For written notes on this lecture, please read chapter 1 of The Practical Bioinformatician

CS2220: Introduction to Computational Biology Lecture 1: Essence of Bioinformatics

Limsoon Wong 13 January 2006

An very brief overview of ...

- Molecular biology
- Lools and jusitmusuis tor molecular piolody
- Themes and applications of bioinformatics
- Commonly used data sources

Tools and instruments for molecular biology will be covered in a distributed manner in later lectures as and when needed

Molecular Biology Overview

Body and Cell

- Our body consists of a number of organs
- Each organ composes of a number of tissues
- Each tissue composes of cells of the same type

- Cells perform two types of function
 - Chemical reactions needed to maintain our life
 - Pass info for maintaining life to next generation
- In particular
 - Protein performs chemical reactions
 - DNA stores & passes info
 - RNA is intermediate between DNA & proteins

DNA

- Stores instructions needed by the cell to perform daily life function
- Consists of two strands interwoven together and form a double helix
- Each strand is a chain of some small molecules called nucleotides

Francis Crick shows James Watson the model of DNA in their room number 103 of the Austin Wing at the Cavendish Laboratories, Cambridge

Classification of Nucleotides

- 5 diff nucleotides: adenine(A), cytosine(C), guanine(G), thymine(T), & uracil(U)
- A, G are purines. They have a 2-ring structure
- C, T, U are pyrimidines. They have a 1-ring structure
- DNA only uses A, C, G, & T

Nucleotide

- Consists of three parts:
 - Deoxyribose
 - Phosphate (bound to the 5' carbon)
 - Base (bound to the 1' carbon)

Watson-Crick Rule

- DNA is double stranded in a cell
- One strand is reverse complement of the other
- Complementary bases:
 - A with T (two hydrogen-bonds)
 - C with G (three hydrogen-bonds)

Orientation of a DNA

- One strand of DNA is generated by chaining together nucleotides, forming a phosphate-sugar backbone
- It has direction: from 5' to 3', because DNA always extends from 3' end:
 - Upstream, from 5' to 3'
 - Downstream, from 3' to 5'

NUS National University of Singapore

Double Stranded DNA

- DNA is double stranded in a cell. The two strands are anti-parallel. One strand is reverse complement of the other
- The double strands are interwoven to form a double helix

Locations of DNAs in a Cell?

- Two types of organisms
 - Prokaryotes (single-celled organisms with no nuclei. e.g., bacteria)
 - Eukaryotes (organisms with single or multiple cells. their cells have nuclei. e.g., plant & animal)
- In Prokaryotes, DNA swims within the cell
- In Eukaryotes, DNA locates within the nucleus

Chromosome

- DNA is usually tightly wound around histone proteins and forms a chromosome
- The total info stored in all chromosomes constitutes a genome
- In most multi-cell organisms, every cell contains the same complete set of chromosomes

- May have some small diff due to mutation

• Human genome has 3G bases, organized in 23 pairs of chromosomes

- The physical and functional unit of heredity that carries info from one generation to the next
- A sequence of DNA that encodes a protein or an RNA molecule
- About 30,000 35,000 (protein-coding) genes in human genome
- For gene that encodes protein
 - In Prokaryotic genome, one gene corresponds to one protein
 - In Eukaryotic genome, one gene may correspond to more than one protein because of the process "alternative splicing"

Introns and Exons

- Eukaryotic genes contain introns & exons
 - Introns are seq that are ultimately spliced out of mRNA
 - Introns normally satisfy
 GT-AG rule, viz. begin w/
 GT & end w/ AG
 - Each gene can have many introns & each intron can have thousands bases

- Introns can be very long
- An extreme example is a gene associated with cystic fibrosis in human:
 - Length of 24 introns
 ~1Mb
 - Length of exons ~1kb

A "Simple" Gene

Complexity of Organism vs. Genome Size

- Human Genome: 3G base pairs
- Amoeba dubia (a single cell organism): 600G base pairs
- ⇒ Genome size has no relationship with the complexity of the organism

