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What's a Microarray?

e Contain large number of DNA molecules spotted
on glass slides, nylon membranes, or silicon
wafers

 Detect what genes are being expressed or found
In a cell of atissue sample

« Measure expression of thousands of genes
simultaneously
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Affymetrix GeneChip Array
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Making Affymetrix GeneChip Array™ = -
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hydroxylation across its surface and to {deprotection)
attach linker molecules P w — Mask
~_ i1t "TTT Ty TTTTT
00000 o000 2 -DH{]HDDD ‘h TOOO

94908 7 gegee 7 3RS 22200

Wafler
/ v

exposed linkers become deprotected and
are available for nucleotide coupling

GATEG \
25-mer ﬂ.lﬂl.T.lﬂl.T ..... . ':.. . ————

EEEEE
AGCTG |1 NN
TTCCG - TTEI:EII-* TTEIHI'JH 4dr TTOOQO
29995 Repeat 35999 25995 25995
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Microarray

Exercise: What is the other commonly used
type of microarray? How is that one different
from Affymetrix’s?
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Gene Expression Measurement g ...
by Affymetrix GeneChip Array
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AF F-turl
AF Fa-turl
AF Fa-turl
AFFa-Murf
AFF#-Biok
AFF#-Biok
AFF#-Biok
AFFX-Bial
AFFX-Bial
AFF¥-Biol
AFF-Biol
AFFE-Crex
AFFE-Crex
AFF¥-Biok
AFF¥-Biok
AFF¥-Biok

A Sample Affymetrix GeneChip
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Data File (U95A)

00-0556- L 00-0586- LU 00-0586- L 00-0586- L4 00-0586- L Descriptions

Fositive

N N

15
12
17
16
17
19
20
20

Megative

M= Mmoo oo oo d O — e R R

Fairs InfwgAvg DIt Abs Call

14
14
149
14
149
19
149
149
20
19
20
20
20
18
18
20

2975 A
f04.2 A
J0g.6 A
141 A
83406 F
12862.4 P
g§716.5 P
20842 5 P
Jog3ga P
25752 P
140113.2 P
2800366 F
4017418 P
4535 A
137 A
10162 A

M167B2 Mouse interleukin 2 (IL-2) gene, exon 4
h37E97 Mouse interleukin 10 mEMA, complete cds
MZEE92 Mus musculus interleukin 4 {I-4) mRMNA, comy
MEIE4Y Mus musculus Fas antigen mRMA, complete
J044223 E coli bioB gene hiatin synthetase (-5, -M, -3
J04423 E coli bioB gene hiatin synthetase (-5, -M, -3
J04423 E coli bioB gene hiatin synthetase (-5, -M, -3
J04423 E coli bial pratein (-5 and -3 represent transcr
J04423 E coli bial pratein (-5 and -3 represent transcr
J044223 E coli bioDl gene dethiohiotin synthetase (-5 ar
J04423 E coli bioDr gene dethiobiotin synthetase (-5 ar
#3453 Bacteriophage P1 cre recombinase protein -5
A03453 Bacteriophage P1 cre recombinase protein (-5
J04423 E coli bioB gene biatin synthetase (-5, -M, -3 r
J04423 E coli bioB gene biatin synthetase (-5, -M, -3 r
J04423 E coli bioB gene biatin synthetase (-5, -M, -3 r
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Some Advice on NUS

Affymetrix Gene Chip Data

 Ignore AFFX genes
— These genes are control genes

Mational Universit ¥
of Singapore

 Ignore genes with “Abs Call” equal to “A” or “M”
— Measurement quality is suspect

 Upperbound 40000, lowerbound 100
— Accuracy of laser scanner

e Deal with missing values Exercise: Suggest 2 ways

to deal with missing value
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Type of Gene Expression Dataset

0 Gene Conditions or Gene-Sample (numeric or discretized)

1000 - 100,000 columns

NUS

Mational University

of Singapore

A Class Genel Gene2 Gene3 Gene4 Geneb Geneb Gene7 | ...
Samplel Cancer 0.12 -1.3 1.7 1.0 -3.2 0.78 -0.12
Sample2 Cancer 1.3
100-500
rows
~Cancer
SampleN ~Cancer
v

