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ABSTRACT 
The increasing number of image repositories has made image 
mining an important task because of its potential in discovering 
useful image patterns from a large set of images. In this paper, we 
introduce the notion of viewpoint patterns for image databases. 
Viewpoint patterns refer to patterns that capture the invariant 
relationships of one object from the point of view of another 
object. These patterns are unique and significant in images 
because the absolute positional information of objects for most 
images is not important, but rather, it is the relative distance and 
orientation of the objects from each other that is meaningful. We 
design a scalable and efficient algorithm to discover such 
viewpoint patterns. Experiments results on various image sets 
demonstrate that viewpoint patterns are meaningful and 
interesting to human users. 

1.   INTRODUCTION 
Advances in digital technologies have dramatically boosted the 
number of image repositories. Finding meaningful patterns from 
large sets of images is necessary for automatic indexing, 
categorizing, retrieving, and analyzing these images. Early image 
mining research has focused on the extraction of appropriate 
features from the images and applied traditional data mining 
algorithms on the extracted features. However, this approach 
relies heavily on the ability to extract the correct image features so 
that meaningful patterns can be generated.  

Instead of designing tailored image feature extraction algorithms 
for each new set of images, a more general approach to image 
mining is to discover the invaria nt relationships that exist across a  
set of images. Analyzing large set of images, we find that the 
absolute positional information of objects do not convey critical 
perceptual information, but rather, it is the invariant relationships , 
in the form of the relative spatial relationships among the objects 
in images, that are important. We term these invariant 
relationships the viewpoint patterns. 

Figure 1 shows three kitchen plan images. Each kitchen plan 
consists of a subset of {cooktop (C), sink (S), refrigerator (R), 
microwave (M), dishwasher (D)}. Table 1 lists the objects found 
in the three kitchen plans and the attributes such as type and 

location. A quick inspection reveals that while the absolute 
positions of the objects in each kitchen plans are unique, there 
exist a fixed relationship among three objects in these plans, 
namely,  

       Sink  → 38,Left
 Dishwasher  → 51,Left

 Refrigerator.  

We call this relationship a viewpoint pattern. Such patterns are 
insensitive to translational operations, and in some applications, 
rotational operations too. To the best of our knowledge, this is the  
first work to discover such relative spatial relationships in images. 

 
Figure 1. Sample Image Set & Viewpoint Pattern Found. 

Table 1. Sample of Object Table for Images in Figure 1. 

Image_id Type Location_X Location_Y 

Plan_1 C 140 49 

Plan_1 S 79 120 

Plan_1 D 117 120 

Plan_1 R 168 120 

Plan_2 S 64 26 

… … … … 

 
In this paper, we propose an efficient , scalable, and domain-
independent method called ViewpointMiner to discover viewpoint 
patterns in image databases. We assume that the  objects or regions 
in the images have already been segmented and that in these 
images, the relative position is much more important than 
absolute position. The algorithm also allows for rotational-
invariant viewpoint patterns to be generated. Consider the kitchen 
plan Plan_3 in Figure 1. If this plan is rotated 90 degrees, we are 
still able to discover the same viewpoint pattern shown in Figure 1. 
Experiments on large image collections demonstrate that 
viewpoint patterns are meaningful and interesting to human users.  

The rest of the paper is organized as follows. Section 2 reviews 
the related work. Section 3 gives the details of our proposed 
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Kitchen plans : Plan_1, Plan_2, Plan_3 

 
Viewpoint pattern found in the 3 kitchen plans 



algorithm for mining viewpoint patterns. Section 4 analyzes the 
performance of the algorithm and presents our experiment results 
on different types of image  collections. Finally, we conclude in 
Section 5.   

2.   PREVIOUS WORK 
In this section, we briefly survey some existing work in image 
mining and spatial data mining.  

2.1   Image Mining 
Recent image mining approaches apply data mining techniques 
after preprocessing the image data to some suitable form for 
mining. Existing works adapted data mining algorithms such as 
association rule mining [10] [13], clustering [2] and classification 
techniques [3] [11] to generate patterns based on pixel level or 
object level features. While these approaches can discover hidden 
relationships among appearance features in the images, they 
ignore the patterns relating to the spatial properties of objects in 
the images.  

The Attributed Relational Graph (ARG) has recently been used to 
represent frequent patterns in image mining [4]. However, [4] 
focuses on discovering the adjacent relationships between 
different regions in images and hence, it is not suitable for finding 
invariant relationships among disconnected image objects. Further, 
the patterns represented by ARG are not easy to visualize. 

