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Computational Supervised Learnln

e Also called classification

e Learn from past experience, and use the learned
knowledge to classify new data

« Knowledge learned by intelligent algorithms
« Examples:

— Clinical diagnosis for patients
— Cell type classification
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Data

o Classification application involves > 1 class of
data. E.g.,

— Normal vs disease cells for a diagnosis problem

 Training datais a set of instances (samples,
points) with known class labels

e Test data is a set of instances whose class labels
are to be predicted
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Typical Notations e

e Training data
{X0, Y X20 Y2 ooy Ky Y
where x; are n-dimensional vectors
and y; are from a discrete space Y.
E.g., Y ={normal, disease}

e Test data
{{ul, ?), (U2, ?), ..., {uk, ?), }
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Process

Training data: X

A classifier, a mapping, a hypothesis

f(U)
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Relational Representation NUS
of Gene Expression Data

n features (order of 1000)
class

gene, gene, gene, gene, ... gene,

m samples
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Features (aka Attributes)

o Categorical features
— color = {red, blue, green}

e Continuous or numerical features
— gene expression
— age

— blood pressure

e Discretization
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QOutlook Temp Humidity Windy| class
Sunny 75 70 true | Play
Sunny 80 90 true | Don’t
Sunny 85 85 false | Don’t
Sunny 7 95 true | Don’t
Sunny 69 70 false |Play
Overcast 72 90 true | Play
Overcast &3 78 false |Play
Overcast 64 65 true | Play
Overcast 81 75 false |Play
Rain 71 80 true | Don’t
Rain 65 70 true |Don’t
Rain 75 80 false | Play
Rain 68 80 false |Play
Rain 70 96 false |Play
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Overall Picture of NUS
Supervised Learning

Labelled | Algorithms
i B

Biomedical Decision trees
Financial Emerging patterns
Government SVM

Scientific Neural networks

Classifiers (Medical Doctors)
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Evaluation of a Classifier

 Performance on independent blind test data

 K-fold cross validation: Given a dataset, divide it
Into k even parts, k-1 of them are used for
training, and the rest one part treated as test data

« LOOCV, a special case of K-fold CV

e Accuracy, error rate

 False positive rate, false negative rate, sensitivity,
specificity, precision
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Requirements of NUS
Biomedical Classification

 High accuracy/sensitivity/specificity/precision

 High comprehensibility
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Importance of Rule-Based Methoo @% |

o Systematic selection of a small number of
features used for the decision making

= Increase the comprehensibility of the knowledge
patterns

e C4.5 and CART are two commonly used rule
Induction algorithms---a.k.a. decision tree
Induction algorithms
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i':g; NUS
Structure of Decision Trees

> a1 /. @ Root node
. @ Internal nodes
> a2
@ 5 Leaf nodes

« Ifx;>a;,& X,>a, thenit's A class
e (C4.5, CART, two of the most widely used
 Easy interpretation, but accuracy generally unattractive
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Elegance of Decision Trees
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Brief History of Decision Trees ~ ==

CLS (Hunt et al. 1966)--- cost driven
/
CART (Breiman et al. 1984) --- Gini Index

ID3 (Quinlan, 1986) --- Information-driven

/

C4.5 (Quinlan, 1993) --- Gain ratio + Pruning ideas
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A Simple Dataset 95 i

QOutlook Temp Humidity Windy| class
Sunny 75 70 true | Play
Sunny 80 90 true | Don’t
Sunny 85 85 false | Don’t
Sunny 7 95 true | Don’t
Sunny 69 70 false |Play
Overcast 72 90 true | Play
Overcast &3 78 false |Play
Overcast 64 65 true | Play
Overcast 81 75 false |Play
Rain 71 80 true | Don’t
Rain 65 70 true |Don’t
Rain 75 80 false | Play
Rain 68 80 false |Play
Rain 70 96 false |Play
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A Decision Tree

overcast -

false

true

2

 Construction of atree is equivalent to determination of the
root node of the tree and the root node of its sub-trees

Exercise: What Is the accuracy of this tree?
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Outlook [Temperature Humidity| Wind PlaiTennis

Sunny Hot High | Weak
Outlook
LSunnyT ‘Overcast‘ ‘Ram! Example
Source: Anthony Tung
/
Humidity Wind

/. .
Normal Strong Wea
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Most Discriminatory Feature

 Every feature can be used to partition the training
data

e |If the partitions contain a pure class of training
Instances, then this feature is most
discriminatory
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Example of Partitions

o Categorical feature

— Number of partitions of the training data is equal to
the number of values of this feature

« Numerical feature
— Two partitions
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Instance # | Outlook Temp| Humidity Windy
1 Sunny 75 70 true |Play
2 Sunny 80 90 true |Don’t
3 sunny 85 85 false |Don’t
4 Sunny (2 95 true |[Don’t
5 Sunny 69 70 false |Play
6 Overcast 72 90 true |Play
7 Overcast 83 /8 false |Play
8 Overcast 64 65 true |Play
9 Overcast 81 75 false |Play
10 Rain 71 80 true |Don’t
11 Rain 65 70 true |Don’t
12 Rain 75 80 false |Play
13 Rain 68 80 false Play
14 Rain 70 96 false Play
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Total 14 training <