N Gene Tlme

450

[=]
=]

o
=}

|I9A3] UoISsaidxa

150

1 1 1 1
1 2 3 4 =

“timé
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Type of Gene Expression Dataset

m Gene-Conditions or Gene-Sample (numeric or discretized)

<

1000 - 100,000 columns

NUS

Mational University
of Singapore

4 Genel Gene2 Gene3 Gene 4 Geneb Geneb Gene7
Cond1l 0.12 -1.3 1.7 1.0 -3.2 0.78 -0.12
Cond2 1.3
100-500
rows
CondN
v
= Gene-Time m Gene-Sample- Tlmg
< & i :
-2 . samples oy 7 “ '_."'i ’."ﬂ' 7
CD3 » - E i 1
— E gl: f i \ |'_ i
o’ 7 e =
>
T | -
@ .
153 | | | | | | | | | | g ’,_/_i !,_/_ f_/_
1 3 4 [ T atilgné 1 12 12 14 15 18 17 (a;l [h:l
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Type of Gene Expression Dataset

= Gene-Conditions or Gene-Sample (numeric or discretized)
1000 - 100,000 columns

<

NUS

Mational University
of Singapore

v

A Class Genel Gene2 Gene3 Gene4 Geneb Geneb Gene7 | ...
Samplel Cancer 1 0 1 1 1 0 0
Sample2 Cancer 1
100-500
rows
~Cancer
SampleN ~Cancer

|I9A3] UoISsaidxa

N Gene Tlme

450
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Gene Expression Profile Classification
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Childhood ALL, 95 US>
A Heterogeneous Disease

 Major subtypes are
— T-ALL
— E2A-PBX1
— TEL-AML1
— MLL genome rearrangements
— Hyperdiploid>50
— BCR-ABL
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Risk-Stratified Therapy

e Different subtypes respond differently to the
same treatment intensity

Generally good-risk, Generally high-risk,

lower intensity higher intensity
TEL-AMLL, T-ALL E2A-PBX1 BCR-ABL
Hyperdiploid>50 MLL

« Match patient to optimum treatment intensity for
his subtype & prognosis
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Treatment Failure

 Overly intensive treatment leads to
— Development of secondary cancers
— Reduction of 1Q

e Insufficiently intensive treatment leads to
— Relapse

Copyright 2006 © Limsoon Wong
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BINUS
Risk Assignment %

« The major subtypes look similar

"2

T oo

¥ S

« Conventional diagnosis requires
— Immunophenotyping
— Cytogenetics
— Molecular diagnostics

Copyright 2006 © Limsoon Wong
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Mission

« Conventional risk assignment procedure requires
difficult expensive tests and collective judgement
of multiple specialists

 Generally available only in major advanced
hospitals

— Can we have a single-test easy-to-use platform
Instead?
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Single-Test Platform of g U

Microarray & Machine Learning
[T T —
it

Millions of DMA strands bullt up In ssch cell

Actual strand = 25 base pairs
(1) Inter-class distance is too small (11} Intra-class distance is too large
00-0586- UL 00-0586-1U¢ D0-0586- 18 00-0586- L 00-0586- LK Descriptions
FPositive  Negative  |Pairs Indw(Avg Diff  Abs Call
AFF¥-Murl 5 2 19 297 5 A M16762 Mouse int
AFF¥-Murl 3 2 19 554.2 A M37897 Mouse int
AFF¥-Murl 4 2 19 3086 A M25892 Mus musi
AFF¥-Murf 1 3 19 141 A WB83649 Mus rmusi
AFF¥-BioE 13 1 19) 93406 P J04423 E coli bioB
AFF¥-BioE 15 0 19 128624 P J04423 E coli bioB
AFF¥-BioE 12 0 19 87165 P J04423 E coli bioB
AFF¥-BioC 17 0 19 259425 P J04423 E coli bioC
(Ill) Inter- and intra-class AFF-BiaC 16 0 20| 288385 P J04423 E coli bioC
distances of a gaod signal AFFX-Binl 17 ] 19 257652 P J04423 E coli bioD
AFF¥-Biol 19 0 20/ 140113.2 P J04423 E coli bioD
AFF¥-Crex 20 0 20| 2800366 P ¥03453 Bacterioph
AFF¥-Crex 20 0 20 4017418 P ¥03453 Bacterioph
AFF¥-BioE 7 5 18 -483|A, J04423 E coli bioB
AFF¥-BioE 5 4 18 3137 A J04423 E coli bioB
AFF¥-BioE 7 6 20 -1016.2 A J04423 E coli bioB
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Subtype Diagnosis by PCL ::;:z;:;z:;m