2.2 Spatial Mining 
Spatial data mining, on the other hand, mainly focuses on 
discovering topological relationships from spatial databases. An 
example  of spatial association mining in geographic maps is 
described in [6]. It has recently been extended to mine topological 
relations between object pairs from the general category images 
[12]. However, this approach requires a pre-defined concept 
hierarchy. In addition, the refinement of the topological relations 
requires many passes through the  object database, rendering the 
algorithm expensive.  

Attempts have also been made to find frequent object classes that 
typically are close together [5] [8]. In these works , the focus is on 
neighboring relation, and does not handle orientation information. 

Other major spatial mining research include spatial cla ssification 
methods [7] and spatial clustering methods [9]. These approaches 
aim to discover patterns in large maps. None of them deal with 
relative distance and orientation invariant patterns.  

3.   MINING OF VIEWPOINT PATTERNS 
In this section, we first provide an overview of the viewpoint 
discovery process. This is followed by a formal problem 
definition and the ViewpointMiner algorithm.  

3.1   Overview 
We use the example kitchen plan designs in Figure 1 to illustrate 
the mining process. Figure 2 shows all the possible 2-object pairs 
in the image Plan_1. The corresponding 2-object table is shown in 
Table 2. Note that the unit of distance Dist is pixel and the unit of 
orientation Orient is radian. This 2-object table  is scanned to 
determine the frequent 2-object patterns each time after we 
generate candidate patterns with increasing number of constrained 
attributes. Setting the minimum support to 3, the frequent 2-object 
patterns generated from the images in Figure 1 are: 

Object1(Type=S)  → 57.1,38 OrientDist
 Object2(Type=D);  

Object1(Type=S)  → 57.1,89 OrientDist
 Object2(Type=R );   

Object1(Type=D)  → 57.1,51OrientDist
Object2(Type=R ).  

These 2-object patterns are further generalized to form 2-object 
interval patterns. For example , the following two 2-object patterns  

      Object1(Type=S)  → 57.1,38 OrientDist
Object2 ( ); and  

       Object1(Type=S)  → 57.1,39 OrientDist
Object2( );  

can be generalized to a single interval pattern: 

      Object1(Type=S)  → 57.1],39,38[ OrientDist
Object2 ( ).  

 
Figure 2. Object Pairs in Image Plan_1. 

Table 2. Sample of the 2-Object Table for Plan_1. 

Rec # Obj_1 
Type 

Obj_2 
Type 

Dist 
(Pix) 

Orient 
(Rad) 

Image # 

0 S D 38 1.57 Plan_1, _2, _3 
1 S C 93 0.71 Plan_1 
2 S R 89 1.57 Plan_1, _2, _3 
3 D C 74 0.31 Plan_1 
4 D R 51 1.57 Plan_1, _2, _3 
… … … … … … 

 
Based on the 2-object table, we can build the 3-object table. For 
each pair of objects in the 2-object table, we add a new object that 
can be found in the same image of the 2-object pa ir to form a new 
3-object group (Figure 3). 

 
Figure 3. 3-Object Groups in Image Plan_1. 

At the same time, we generate the candidate 3-object patterns by 
concatenating two frequent 2-object patterns. Suppose we have 

Object1(Type=S)  → 57.1,38 OrientDist
Object2(Type=D); and 

Object1(Type=D)  → NULLOrientDist ,97
Object2( ); 

The candidate pattern generated is: 

Object1(Type=S)  → 57.1,38 OrientDist
Object2(Type=D) 

 → NULLOrientDist ,97
Object3( ). 

When scanning the 3-object table , candidates whose support 
counts are greater or equal to the minimum support are output as 
3-object viewpoint patterns. The process is repeated until no new 
patterns are found. Referring to Figure 1 again, a frequent 3-
object pattern that we discovered is:  

Object1(Type=S)  → 57.1,38 OrientDist
Object2(Type=D)  

 → 57.1,51 OrientDist
Object3(Type=R). 

   

   

    



In order to improve the efficiency of the algorithm, two pruning 
strategies are used. The first strategy is to prune the k-object 
patterns generated, so that the number of candidates for (k+1)-
object patterns can be reduced. The second strategy is to prune the 
k-object table after generating the k-object patterns so as to reduce 
the size of (k+1)-object table. In the following section, we 
formally define the viewpoint pattern mining problem. 