Number of Genes vs. Genome Size

- Prokaryotic genome (e.g., *E. coli*)
 - Number of base pairs: 5M
 - Number of genes: 4k
 - Average length of a gene: 1000 bp
- Eukaryotic genome (e.g., human)
 - Number of base pairs: 3G
 - Estimated number of genes: 30k 35k
 - Estimated average length of a gene: 1000-2000 bp
- ~ 90% of *E. coli* genome are coding regions
- < 3% of human genome are coding regions
- \Rightarrow Genome size has no relationship w/ number of genes

RNA

 RNA has both the properties of DNA & protein

Phosphate

- Similar to DNA, it can store & transfer info
- Similar to protein, it can form complex 3D structure & perform some functions

OH

Ή₃、

Н

Η

- Nucleotide for RNA has of three parts:
 - Ribose Sugar (has an extra OH group at 2')
 - Phosphate (bound to 5' carbon)
 - Base (bound to 1' carbon)

 NH_2

Ribose Sugar

Base

(Adenine)

RNA vs DNA

- RNA is single stranded
- Nucleotides of RNA are similar to that of DNA, except that have an extra OH at position 2'
 - Due to this extra OH, it can form more hydrogen bonds than DNA
 - So RNA can form complex 3D structure
- RNA use the base U instead of T
 - U is chemically similar to T
 - In particular, U is also complementary to A

RNA Secondary Structure

• E. coli Rnase P RNA secondary structure

Types of mutation

Translocation

Chromosome 4

- Mutation is a sudden change of genome
- Basis of evolution
- Cause of cancer
- Can occur in DNA, RNA, & Protein

Copyright 2006 © Limsoon Wong

Central Dogma

Players in Protein Synthesis

Transcription

- Synthesize mRNA from one strand of DNA
 - An enzyme RNA polymerase temporarily separates doublestranded DNA
 - It begins transcription at transcription start site
 - $A \rightarrow A, C \rightarrow C, G \rightarrow G, \& T \rightarrow U$
 - Once RNA polymerase reaches transcription stop site, transcription stops

- Additional "steps" for Eukaryotes
 - Transcription produces pre-mRNA that contains both introns & exons
 - 5' cap & poly-A tail are added to pre-mRNA
 - RNA splicing removes introns & mRNA is made
 - mRNA are transported out of nucleus

Promoter and Enhancers

- Promoter necessary to start transcription
- Enhancer can affect transcription from afar

Translation

- Synthesize protein from mRNA
- Each amino acid is encoded by consecutive seq of 3 nucleotides, called a codon
- The decoding table from codon to amino acid is called genetic code

- 4³=64 diff codons
- ⇒ Codons are not 1-to-1 corr to 20 amino acids
- All organisms use the same decoding table
- Recall that amino acids
 can be classified into 4
 groups. A single-base
 change in a codon is
 usually not sufficient to
 cause a codon to code for
 an amino acid in different
 group

Protein Synthesis

- Within nucleus (light blue), genes (dark blue) are transcribed to RNA
- Post-transcriptional modification and control, results in a mature mRNA (red)
- mRNA translocated to cytoplasm (peach)
- mRNA translated by ribosomes (purple) that match codons of mRNA to anti-codons of tRNA
- Newly synthesized proteins (black) are further modified, such as by binding to an effector molecule (orange), to become fully active