« (Gene expression data collection
e Gene selection by y2

« Classifier training by emerging pattern

. Classifi ing (optional f hi
learning-methods)-

 Apply classifier for diagnosis of future cases by
PCL
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Childhood ALL Subtype 8N o2
Diagnosis Workflow

A tree-structured
diagnostic
workflow was
recommended by
our doctor
collaborator

T-ALL? r=—— A Sample

.4//‘:7 + No
E2A-PBX17?

_—]

A""""H‘? + No
H2A-PBX1

TEL-AML1?

A"""'""ff; + No
TE BCR-ABL?

_—

-y * No
MLL?
@ﬁ * No

Hyperdip>507
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Training and Testing Sets

Paired datasets Ingredients Training Testing
T-ALL vs OTHERS1 ={E2A-PBX1, TEL-AMLI, 28 vs 187 15 vs 97
OTHERSI1 BCR-ABL, Hyperdip>50, MLL, OTHERS}

E2A-PBX1 vs OTHERS2 = {TEL-AML1, BCR-ABL 18 vs 169 9 vs 88
OTHERS2 Hyperdip>50, MLL, OTHERS}

TEL-AML1 vs  OTHERS3 = {BCR-ABL 52 vs 117 27 vs 61
OTHERS3 Hyperdip>50, MLL, OTHERS}

BCR-ABL vs OTHERS4 = {Hyperdip>50, 9 vs 108 6 vs 55
OTHERS4 MLL, OTHERS}

MLL vs OTHERS5 = {Hyperdip>50, OTHERS} 14 vs 94 6 vs 49
OTHERS5

Hyperdip>50 vs OTHERS = {Hyperdip47-50, Pseudodip, 42 vs 52 22 vs 27
OTHERS Hypodip, Normo}

Exercise: Download this data from

and try your hands on ALL subtype classification using WEKA


http://research.i2r.a-star.edu.sg/rp/Leukemia/Stjude.html

Mational University
of Singapore

95z

B &

Signal Selection Basic Idea

class distance

Choose a signal w/ low intra-

class distance

Choose a signal w/ high inter-

Clags 2 Chss 1 (lags 2

Class 1

Class ?

Ciass i

Copyright 2006 © Limsoon Wong




ERINUS
Signal Selection by 2 S
The X2 value of a signal is defined as:

PRI O G E;;)°
i=1 j=1 By

where m is the number of intervals, &
the number of classes, A;; the number
of samples in the ith interval, jth class,
R,; the number of samples in the ¢th in-
terval, C; the number of samples in the
jth class, N the total number of sam-
ples, and E;; the expected frequency of

A’i.?: (E‘*‘:j - R3 % Cj/N)' Exercise: List the top 10 genes

for distinguishing E2A-PBX1
from other ALL subtypes

Copyright 2006 © Limsoon Wong



-
ANUS
%

Mational Universit ¥
of Singapore

Emerging Patterns

« An emerging pattern is a set of conditions
— usually involving several features
— that most members of a class satisfy
— but none or few of the other class satisfy

e A jumping emerging pattern is an emerging
pattern that

— some members of a class satisfy
— but no members of the other class satisfy

« We use only jumping emerging patterns

Copyright 2006 © Limsoon Wong
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xamples
Patterns Frequency (P) Frequency(N)
{9, 36} 38 instances 0
{9, 23} 38 0
{4, 9} 38 0
{9, 14} 38 0 - -
06 9} 38 0 Easy Interpretation
{7, 21} 0 36
{7,11} 0 35
{7, 43} 0 35
{7, 39} 0 34
{24, 29} 0 34

Reference number 9: the expression of gene 37720 at > 215
Reference number 36: the expression of gene 38028 at <= 12