3.2   Problem Definition 
As mentioned, viewpoint patterns refer to patterns that 
demonstrate the invariant relationships of one object from the 
point of view of another object. Here, we focus on the distance 
and orientation relationships of objects with respect to another 
object. Formally, a viewpoint pattern involving N objects, each 
having K attributes can be described as follows: 

Object1((a11, v11); (a12, v12); … (a1K, v1K)) 

 → 11 , oOrientdDist
Object2((a21, v21); (a2 2, v22); … (a2K, v2K)) 

 → 22 , oOrientdDist
…  

 → −− 11 , NN oOrientdDist
ObjectN ((aN1, vN1); … (aNK, vNK)) (Support) 

where  

1. (a ij, vij) denote the jth attribute value pair used to describe 
Objecti. Note the object here is an abstract object as defined by 
the constraints on its attribute values; 

2.  → ii oOrientdDist ,
connects Object(i+1) with respect to Objecti. 

Note that vij, di and oi can be null, a single -value, or an interva l.  
We order these objects by imposing the constraint that Objecti 
must appear to the left of Object(i+1);  

3. Support refers to the number of times the pattern appears in the 
image collection. It is sensitive to reoccurrence in one image; 

Our goal is to generate frequent rotational-variant and rotational-
invariant viewpoint patterns from image databa ses. Details of the 
mining algorithm ViewpointMiner are described in the next 
subsection. 

3.3   ViewpointMiner Algorithm 
Let D be the image object database, where all the continuous 
value attributes have been discretized. Figure 4 gives the Apriori 
[1] based ViewpointMiner algorithm.  

The output SIk stores all the frequent k-object viewpoint patterns 
which consist of Sk, m and Ik. Sk, m are the frequent k-object 
patterns with the constraint that there are exactly m values in the 
set {d(k-1), o(k-1), vkj, for all j} that are single -valued, while others 
are all null. Ik are the frequent k-object patterns where there are 
some values in the set {d(k-1), o(k-1), vkj , for all j} that are interval.  
When k=2, S2, m have m single-valued attributes and no interval 
attributes, while I2 have some interval attributes. 

The preprocessing step in the Figure 4 prunes away the 
insignificant objects that are either too small or with low contrast 
to the background. The pattern generation process begins with k = 
2. From line 4 to 14, the program generates the candidates, counts 
the frequent ones and generalizes them to interval patterns. Lines 
15 and 16 prune the redundant interva l patterns and useless object 
groups. This process is repeated until no new patterns are 
generated. 

Next, we describe in greater details the six functions that are 
called from within the loop.  

 
Figure 4. Algorithm ViewpointMiner 

build (D’, k, (k-1)-object table ): This is the most time 
consuming part of the algorithm. This function scans the database 
and records all combinations of k objects that appear in each 
image into k-object table . The k-object table  is indexed by a hash 
function. The size of the k-object table is controlled by function 
preprocess (D). In this function, the distance and orientation 
among the k objects are calculated and stored (Figure 5). 

 
Figure 5. Function build (D’, k, (k-1)-object table ) 

candidate-gen1 (SI(k-1), S(k-1), 1): This function generates the 
candidates of Sk, 1 patterns. It is similar to the candidate generation 
function of the Apriori algorithm [1]. The difference is that each 
candidate is a sequence of objects where the order of the objects is 
important. In this function, each candidate for Sk, 1 pattern is 
generated by adding Object(k-1), o(k-2) and d(k-2) of a S(k-1), 1 pattern 

build (D’, k, (k-1)-object table): 
Input: preprocessed object database D’, number of objects k, 

(k-1)-object table; 
Output: k-object table ; 
 
1) For each  image I in D’ 
2)     S = set of objects occurring in I; 
3)     IdSet = ids of the (k-1)-object records that occurs in I; 
4)     For each id in IdSet 
5)         Find (k-1)-object record R via hash function; 
6)         For each object O in S  
7)             If O is not contained in R 
8) Generate a candidate k-object record C by  

inserting O to R sorted by location; 
9) If all the k-1 object subsets of C are in (k-1)-

object table  
10)                     If C is already in the k-object table 
11)                         Increment the count of C; 
12)                     Else add C to the k-object table ; 
13) Delete the (k-1)-object table ; 
14) End 

Algorithm ViewpointMiner: 
Input: Image object database D; 
Output: SIk patterns for all k; 
 