Genetic Code

- Start codon
 - ATG (code for M)
- Stop codon
 - -TAA
 - TAG
 - TGA

		Second Position of Codon					
		Т	С	Α	G		
First Position	T	TTT Phe [F] TTC Phe [F] TTA Leu [L] TTG Leu [L]	TCT Ser [S] TCC Ser [S] TCA Ser [S] TCG Ser [S]	TAT Tyr [Y] TAC Tyr [Y] TAA <i>Ter</i> [end] TAG <i>Ter</i> [end]	TGT Cys [C] TGC Cys [C] TGA <i>Ter</i> [end] TGG Trp [W]	T C A G	T
	с	CTT Leu [L] CTC Leu [L] CTA Leu [L] CTG Leu [L]	CCT Pro [P] CCC Pro [P] CCA Pro [P] CCG Pro [P]	CAT His [H] CAC His [H] CAA Gln [Q] CAG Gln [Q]	CGT Arg [R] CGC Arg [R] CGA Arg [R] CGG Arg [R]	T C A G	
	A	ATT Ile [I] ATC Ile [I] ATA Ile [I] ATG Met [M]	ACT Thr [T] ACC Thr [T] ACA Thr [T] ACG Thr [T]	AAT Asn [N] AAC Asn [N] AAA Lys [K] AAG Lys [K]	AGT Ser [S] AGC Ser [S] AGA Arg [R] AGG Arg [R]	T C A G	:
	G	GTT Val [V] GTC Val [V] GTA Val [V] GTG Val [V]	GCT Ala [A] GCC Ala [A] GCA Ala [A] GCG Ala [A]	GAT Asp [D] GAC Asp [D] GAA Glu [E] GAG Glu [E]	GGT Gly [G] GGC Gly [G] GGA Gly [G] GGG Gly [G]	T C A G]

Protein

- A sequence composed from an alphabet of 20 amino acids
 - Length is usually 20 to 5000 amino acids
 - Average around 350 amino acids
- Folds into 3D shape, forming the building block & performing most of the chemical reactions within a cell

Amino Acid

Each amino acid consist of

Classification of Amino Acids

• Amino acids can be classified into 4 types

- Positively charged (basic)
 - Arginine (Arg, R)
 - Histidine (His, H)
 - Lysine (Lys, K)
- Negatively charged (acidic)
 - Aspartic acid (Asp, D)
 - Glutamic acid (Glu, E)

Classification of Amino Acids

- Polar (overall uncharged, but uneven charge distribution. can form hydrogen bonds with water. they are called hydrophilic)
 - Asparagine (Asn, N)
 - Cysteine (Cys, C)
 - Glutamine (Gln, Q)
 - Glycine (Gly, G)
 - Serine (Ser, S)
 - Threonine (Thr, T)
 - Tyrosine (Tyr, Y)

- Nonpolar (overall uncharged and uniform charge distribution. cant form hydrogen bonds with water. they are called hydrophobic)
 - Alanine (Ala, A)
 - Isoleucine (Ile, I)
 - Leucine (Leu, L)
 - Methionine (Met, M)
 - Phenylalanine (Phe, F)
 - Proline (Pro, P)
 - Tryptophan (Trp, W)
 - Valine (Val, V)

Protein & Polypeptide Chain

- Formed by joining amino acids via peptide bond
- One end the amino group, called N-terminus
- The other end is the carboxyl group, called C-terminus

Proteins Structure

• Primary

 Seq of amino acids forming a polypeptide chain

• Secondary

- Local organization into sec structures such as α helices and β sheets

• Tertiary

 3D arrangements of amino acids as they react to one another due to the polarity and resulting interactions betw their side chains • Quaternary

 Number and relative positions of protein subunits

Eukaryote Cell Structure

- Cell membrane---a cell's
 protective coat
 - Separate and protect cell from env
 - Made from double layer of lipids and proteins
- Genetic material
 - DNA and RNA
- Organelles--- a cell's "little organs"

- Cytoskeleton---a cell's scaffold
 - organize and maintain the cell's shape
 - anchor organelles in place
 - Help uptake of external materials by a cell
 - move parts of the cell during growth and motility

Organelles

- Cell nucleus---a cell's info ctr
 - House a cell's chromosomes
 - DNA replication and RNA synthesis occur here
- Ribosomes---the protein production machine
 - Process genetic instructions carried by mRNA into protein
- Mitochondria & chloroplasts---the power generators
 - Self-replicating organelles in cytoplasm, w/ own genome
 - Generate energy, process involves metabolic pathways