Copyright 2006 © Limsoon Wong
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o Let E’Pfj ..., EPY be the most general EPs of DY
in descending order of support.

e Suppose the test sample T' contains these most gen-
eral EPs of D (in descending order of support):

EPF EPY ... EPF

1 ? ta ? i

e Use k top-ranked most general EPs of D¥ and DV.
Define the score of T in the DY class as

k f'ﬁequﬁ".vfz,cg,ir(]5'1'::;:{"'?L )

T, D) =
score(T, D") m—1 frequency(EPF)

e Ditto for score(T, DV).

o If score(T, DY) > score(T, DY), then T is class P.
Otherwise it is class N.
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PCL Learning

Top-Ranked EPs in
Positive class

EP,P (90%)
EP,P (86%)
EP.P (68%)
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PCL Testing
Exercise: For k =10,
Most freq EP of pos class what is the ideal
In the test sample scoreP and scoreN?

X

Score? = EP,” /EP,”+ ... + EP,”" [ EP,"

T

Most freq EP of pos class

Similarly,
ScoreN=EP N /EPN+ ... +EPN /EPN

Copyright 2006 © Limsoon Wong
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Accuracy of PCL (vs. other classifierg)* "

Testing Data Error rate of different models
C45 SVM NB PCL
T-ALL vs OTHERSI1 0:1 0:0 0:0 0:0
E2A-PBX1 vs OTHERS2 0:0 0:0 0:0 0:0
TEL-AML1 vs OTHERS3 1:1 0:1  0:1 1:0
BCR-ABL vs OTHERS4 2:0 3:0 14 2:0
MLL vs OTHERS5S 0:1 0:0  0:0 0:0
Hyperdiploid>50 vs OTHERS  2:6 0:2  0:2 0:1
Total Errors 14 6 8 4

The classifiers are all applied to the 20 genes selected

by ¢ 2 at each level of the tree

Copyright 2006 © Limsoon Wong




R EEEEEEEE———————————————————————————
g NUS
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e E.g.,for T-ALL vs. OTHERS, one ideally
discriminatory gene 38319 at was found,
Inducing these 2 EPs

lgene_38319_ar) @ (—o00, 15975.6)} and
{gene_:38319_ar) @[15975.6, +00)}.
« These give us the diagnostic rule

[f the expression of 38 319_ar is less than 15 975.6, then
this ALL sample must be a T-ALL.
Otherwise it must be a subtype in OTHERSI.
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—BCR-ABL

N

E2A-PBX1

' / TEL-AML1

Obtained by performing PCA on the 20 genes chosen for each level

Exercise: What is PCA? Describe the PCA procedure
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Similar computational
analysis was carried
out to predict relapse
and/or secondary AML
In a subtype-specific
manner

>97% accuracy
achieved

SEANUS

v -"F“‘ Mational University
. of Singapore

Dx ALL —» 2nd AML

Relapsed ALL
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(Genes
selected

by %2

Hierarchical
clustering of
gene expression
profiles reveals a
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novel Subtype Of Eént ‘;u.I.L- .h T-ﬂLL- Hyperdiploid > 50 - T-lcl'.rell ";'EL-.AML‘I
childhood ALL e e e
New subtype
Exercise: Name and describe discovered

one bi-clustering method
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Hierarchical Clustering

e Assign each item to its own cluster

— If there are N items initially, we get N clusters,
each containing just one item

 Find the “most similar” pair of clusters, merge

them into a single cluster, so we now have one
less cluster

— “Similarity” Is often defined using
* Single linkage
 Complete linkage
« Average linkage

 Repeat previous step until all items are clustered
Into a single cluster of size N

Copyright 2006 © Limsoon Wong
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Single, Complete, & Average Linkagé ="

d(r,s) = max (disf(xm Xy D

Single linkage defines distance Complete linkage defines distance
betw two clusters as min distance betw two clusters as max distance betw

betw them them

Exercise: Give definition of “average linkage”

Image source: UCL Microcore Website
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Childhood ALL Cure Rates

= _h Bcurerate|l . conventional risk
S H= assignment procedure
N\ requires difficult
N . quiTes
S expensive tests and
3 = collective judgement of
*‘&% 1 multiple specialists
S° [ ——
600 ‘w = Not available in less
N & | | | | advanced ASEAN
Q)Q,Q 0% 20% 40% 60% 80%  COuntres
BN
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Childhood ALL Treatment Cost ::;:z;:;z:;m

