequent (c) };
14) Ik = Ik ∪ generalize (Sk, f);
15) SIk = prune-pattern ((∪f Sk, f) ∪ Ik);
16) k-object table = prune-obj (k-object table, SIk);
17)End

to the end of a SI(k-1) pattern, at the same time the sub-pattern
formed by the last k-1 objects and k-2 distances and orientations
of the candidate must cover the S(k-1), 1 pattern. Here we have A
cover B if and only if all the objects that fit pattern B also fit
pattern A. Note that we select a special subset of SI(k-1) and S(k-1), 1
as the input parameters to the function. This enables us to limit the
number of patterns generated (Figure 6).

Figure 6. Function candidate-gen1 (SI(k-1), S(k-1), 1)

candidate-gen2 (Sk, (f -1)): The function generates the Sk,f
candidate patterns from Sk,(f-1) patterns. For each pair of Sk,(f-1)
patterns with the same first k-1 objects and k-2 dist and orient, if
they have only one different attribute value in the last object and
last dist and orient, the function generates a temporary candidate
by combine them together. If the temporary candidate can be
covered by some Sk,(f-1) pattern after setting any attribute value of
the last object or the last dist or orient as null, it is stored as a
candidate pattern (Figure 7).

Figure 7. Function candidate -gen2 (Sk, (f -1))

generalize (Sk, j): This function generates Ik by merging the
adjacent segments in Sk, j patterns (Figure 8). It makes use of a
sub-generalize function to create the interval range for each
selected attribute (see Figure 9).

prune-pattern (SIk): Since function generalize (Sk, f) produces
many interval patterns, there will be some patterns that are already
covered by others. This function prunes away the redundant
patterns. In so doing, it reduces the number of candidates for the
outer loop as well as the final result (Figure 10).

Figure 8. Function generalize (Sk, f)

Figure 9. Function sub-generalize (SIk, A)

Figure 10. Function prune -pattern (SIk)

prune-obj (k-object table, SIk): This function prunes away the
records that are not covered by SIk patterns from D’. If a k-object
record is not covered by SIk patterns , it implies that the record will
not be covered by any SI (k+1) patterns. Hence, after the prune-obj
function, only the useful k-object records will be kept in the k-
object table to generate the (k+1)-object table. This is a simple but
important optimization because it decreases the size of the in-
memory table (Figure 11).

The ViewpointMiner algorithm incurs low I/O cost, since the
number of times to scan the image object database is equal to the

prune -pattern (SIk):
Input: all the k-object viewpoint patterns SIk;
Output: k-object patterns SIk without redundant patterns;

1) For each pair (P1, P2) of patterns in SIk
2) If P1 is covered by P2
3) If for some i, j, vij is interva l or di is interval or oi is

interval in P1
4) If P1.Support is equal to P2.Support
5) Prune P2;
6) Else Prune P1;
7) End

sub-generalize (SIk, A):
Input: patterns SIk, attribute A;
Output: interval-value patterns Ik generalized on A;

1) Group patterns in SIk among which the only different

attribute value is A, and sort each group by A in
ascending order;

2) For each group G (p1, p2,…, pN)
3) ind = 2;
4) For (j = 1; j < N; j++);
5) ind --;
6) For (i = window_size; i > ind-1; i--)
7) If (pj.A == pj+i.A - i)
8) Generate pattern P from pj by changing value of A

to [pj.A, pj+i.A] and Support to sum of i patterns’;
9) Add P into Ik;
10) ind = i;
11) i = 0;
12) End

generalize (Sk, f):
Input: single-value patterns Sk, f;
Output: interval-value patterns Ik;

1) For (i = 1; i <= f; i++)
2) I{ai} = sub-generalize(S k, f, ai); //ai, aki is one of the

last f attributes in Sk, f
3) Add I{ai} into Ik;
4) For (i = 2; i <= f; i++)
5) For each combination of i attributes {ak1,…aki}
6) I{ak1,…aki} = sub-generalize (I{ak1,…ak(i-1)}, aki);
7) Add I{ak1,…aki} into Ik;
8) End

candidate-gen2 (Sk, (f -1)):
Input: single-value patterns Sk, (f-1);
Output: candidates of Sk, f: CSk, f;

1) For each pair of Sk, (f-1) (P1, P2)
2) If P1, P2 have same first k-1 objects and k-2 dist and

orient
3) If P1, P2 have (f-2) same non-null attribute values

for Objectk, d(k-1) and o(k-1)
4) Generate temporary candidate T by adding the

attribute that P1 has while P2 has not to P2;
5) If T can be covered by patterns in Sk,(f-1) after

remove any attribute of Objectk or d(k-1) or o(k-1)
from T

6) Add T into CSk, f;
7) End

candidate-gen1 (SI(k-1), S(k-1), 1):
Input: patterns SI(k-1), single -value patterns S(k-1), 1;
Output: candidates of Sk, 1: CSk, 1;