Endoplasmic reticulum

- rough ER help to export proteins from cell after mRNA translation
- smooth ER is important in lipid synthesis, detoxification etc.
- Golgi apparatus---central delivery system for the cell
 - Site for protein processing, packaging, and transport

Eukaryote Cell Structure

- 1. Nucleolus
- 2. Nucleus
- 3. Ribosome
- 4. Vesicle
- 5. Rough ER
- 6. Golgi apparatus
- 7. Cytoskeleton
- 8. Smooth ER
- 9. Mitochondrion
- 10. Vacuole
- 11.Cytoplasm
- 12. Lysosome
- 13. Centriole

Processes In/Out of the Cells

- Biological pathway: Molecular interaction network in biological processes
- Regulatory pathway
 - Genetic information processing
 - Environmental information processing
 - Cellular processes
- Metabolic pathway
 - Enzymatic processes creating energy and other parts of the cell

Regulatory Pathways

- Genetic information processing
 - Transcription, Translation, Sorting and Degradation. Replication and Repair
- Environmental information processing
 - Membrane transport, Signal transduction, Ligand receptor interaction
- Cellular processes
 - Cell motility, Cell growth and death, Cell communication, Development, Behavior

Signal Transduction Pathways

- Signal transduction is a process by which a cell converts one kind of signal/stimulus into another
- Stimuli/Responses
 - Stimuli: factors from env of a cell, e.g., kinds of molecules buffeting its surface, temperature, ...
 - Responses: how cell react to stimuli, e.g., activate of a gene, produce metabolic energy, ...
- Types of signals
 - Extracellular: binding of "extracellular" signaling molecules to receptors that face out from membrane
 - Intracellular: trigger by extracellular signal
 - Intercellular: between cells

Type of Intercellular Signaling

• Endocrine

- Broad effect, specific receptor, travel thru blood
- Hormones
- Paracrine
 - Within local tissue, enzyme/extracellular matrix
- Autocrine
 - Affect only cells of the same type
- Juxtacrine
 - Transmitted along cell membranes
 - Capable of affecting either the emitting cell or cells immediately adjacent

Type of Signaling Proteins

- Signal molecule
 - Bring signal to outside the cell
- Receptors
 - Bring signal from outside to inside the cell
 - One end outside membrane, the other end inside
 - Applied to cell membrane and nucleus membrane
- Intracellular signaling protein
 - Second messengers inside cells
 - Pass message from receptors to target protein within a cell including the nucleus
- Target protein
 - Final recipient of signal. Might be many

Metabolic Pathways

- Cell metabolism is the sum of many ongoing individual processes by which living cells process nutrient molecules to maintain a living state
- Anabolism
 - Energy is consumed to make or combine simpler substances---e.g., amino acids---into more complex compounds, such as enzymes and nucleic acids

Catabolism

- Complex molecules are broken down to produce energy and reducing power
- Carbohydrate catabolism, Fat catabolism, Protein catabolism

Themes and Applications of Bioinformatics

What is Bioinformatics?

Themes of Bioinformatics

Bioinformatics = Data Mgmt + Knowledge Discovery + Sequence Analysis + Physical Modeling +

Knowledge Discovery = Statistics + Algorithms + Databases

Benefits of Bioinformatics

To the patient: Better drug, better treatment

To the pharma: Save time, save cost, make more \$

To the scientist: Better science

Some Bioinformatics Problems

- Biological Data Searching
- Gene/Promoter finding
- Cis-regulatory DNA
- Gene/Protein Network
- Protein/RNA Structure Prediction
- Evolutionary Tree reconstruction
- Infer Protein Function
- Disease Diagnosis
- Disease Prognosis
- Disease Treatment Optimization, ...