 Treatment for childhood ALL over 2 yrs
— Intermediate intensity: US$60k
— Low intensity: US$36k
— High intensity: US$72k

 Treatment for relapse: US$150k

o Cost for side-effects: Unquantified

Copyright 2006 © Limsoon Wong



Current Situation NUS

(2000 new cases/yr in ASEAN)

Mational University
of Singapore

* Intermediate intensity e US$120m (US$60k * 2000)
conventionally applied in for intermediate intensity
less advanced ASEAN treatment
countries

e« US$30m (US$150k * 2000 *

= Over intensive for 50% of 10%) for relapse treatment
patients, thus more side

effects e Total US$150m/yr plus un-

— Under intensive for 10% of quantified costs for
patients, thus more dealing with side effects
relapse

— 5-20% cure rates

Copyright 2006 © Limsoon Wong
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Using Our Platform

 Low intensity applied to US$36m (US$36k * 2000 *

50% of patients 50%) for low intensity

e Intermediate intensity to e US$48m (US$60k * 2000 *
40% of patients 40%) for intermediate

« High intensity to 10% of intensity
patients e US$14.4m (US$72k * 2000 *

10%) for high intensity

— Reduced side effects

— Reduced re|apse e Total US$984m/yr
— 75-80% cure rates = Save US$51.6m/yr

Copyright 2006 © Limsoon Wong



Background on Proteomic Mass-Spec
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Motivation for Protein Identification/ SequeNeng

e Itis not possible to know the full set of proteins
even thought the whole genome is sequenced.
Different way of splicing, new undiscovered
genes etc.

 Important to identify which protein interact in a
biological system

o Different cells have different expressed protein

Source: Anthony Tung
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NUS
Peptide Fragmentation

Collision Induced Dissociation

H...-HN-CH-CO ™

I

N =, \— _
. Y -v
Prefix Fragment Suffix Fragment

 Peptides tend to fragment along the backbone

* Fragments can also loose neutral chemical
groups like NH; and H,O

Source: Anthony Tung
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Breaking Protein into Peptides NUS

and Peptides into Fragment lons

 Proteases, e.g. trypsin, break protein into peptides

« Tandem Mass Spectrometer further breaks peptides
down into fragment ions and measures mass of
each piece

« Mass Spectrometer accelerates the fragmented
lons; heavier ions accelerate slower than lighter
ones

« Mass Spectrometer measure mass/charge ratio of

an | on Source: Anthony Tung
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Peptide Fragmentation
b,-H,O ba- NH,
a, :b, as :|bj
] 1 ]
[ HQ NHf
| j l
R, | O Ry, O Ry O R,
| | |l |
H--N--C - C-f N C-C 4 N--C-C-f-N--- C - COOH
| | | |
H H! n H H H! H
| | |
Y3 Yo Y1
Y3 -H,0 Y2 - NH;

Source: Anthony Tung
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Tandem Mass-Spectrometry

2~ 7~ <

Cells M\
Protein Proteolytic Partial Separation
Extract Fragments by HPLC
Exercise:
Tandem Mass Spectrometer What i1s HPLC?
Mass Colsion M ¥
— <« Cell to ass | — J
Analyzer *Fragmnt Analyzer 2 I I l ﬂ’l
Electrospray Peplide et el :
Nozzle _
DI 1 peak selected Peptide Spectrum &
for sequencing Partial Sequence

| - .
M(A) Repeat until all Match spectrum
miz \J

peaks sequenced against database

Spat:irum of Source: Anthony Tung
Peptide Mixture

Copyright 2006 © Limsoon Wong




SANUS
Breaking Proteins Into Peptidesg‘iﬂpﬁ:m

"éY)’[’ﬁ]Y\ GTDIMR HPLC _
MPSERGTDIMR " |1, m— SIS

protein peptides

Source: Anthony Tung
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Mass Spectrometry
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Matrix-Assisted Laser Desorption/lonization =
(MALDI)