1) For each pattern PS in S(k-1), 1
2) For each pattern PSI in SI(k-1)
3) If the last k-2 objects and k-3 dist and orient of PSI

cover the first k-2 objects and k-3 dist and orient of
PS

4) Generate candidate T by adding the last object and
dist and orient of PS to the end of PSI;

5) Add T to CSk, 1;
6) End

number of objects in the longest pattern minus one. The most
time-consuming module is the build function which has an
average runtime linear to the total number of images.

Figure 11. Function prune-obj (k-object table, SIk)

3.4 Rotational-Invariant Considerations
The algorithm described above is sensitive to the rotational
operations. As a result, images in Figure 12 will have two
different viewpoint patterns. However, from an interior designer’s
point of view, these two patterns essentially describe the same
design principle. To discover such rotational-invariant viewpoint
patterns, we ignore the orientation information by first mapping
each 2-object group into some existing candidate patterns. This
mapping is achieved by rotating the object pairs at various angles
such as p/2, p, and 3p/2. With this mapping, the “S-D” group from
the last set of images of Figure 12 will be mapped to the same
viewpoint patterns as the first set of images. The mapping angle is
assigned to the “S-D” group so that subsequent 3-object groups
can be generated using the mapped relative positions.

Figure 12. Rotational-Variant Patterns.

The following modifications need to be made to the
ViewpointMiner in order to generate rotational-invariant patterns :

1. When generating the candidate pattern CS2 , 1 (Line 7 of
Figure 4) where CS2, 1 involves an orientation attribute, we
restrict the orientation values to the interval [0, p/2].

2. When counting the frequencies of the S2, 1 patterns with
orientation attributes (Line 8 of Figure 4), the orientation oi
of each object pair i is expanded to four values: oi , oi+p/2,
oi+p, oi+3p/2. If one of these four orientations can match an
existing candidate pattern, then we assign the matched
rotation value to the object pair and increase the frequency
count of the matched candidate pattern.

3. When generating the candidate pattern CS2, f using the
function candidate-gen2 (S 2, (f-1)) (Line 12 of Figure 4), we
combine two S2, (f-1) patterns to obtain a S2, f candidate pattern.

The common rotational angles of these two S2, (f-1) patterns
should be kept by the S2, f candidate pattern for subsequent
use by candidate-gen1 (SI2, S2, 1).

4. In the function build (D’, k , (k -1)-object table) for k > 2 (line
3 of Figure 4), when adding a new object to generate a
candidate k-object record (line 8 of Figure 5), the relative
position of the new object is calculated according to the
rotational angle of the (k-1)-object record.

5. In the function candidate -gen1 (SI2, S2, 1) (Line 5 of Figure 4),
when combining two 2-object patterns to generate CS3, 1, the
2-object patterns are instantiated to multiple patterns
according to the rotational angles associated with the 2-
object patterns. This allows the two 2-object patterns to
generate more than one S3, 1 candidate pattern.

With these modifications, the viewpoint mining algorithm can
now find viewpoint patterns from rotation-insensitive images.

4. EXPERIMENTS
In this section, we evaluate the algorithm ViewpointMiner on
different types of image databases.

4.1 Experiments on General Category Images
The most expensive function in the ViewpointMiner algorithm is
the function build that involves scanning the image database to
construct the k-object groups. Theoretically, with an appropriate
hash function, the time complexity of the function build is O(m) ,
where m is the number of images in the database.

We use 5000 images from a general category image collection.
We extract over 25,000 objects after restricting the number of
objects in each image to be 7. Figure 13 shows a sample of the
images and their corresponding extracted objects. The minimum
support is set to be 0.15% of the size of the 2-object table.
Experiment results show that, in total, we have 57,058 2-object
groups and 71,602 3-object groups, and 51,575 4-object groups
without object pruning. Figure 14 shows the time needed to build
the k-object table as we vary the number of images from 1000 to
5000. We observe that the time needed to build the k-object tables
is linear to the number of images.

Figure 13. Samples from General Category Image Set.

Figure 14. Time Taken to Build k-object Table .