1) D’ = preprocess (D); 
2) For ( k = 2; S(k-1), 1 != NULL; k++ ) 
3)     k-object table = build (D’, k, (k -1)-object table); 
4)     If (k > 2) 
5)        CSk, 1 = candidate-gen1 (SI(k-1), S(k-1), 1); // Candidates 

for Sk, 1 
6)     Else 
7)        CS2, 1 = set of all attribute value pairs in D’; 
8)     Sk, 1 = { c ∈ CSk, 1 | is_frequent (c) }; 
9)     Ik = generalize (Sk, 1);  
10)   F = # of object attributes + 2; 
11)   For ( f = 2; f <= F and Sk, f-1  != NULL; f++ ) 
12)        CSk, f = candidate -gen2 (Sk, (f-1)); // Candidates for Sk, f 
13)        Sk, f = { c ∈ CSk, f | is_frequent (c) }; 
14)        Ik = Ik ∪ generalize (Sk, f); 
15)    SIk = prune-pattern ((∪f Sk, f) ∪ Ik); 
16)    k-object table  = prune-obj (k-object table, SIk); 
17)End 



to the end of a SI(k-1) pattern, at the same time the sub-pattern 
formed by the last k-1 objects and k-2 distances and orientations  
of the candidate must cover the S(k-1), 1 pattern. Here we have A 
cover B if and only if all the objects that fit pattern B also fit 
pattern A. Note that we select a special subset of SI(k-1) and S(k-1), 1 
as the input parameters to the function. This enables us to limit the 
number of patterns generated (Figure 6). 

 
Figure 6. Function candidate-gen1 (SI(k-1), S(k-1), 1) 

candidate-gen2 (Sk, (f -1)): The function generates the Sk,f 
candidate patterns from Sk,(f-1) patterns. For each pair of Sk,(f-1) 
patterns with the same first k-1 objects and k-2 dist and orient, if 
they have only one different attribute value in the last object and 
last dist and orient, the function generates a temporary candidate 
by combine them together. If the temporary candidate can be 
covered by some Sk,(f-1) pattern after setting any attribute value of 
the last object or the last dist or orient as null, it is stored as a 
candidate pattern (Figure 7). 

 
Figure 7. Function candidate -gen2 (Sk, (f -1)) 

generalize (Sk, j): This function generates Ik by merging the 
adjacent segments in Sk, j patterns  (Figure 8). It makes use of a 
sub-generalize function to create the interval range for each 
selected attribute (see Figure 9).  

prune-pattern (SIk): Since function generalize (Sk, f) produces 
many interval patterns, there will be some patterns that are already 
covered by others. This function prunes away the  redundant 
patterns. In so doing, it reduces the number of candidates for the 
outer loop as well as the final result (Figure 10). 

 
Figure 8. Function generalize (Sk, f) 

 
Figure 9. Function sub-generalize (SIk, A) 

 
Figure 10. Function prune -pattern (SIk) 

prune-obj (k-object table, SIk): This function prunes away the 
records that are not covered by SIk patterns from D’. If a k-object 
record is not covered by SIk patterns , it implies that the record will 
not be covered by any SI (k+1) patterns. Hence, after the prune-obj 
function, only the useful k-object records will be kept in the k-
object table to generate the (k+1)-object table. This is a simple but 
important optimization because it decreases the size of the in-
memory table (Figure 11). 

The ViewpointMiner algorithm incurs low I/O cost, since the 
number of times to scan the image object database is equal to the 

prune -pattern (SIk): 
Input: all the k-object viewpoint patterns SIk; 
Output: k-object patterns SIk without redundant patterns; 
 
1) For each pair (P1, P2) of patterns in SIk 
2)     If P1 is covered by P2 
3) If for some i, j, vij is interva l or di is interval or oi is 

interval in P1 
4)             If P1.Support is equal to P2.Support 
5)                 Prune P2; 
6)             Else Prune P1; 
7) End 

sub-generalize (SIk, A): 
Input: patterns SIk, attribute A; 
Output: interval-value patterns Ik generalized on A; 
 
1) Group patterns  in SIk among which the only different 

attribute value is A, and sort each group by A in  
ascending order; 