Rel. Intensity

o |

10000 20000 30000

miz

Soft Laser Desorption

T
40600 coooo 60000

"\ o N

sample in matrix “

Figure 2. The soft laser desorption process.
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Tandem Mass Spectrometry

Mational University
of Singapore

B m ]EZB 6
@ = B5 gy 20 B;]Hﬁd:ﬁ
: ERE MS
3 P =5 .
2o o
N m : Scan 1707
% o 5
. K¢ mm 6389
D EJIE 7 =
O AT ‘\Mw‘ T I|H| h“‘h M\“Hﬂ“ ‘“‘\‘\H\“\\H‘\LH“\M‘\M“H“ m‘ “W“m ‘M\“\\\J‘\m\‘\m"hm\mﬂ'\mmum U b I ki Hhm ‘ N\'MW‘MT‘ ' m; \” uh:imhmm\h il “ | hM
5 D b D 5 D T D H H H O 6 0D b D 0 a0 &0 80 1 120 1400 600 180 2000
Tine()
collision MS/MS
MS-1 cell MS-2 »
lon T Scan 1708
Source - s
- mi —Setirger-Anthany-Tung
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Proteomic Profile Classification
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Ovarian Cancer Data
Petricoin et al., Lancet 359:572--577, 2002

e Identify proteomic patterns in serum that
distinguish ovarian cancer from non-cancer

e 6-16-02 release

91 non-cancer samples

« 162 cancer samples

o 15154 features

« Each feature is the amplitude of an ion (aka M/Z
identities)
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Proteomic Profiling by Mass Spec (ggNe

I

+— — —Time of Flight
™ ., -- - . Smaller proteins fl\
¢ ™ j/?n fly faster / Ry =
\ L0 o Q — 2
/ ! 2
_,_:),80 AP o 0&5 | E
- 8 o o | if @
P_//’- i i © \ ! £
__ [ 2
3 Leser " | Dstector
, plate

Robotic sample loading

HC Apevorium  HyO PS5 Hicke Matrix
Acetans Sulae

of Singapore

Surface Enhanced Laser Desorption and Ionization

'WCX2 protein chip

100 -
75

(

10,000 15,000

g .

miz

*Sample: Small volume
non fractionated serum

*On-chip separation of
proteins

*High throughput: 300
samples per day in
batches of 100
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A Sample Proteomic Profile

A

v |
“Illvull I\"“-----......"---.-=-~.-_m_,-~---"----“’/r;ll"""“hn_., _F_,.,er“*--—r-.n

Kelative Intensity
=
—\1

e

Reguent 2
Repent 3
Fepeat 4
Repuent 3
Fepeat &
Reguent T
Repeat B
Repeat &

T

L} RLLLH

ik | Draltore) § chor ge
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ypical Procedure in Analysing 8 Nqé

Proteomic Profiles for Diagnosis

nnnnnnnnnn

e Proteomic data collection

 lon (M/Z) values selection

e Classifier training

o Classifier tuning (optional for some machine
learning methods)

 Apply classifier for diagnosis of future cases

Copyright 2006 © Limsoon Wong
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Accu racCy oisngapore
# of features SVM NB kNN C4.5 PCL
60 0 1 5 : -
0 o069 6 -
40 1 6 3 ) 1
” ¢ 6 b 5 -
20 o A
10 3 10 " ) -

Errors from 10-fold cross validation using
the n M/Z identities of lowest entropy
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Gene Interaction Prediction
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o After identifying the candidate genes by feature
selection, do we know which ones are causal
genes and which ones are surrogates?

Diagnostic ALL BM samples (n=327)

=271)

Genes for class
distinction (n

E2A- MLL T-ALL Hyperdiploid >50 BCR- Novel TEL-AML1

PBX1 ABL
T
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Gene Regulatory Circuits

e Genes are “connected” In
“circuit” or network

 Expression of agenein a ;
network depends on = | [l 32"
expression of some other = A /b f;i =
genes in the network NS '

« Can we reconstruct the e
gene network from gene ¥ .
expression data? VLIS
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Key Questions

« For each gene in the network:
« Which genes affect it?
« How they affect it?

— Positively?

— Negatively?