 …

…

prune -obj (k-object table, SIk):
Input: k-object table, patterns SIk;
Output: k-object table without useless records ;

1) For each record R in k-object table
2) If R is not covered by any pattern in SIk
3) Delete R from k-object table;
4) End

Next, we investigate the effect of pruning on the performance of
the algorithm (Figure 15). The results show that after pruning
objects using the S2, 3 patterns, only 14.3% of the 2-object groups
remains, and 2,978 3-object groups are generated as compared to
the 71,602 groups generated without pruning. This indicates that
our viewpoint pattern mining algorithm is scalable and efficient.

Figure 15. Time Taken by Prune-obj Step

4.2 Experiments on Kitchen Plan Images
In this set of experiment, we collected eleven origina l kitchen plan
images from the Internet. All the plans include a cooktop (C), a
sink (S) and a refrigerator (R). Some of the plans also have
microwaves (M) and dishwashers (D). Based on these eleven
plans, we infer the underlying design principles and generated 40
kitchen plans that adhere to the design principles. In addition, we
generated 80 kitchen plan images by randomly placing the five
items in each kitchen plan. In total, we have 120 kitchen plan
images in which 40 are regarded as meaningful (seeding images).

Figure 16. Discovering Pattern from Kitchen Plans

We set the minimum support count to 3, and found 39 2-object
patterns, 4 3-object patterns and 1 4-object pattern. Figure 16
shows the process of generating a 3-object pattern. The 2-object
patterns covered 150 object pairs, in which 104 pairs are from the
seeding images, while the 3-object patterns and 4-object patterns
can be traced back to the seeding images. We conclude that the
viewpoint patterns generated do capture the underlying design
principles in spite of the 67% random noise introduced. Based on
the discovered patterns, we can infer some good kitchen design

principles such as: arrange the sink next to the dishwasher and
place the refrigerator next to the microwave.

5. CONCLUSION
Motivated by the need for automatic indexing, categorizing,
retrieving, and analyzing of increasingly large sets of images, this
paper explores how image mining can be used to find meaningful
patterns from images repositories. We observe that the absolute
positional information of objects do not convey critical perceptual
information, but rather, it is the invariant relationship, in the form
of the relative spatial relationships among the objects in images,
that is important.

We introduce the concept of a viewpoint pattern to describe the
fixed, invariant relationships among the objects in images. An
algorithm called ViewpointMiner has been designed to discover
viewpoint patterns from large image collections. Experiments
results on general category images and architectural design
images demonstrate that ViewpointMiner is efficient and scalable,
and is able to discover meaningful patterns from real-world
images.

6. REFERENCES
[1] R. Agrawal and R. Srikant. Fast Algorithms for Mining

Association Rules. VLDB, 1994.

[2] E. Chang, C. Li, J. Wang, P. Mork, and G. Wiederhold.
Searching Near-Replicas of Images via Clustering. SPIE
Symp. of Voice, Video and Data Communications , 1999.

[3] B. Fang, W. Hsu, and M. Lee. Tumor Cell Identification
Using Feature Rules. SIGKDD, 2002.

[4] P. Hong and T. Huang. Mining Inexact Spatial Patterns.
Workshop on Discrete Mathematics and Data Mining, 2002.

[5] Y. Huang, H. Xiong, S. Shekhar, and J. Pei. Mining
Confident Co-location Rules without a Support Threshold.
18th ACM Symp. on Applied Computing, 2003.

[6] K. Koperski and J. Han. Discovery of Spatial Association
Rules in Geographic Information Database. 4th Int. Symp. on
Large Spatial Databases, 1995.

[7] K. Koperski, N. Stefanovic, and J. Han. An Efficient Two-
Step Method for Classification of Spatial Data. Int. Symp. on
Spatial Data Handling, 1998.

[8] Y. Morimoto. Mining Frequent Neighboring Class Sets in
Spatial Database. SIGKDD, 2001.

[9] R. Ng and J. Han. Efficient and Effective Clustering Methods
for Spatial Data Mining. VLDB , 1994.

[10] C. Ordonez and E. Omiecinski. Discovering Association
Rules based on Image Content. IEEE Advances in Digital
Libraries Conference, 1999.

[11] A. Vailaya, M. Figueiredo, A. Jain, and H. Zhang. Image
Classification for Content-Based Indexing. IEEE
Transaction on Image Processing, Vol. 10, No. 1, 2001.

[12] O. Zaiane and J. Han. Mining Recurrent Items in Multimedia
with Progressive Resolution Refinement. ICDE, 2000.

[13] O. Zaiane, J. Han, Z. Li, S. Chee, and J. Chiang.
MultiMediaMiner: A System Prototype for MultiMedia Data
Mining. ACM SIGMOD, 1998.

…
…

…
Original Plan Seeding Image

Viewpoint Pattern