2) For each group G (p1, p2,…, pN) 
3) ind = 2; 
4) For (j = 1; j < N; j++); 
5) ind --; 
6) For (i = window_size; i > ind-1; i--) 
7) If (pj.A == pj+i.A - i) 
8) Generate pattern P from pj by changing value of A 

to [pj.A, pj+i.A] and Support to sum of i patterns’; 
9) Add P into Ik; 
10) ind = i; 
11) i = 0; 
12) End 

generalize (Sk, f): 
Input: single-value patterns Sk, f; 
Output: interval-value patterns Ik; 
 
1) For ( i = 1; i <= f; i++ ) 
2) I{ai} = sub-generalize(S k, f, ai); //ai, aki is one of the 

last f  attributes in Sk, f 
3) Add I{ai} into Ik; 
4) For ( i = 2; i <= f; i++ ) 
5) For each combination of i attributes {ak1,…aki} 
6)         I{ak1,…aki} = sub-generalize (I{ak1,…ak(i-1)}, aki); 
7)                Add I{ak1,…aki} into Ik; 
8) End 

candidate-gen2 (Sk, (f -1)): 
Input: single-value patterns Sk, (f-1); 
Output: candidates of Sk, f: CSk, f; 
 
1) For each pair of Sk, (f-1) (P1, P2) 
2) If P1, P2 have same first k-1 objects and k-2 dist and 

orient 
3) If P1, P2 have (f-2) same non-null attribute  values 

for Objectk, d(k-1) and o(k-1)  
4) Generate temporary candidate T by adding the                

attribute that P1 has while P2 has not to P2; 
5) If T can be covered by patterns in Sk,(f-1) after 

remove any attribute of Objectk or d(k-1) or o(k-1) 
from T 

6)                  Add T into CSk, f; 
7) End 

candidate-gen1 (SI(k-1), S(k-1), 1): 
Input: patterns SI(k-1), single -value patterns S(k-1), 1; 
Output: candidates of Sk, 1: CSk, 1; 
 
1) For each pattern PS in S(k-1), 1 
2)     For each pattern PSI in SI(k-1) 
3) If the last k-2 objects and k-3 dist and orient of PSI   

cover the first k-2 objects and k-3 dist and orient of 
PS 

4) Generate candidate T by adding the last object and 
dist and orient of PS to the end of PSI; 

5)             Add T to CSk, 1; 
6) End 



number of objects in the longest pattern minus one. The most 
time-consuming module is the build function which has an 
average runtime  linear to the total number of images.  

 
Figure 11. Function prune-obj (k-object table, SIk) 

3.4 Rotational-Invariant Considerations 
The algorithm described above is sensitive to the rotational 
operations. As a result, images in Figure 12 will have two 
different viewpoint patterns. However, from an interior designer’s 
point of view, these two patterns essentially describe the same 
design principle. To discover such rotational-invariant viewpoint 
patterns, we ignore the orientation information by first mapping 
each 2-object group into some existing candidate patterns. This 
mapping is achieved by rotating the object pairs at various angles 
such as p/2, p, and 3p/2. With this mapping, the “S-D” group from 
the last set of images of Figure 12 will be mapped to the same 
viewpoint patterns as the first set of images. The mapping angle is 
assigned to the “S-D” group so that subsequent 3-object groups 
can be generated using the mapped relative positions.  

 
Figure 12. Rotational-Variant Patterns. 

The following modifications need to be made to the 
ViewpointMiner in order to generate rotational-invariant patterns : 

1. When generating the candidate pattern CS2 ,  1 (Line 7 of 
Figure 4) where CS2, 1 involves an orientation attribute, we 
restrict the orientation values to the interval [0, p/2].  

2. When counting the frequencies of the S2, 1 patterns with 
orientation attributes (Line 8 of Figure 4), the orientation oi  
of each object pair i is expanded to four values: oi , oi+p/2, 
oi+p, oi+3p/2. If one of these four orientations can match an 
existing candidate pattern, then we assign the matched 
rotation value to the object pair and increase the frequency 
count of the matched candidate pattern.  

3. When generating the candidate pattern CS2, f using the 
function candidate-gen2 (S 2, (f-1)) (Line 12 of Figure 4), we 
combine two S2, (f-1) patterns to obtain a S2, f candidate pattern. 

The common rotational angles of these two S2, (f-1) patterns 
should be kept by the S2, f candidate pattern for subsequent 
use by candidate-gen1 (SI2, S2, 1). 

4. In the function build (D’, k , (k -1)-object table) for k > 2 (line  
3 of Figure 4), when adding a new object to generate a 
candidate k-object record (line 8 of Figure 5), the relative 
position of the new object is calculated according to the 
rotational angle of the (k-1)-object record. 