— More complicated ways?
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A Classification-based Technique® 95 N2

Soinov et al., Genome Biology 4:R6.1-9, Jan 2003
 Given a gene expression matrix X
— each row is a gene
— each column is a sample
— each element x; Is expression of gene I in sample |

 Find the average value a, of each gene i
« Denote s; as state of gene i in sample |,
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A Classification-based Technique® 95 N2

Soinov et al., Genome Biology 4:R6.1-9, Jan 2003

. To see whether the state of * TO See how the state of

gene g is determined by gene g is determined by
the state of other genes the state of other genes
— we see whether (s; | i = — apply C4.5 (or PCL or
g) can predict s other “rule-based”
J classifiers) to predict s
— if can predict with high from (s;[ 1+ 9)

accuracy, then “yes”
— and extract the decision
— Any classifier can be tree or rules used

used, such as C4.5, PCL,
SVM, etc.
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Advantages of this method

« Can identify genes affecting a target gene
« Don’t need discretization thresholds
« Each data sample is treated as an example

 Explicit rules can be extracted from the classifier
(assuming C4.5 or PCL)

e Generalizable to time series
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Deriving Treatment Plan

National University
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Can we do more with EPs? Vdime

e Detect gene groups that are significantly related
to adisease

 Derive coordinated gene expression patterns
from these groups

 Derive “treatment plan” based on these patterns
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Alon et al., PNAS 96:6745--6750, 1999

e We use the colon tumour dataset above to
IHlustrate our ideas
— 22 normal samples

— 40 colon tumour samples
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hr acoession  cutting
list number points
1,2 M26383 09.83
34 M63391 1606.22
a6 RABT126 370.38
78 MYT63TE B42.30
9,10 HO08393 84.87
11,12 X12671 220.99
13,14 R3697Y 274.96
15,16  JO2854 735.80
17,18  M22382 447.04
1920 J05032 88.00
21,22 MTE3ITE 1048.37
23,24  MTEITE 1136.74
25,26 M16937 300.44
27,28 HA4M05 400.03
2030 130825 258.00
3132 H43887 334.01
33,34 H51015 84.10
30,36 XHT206 417.30
3738 R10066 404,17
3040 TOG8Y3 75.42
4142 THVG1D 2597.85
4344 RB4411 T30.457
4546 UZ1000 232.74
4748 U32519 87.58
4050 TT71025 1695.98
8152 T92451 845.7
53,564 U0D564 120.38
55,66 H40560 013.77
o768 TAY3TY 629.44
69,60 X53586 121.91
61,62 LU25138 186.19
63,64 T6OL55 1798.65
65,66 EHLG758 1453.15
67,68 Z507T53 196.12
69,70 U09587 486.17

Detect Gene Grou

NUS

L/ Mational University
of Singapore

Feature Selection
— Use entropy method
— 35 genes have cut points

Generate EPs
— 9450 EPs In normals
— 1008 EPs In tumours

EPs with largest support are
gene groups significantly co-
related to disease
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Top 20 EPs

Count & Freq. (%)
Emerging patterns in cancer tissues

Count & Freq. (%)

Emerging patterns in normal tissues

{25,33,37,41,43, 57, 59, 69} 17(77.27%) {2,10} 28 (T0.005%)
{25,33,37,41,43,47,57, 69} 17(77.27%) {10,61} 27 (67.50%)
129,33,35,37,41, 43,57, 69} 17(77.27%) {10,20} 27 (67.50%)
{29,33,37,41,43,47,57, 69} 17(77.27%) {3.10} 27 (67.50%)
129,33, 37,41,43, 57, 59,69} 17(77.27%) {10,21} 27 (67.50%)
{25,33,35,37,41,43, 57,69} 17(77.27%) {10,23} 27 (67.50%)
{33, 35, 37,41, 43, 57, 65, 69} 17(77.27%) {7,40, 56} 26 (65.00%)
133,37,41,43,47, 57,65, 69} 17(77.27%) {2,56} 26 (65.005%)
{33,37,41,43,57, 59, 65, 69} 17(77.27%) {12,56} 26 (65.00%)
{33,35,37,41,43, 45,57, 69} 17(77.27%) {10,63} 26 (65.005%)
{33,37,41,43,45,47, 57,69} 17(77.27%) {3,58} 26 (65.005%)
133,37,41,43,45, 57,59, 69} 17(77.27%) {7,58} 26 (65.005%)
113,33,35,37,43, 57,69} 17(77.27%) {15,58} 26 (65.005%)
113,33,37,43,47, 57,69} 17(77.27%) {23,58} 26 (65.005%)
{13,33,37,43,57, 59,69} 17(77.27%) {58,61} 26 (65.005%)
{13,32,37,57,69} 17(77.27%) {2,58} 26 (65.005%)
{33,35,37,57,68} 17(77.27%) {20,56} 26 (65.005%)
{33,37,47,57,68} 17(77.27%) {21, 58} 26 (65.00%)
{33,37,57,59,68} 17(77.27%) {15,40,56} 25 (62.505%)
132,37,41,57,69} 17(77.27%) {21, 40,56} 25 (62.50%)
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Observation
« Some EPs contain large  |l.e., almost every normal
number of genes and still cell’s gene expression
have high freq values satisfy all conds.