Biological Data Searching

- Biological Data is increasing rapidly
- Biologists need to locate required info
- Difficulties:
 - Too much
 - Too heterogeneous
 - Too distributed
 - Too many errors
 - Due to mutation, need approximate search

Growth of GenBank

Copyright 2006 © Limsoon Wong

Cis-Regulatory DNAs

 Cis-regulatory DNAs control whether genes should express or not

Image credit: US DOE

- Cis-regulatory may locate in promoter region, intron, or exon
- Finding and understanding cisregulatory DNAs is one of the key problem in coming years

A GENE REGULATORY NETWORK

Gene Networks

- Inside a cell is a complex system
- Expression of one gene depends on expression of another gene
- Such interactions can be represented using gene network
- Understanding such networks helps identify association betw genes & diseases

Protein/RNA structure prediction

- Structure of Protein/RNA is essential to its functionality
- Important to have some ways to predict the structure of a protein/RNA given its sequence
- This problem is important & it is always considered as a "grand challenge" problem in bioinformatics

Image credit: Kolatkar

Evolutionary Tree Reconstruction

Root

- Protein/RNA/DNA mutates
- Evolutionary Tree studies evolutionary relationship among set of protein/RNA/DNAs

Copyright 2006 © Limsoon Wong

Breast Gancer Outcome Prediction

Van't Veer et al., *Nature* 415:530-536, 2002

Training set contains 78 patient samples

- 34 patients develop distance metastases in 5 yrs
- 44 patients remain healthy from the disease after initial diagnosis for >5 yrs
- Testing set contains 12
 relapse & 7 non-relapse
 samples

Commonly Used Data Sources

Type of Biological Databases

• Micro Level

- Contain info on the composition of DNA, RNA, Protein Sequences
- Macro Level
 - Contain info on interactions
 - Gene Expression
 - Metabolites
 - Protein-Protein Interaction
 - Biological Network
- Metadata
 - Ontology
 - Literature

Exercise: Name a protein sequence database and a DNA sequence data

Transcriptome Database

- Complete collection of all possible mRNAs (including splice variants) of an organism
- Regions of an organism's genome that get transcribed into messenger RNA
- Transcriptome can be extended to include all transcribed elements, including non-coding RNAs used for structural and regulatory purposes

Exercise: Name a transcriptome database

Gene Expression Databases

- Detect what genes are being expressed or found in a cell of a tissue sample
- Single-gene analysis
 - Northern Blot
 - In Situ Hybridization
 - RT-PCR
- Many Genes: High Throughput Arrays
 - cDNA Microarray
 - Affymetrix GeneChip® Microarray

Exercise: Name a gene expression database

Metabolites Database

- A metabolite is an organic compound that is a starting material in, an intermediate in, or an end product of metabolism
- Metabolites dataset are also generated from mass spectrometry which measure the mass the these simple molecules, thus allowing us to estimate what are the metabolites in a tissue

• Starting metabolites:

- Small, of simple structure, absorbed by the organism as food
- E.g., vitamins and amino acids

• Intermediary metabolites:

- The most common metabolites
- May be synthesized from other metabolites, or broken down into simpler compounds, often with the release of chemical energy
- E.g., glucose

• End products of metabolism

- Final result of the breakdown of other metabolites
- Excreted from the organism without further change
- E.g., urea, carbon dioxide

Copyright 2006 © Limsoon Wong

Protein-Protein Interaction Databases

- Proteins are true workhorses
 - Lots of the cell's activities are performed thru PPI including message passing, gene regulation, etc.
- Function of a protein also depends on proteins it interact with
- Methods for generating PPI database include:
 - biochemical purifications, yeast-two hydrid, synthetic lethals, in silico predictions, mRNA-coexpression
- Contain many false positives & false negatives

Exercise: Name a PPI database

Any Question?

Acknowledgements

- Most of the slides used in this lecture are based on original slides created by
 - Ken Sung
 - Anthony Tung
- Inaccuracies and errors are mine

- S.K.Ng, "<u>Molecular Biology for the Practical</u> <u>Bioinformatician</u>", <u>The Practical Bioinformatician</u>, Chapter 1, pages 1—30, WSPC, 2004
- DOE HGP Primer