5. In the function candidate -gen1 (SI2, S2, 1) (Line 5 of Figure 4), 
when combining two 2-object patterns to generate CS3, 1, the 
2-object patterns are instantiated  to multiple patterns 
according to the rotational angles associated with the 2-
object patterns. This allows the two 2-object patterns to 
generate more than one S3, 1 candidate pattern. 

With these modifications, the viewpoint mining algorithm can 
now find viewpoint patterns from rotation-insensitive images. 

4. EXPERIMENTS 
In this section, we evaluate the algorithm ViewpointMiner on 
different types of image databases.  

4.1   Experiments on General Category Images  
The most expensive function in the  ViewpointMiner algorithm is 
the function build that involves scanning the image database to 
construct the k-object groups. Theoretically, with an appropriate 
hash function, the time complexity of the function build is O(m) , 
where m is the number of images in the database.  

We use 5000 images from a general category image collection. 
We extract over 25,000 objects after restricting the number of 
objects in each image to be 7. Figure 13 shows a sample of the  
images and their corresponding extracted objects. The minimum 
support is set to be 0.15% of the size of the 2-object table. 
Experiment results show that, in total, we have 57,058 2-object 
groups and 71,602 3-object groups, and 51,575 4-object groups  
without object pruning. Figure 14 shows the time needed to build 
the k-object table as we vary the number of images from 1000 to 
5000. We observe that the time needed to build the k-object tables 
is linear to the number of images. 

 
Figure 13. Samples from General Category Image Set. 

 
Figure 14. Time Taken to Build k-object Table . 

 

 
 

 …
 

…

prune -obj (k-object table, SIk): 
Input: k-object table, patterns SIk; 
Output: k-object table without useless records ; 
 
1) For each record R in k-object table  
2)     If R is not covered by any pattern in SIk 
3)         Delete R from k-object table; 
4) End 



Next, we investigate the effect of pruning on the performance of 
the algorithm (Figure 15). The results show that after pruning 
objects using the S2, 3 patterns, only 14.3% of the 2-object groups  
remains, and 2,978 3-object groups are generated as compared to 
the 71,602 groups generated without pruning. This indicates that 
our viewpoint pattern mining algorithm is scalable and efficient.  

Figure 15. Time Taken by Prune-obj Step 

4.2   Experiments on Kitchen Plan Images 
In this set of experiment, we collected eleven origina l kitchen plan 
images from the Internet. All the plans include a cooktop (C), a  
sink (S) and a refrigerator (R). Some of the plans also have 
microwaves (M) and dishwashers (D). Based on these eleven 
plans, we infer the underlying design principles and generated 40 
kitchen plans that adhere to the design principles. In addition, we 
generated 80 kitchen plan images by randomly placing the five 
items in each kitchen plan. In total, we have 120 kitchen plan 
images in which 40 are regarded as meaningful (seeding images). 

 
Figure 16. Discovering Pattern from Kitchen Plans 

We set the minimum support count to 3, and found 39 2-object 
patterns, 4 3-object patterns and 1 4-object pattern. Figure 16 
shows the process of generating a 3-object pattern. The 2-object 
patterns covered 150 object pairs, in which 104 pairs are from the 
seeding images, while the 3-object patterns and 4-object patterns 
can be traced back to the seeding images. We conclude that the 
viewpoint patterns generated do capture the underlying design 
principles in spite of the 67% random noise introduced. Based on 
the discovered patterns, we can infer some good kitchen design 

principles such as: arrange the sink next to the dishwasher and 
place the refrigerator next to the microwave. 

5.   CONCLUSION 
Motivated by the need for automatic indexing, categorizing, 
retrieving, and analyzing of increasingly large sets of images, this 
paper explores how image mining can be used to find meaningful 
patterns from images repositories. We observe that the absolute 
positional information of objects do not convey critical perceptual 
information, but rather, it is the invariant relationship, in the form 
of the relative spatial relationships among the objects in images, 
that is important.  

We introduce the concept of a viewpoint pattern to describe the  
fixed, invariant relationships among the objects in images.  An 
algorithm called ViewpointMiner has been designed to discover 
viewpoint patterns from large image collections. Experiments 
results on general category images and architectural design 
images demonstrate that ViewpointMiner is efficient and scalable, 
and is able to discover meaningful patterns from real-world 
images. 
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