Implied by these 8 items

« E.g., {25, 33, 37, 41, 43, 57,
59, 69} has freq 72.27% in

_ genes  expression interval
normal and 0% in cancer

samples M16937 <390.44
H51015 <84.19
R10066 <494.17
T57619 <2597.85
R84411 <735.57
T47377 <629.44
X5H3586 <121.91
U09587 <486.17
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Treatment Plan Idea e

* Increase/decrease expression level of particular
genes in a cancer cell so that

— It has the common EPs of normal cells
— It has no common EPs of cancer cells
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Treatment Plan Example

e From the EP {25,33,37,41,43,57,59,69}
— 77% of normal cells express the 8 genes (vi6937, Hs1015,

R10066, T57619, R84411, T47377, X53586, U09587) IN the corr. Intervals

— a cancer cell never express all 8 genes in the same
way

— If expression level of improperly expressed genes
can be adjusted, the cancer cell can have one
common EP of normal cells

— a cancer cell can then be iteratively converted into a
normal one
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Choosing Genes to Adjust 95 o

e Consider tumour cell T1 e 77% of normal cells have
this EP

genes  expression interval genes  expression levels in T1
M16937 <390.44 M16937 369.92
H51015 <84.19 137.39
R10066 <494.17 R10066 354.97
T57619 <2597.85 TH7619 1926.39
R84411 <735.57 C RRUTTD 798.28
TA47377 <629.44 m 662.06
X53586 <121.91 w 136.09
U09587 <486.17 m 672.20

If H51015, R84411, T47377, X53586, U09587 in T1 can be down
regulated so T1 now contains the EP above, then T1 will have one
more common property of normal cells
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Doing more adjustments...

Interestingly, the expression change of the 5 genes in T1 leads to a chain
of other changes. These include the change that 9 extra top-ten EPs of
normal cells are contained in the adjusted T1. So all top-ten EPs of normal
cells are contained in T1 if the 5 genes’ expression levels are adjusted. As the
average number of top-ten EPs contained in normal cells is 7, the changed
T1 cell will now be considered as a cell that has the most important features
of normal cells. Note that we have adjusted only 5 genes’ expression level
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Next, eliminate common EPs NUS
of cancer cellsin T1

It is also necessary to eliminate those common properties of cancer cells
that are contained in T1. By adjusting the expression level of 2 other genes,
M26383 and H0O8393, the top-ten EPs of cancer cells all disappear from T1.
According to the colon tumor dataset, the average number of top-ten EPs
of cancer cells contained in a cancer cell is 6. Therefore, T1 is converted
into a normal cell as it now holds the common properties of normal cells
and does not hold the common properties of cancer cells.
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“Treatment Plan” Validation

‘ﬁ Mational University
of Singapore

“Adjustments” were made to the 40 colon tumour
samples based on EPs as described

Classifiers trained on original samples were

applied to the adjusted samples

classifier no. of no. of adjusted

misclassifications tumour samples

in original classified as

samples normal

SVM 6 40

HyperPipes 5) 39

Voting Feature Intervals 3 7\ 39
It works!
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A Big But...

o Effective means for identifying mechanisms and
pathways through which to modulate gene
expression of selected genes need to be

developed
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Any Question?
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