Instances

/ Outlook =
sunny

Outlook =
overcast

\ Outlook =
rain
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I lass .

true |Play Nf‘"':"" I ¥
e | Dot of Singapore
false |Don’t
true | Don’t
false |Play
true | Play
false |Play
true | Play
false |Play
true | Don’t
i B Temperature 5811.13.14
false |Play ] ] ] ]
false Play —_
flss Pley <=70 PP DP.P

a ] ] ] ]

_____ IR

Total 14 training <
Instances

Copyright 2006 © Limsoon Wong



al:ionanll..l nnnnnnnn
of Singapore

NUS

Steps of Decision Tree Constructio

e Select the “best” feature as the root node of the
whole tree

o After partition by this feature, select the best
feature (wrt the subset of training data) as the
root node of this sub-tree

 Recursively, until the partitions become pure or
almost pure
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hree Measures to Evaluate
Which Feature Is Best

e Ginl index

nnnnnnnnnn

e Information gain

* Information gain ratio
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Ginl Index

Let U = {Cy, ..., Ci} be all the classes. Suppose we are currently at a node

and D is the set of those samples t.ha,t have been moved to this node. Let f be a feature and d[f]
be the value of the feature f in a sample d. Let S be a range of values that the feature f can take.

Then the Gini index for f in D for the range 5 is defined as

{de D|deC;, df] € S}HY°
I

yz'?'a.z'}jlfS} =1
oR=

The purity of a split of the value range S of an attribute f by some split-point into subranges 5,
and S5 is then defined as

giﬂi}}{ﬂl.ﬁz} — Z Hde D |§[.ﬂ € S} * 'U”“_r I[S'}
5€{5,52} D]

) _ we choose the feature f and the '-,pht. pmnt. P t-hclf minimizes
gini}j (51, 5-_: over all possible alternative features and split-points. a

Copyright 2006 © Limsoon Wong



-
EBAINUS
%

Mational University
of Singapore

Information Gain

the difference between the information needed to identify the class of a
a-t;unp]e in { before and after the value of the feature f is revealed is

Gain(f,i4, 51,5:) = Ent(f,U,5, US:) — E(f,U,{51,5:2})
where

e Ent(f,l{,5) is the class entropy of a range S with respect to a feature f and a collection of
classes [{. It is defined as

. _ {deCi|difleSH .. (HdeCildf] €S}
Ent(f.,8) = = 3, e U Tdile sy o8, (e U e 3N)

o E(f,U4,{51,52}) is the class information entropy of the partition (51, Sz2). It is defined as

l{d €U | d[f] € S}
{det [ dij] € USH

E(f.U,8) = Z ] « Ent(f,U,S;)

Then the information gain is the amount of information that is gained by looking at the value of
the feature f. and is defined as

InfoGain( f,U) = max{Gain(f,l{, 5, 52) | (51,52) is a partitioning of the
values of f in | JI by some point T}
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Information Gain Ratio et

Gain( f,U, 51, 52)

GainRatio( f,l{,51,52) = SplitInfo(f, U, 51, 52)

where SplitInfo(f.l{,51,5:2) = Ent(f. {H_f‘,_H}‘TE},Sl I Ss), and Hf = Uc.cudd € Ci | d[f] € S}
Then the information gain ratio is defined as

InfoGainRatio( f,U) = max{GainRatio( f,U{, 51, 52) | (51,52) is a partitioning
of the values of f in | JI{ by some point T'}
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Characteristics of C4.5 Trees ~ =

e Single coverage of training data (elegance)
 Divide-and-conquer splitting strategy

« Fragmentation problem = Locally reliable but
globally insignificant rules
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Example Use of Decision Tree Methods: PrOteoml
Approaches to Biomarker Dlscovery

e In prostate and bladder cancers (Adam et al.
Proteomics, 2001)

 In serum samples to detect breast cancer (Zhang
et al. Clinical Chemistry, 2002)

 In serum samples to detect ovarian cancer
(Petricoin et al. Lancet; Li & Rao, PAKDD 2004)
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Motivating Example

h,, h,, h; are indep classifiers w/ accuracy = 60%
C,, C, are the only classes
tis atestinstancein C;
h(t) = argmaxccaco Khy €{hy, hy, hsh | hy(t) = C}
Then prob(h(t) = C))
= prob(h,(t1)=C, & h,(t)=C; & h4(t)=C,) +
prob(h,(t)=C, & h,(t)=C, & h4(t)=C,) +
prob(h,(t)=C, & h,(t)=C, & h4(t)=C,) +
prob(hy(t)=C, & h,(t)=C,; & h(t)=C,)
= 60% * 60% * 60% + 60% * 60% * 40% +
60% * 40% * 60% + 40% * 60% * 60% = 64.8%
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Bagging

 Proposed by Breiman (1996)
 Also called Bootstrap aggregating

« Make use of randomness injected to training data
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Main ldeas

Original training set -

‘." ".‘ Draw 100 samples
o *+.with replacement
‘0" . %,
* N *
4 4
A base mducisuch as C4.5 1
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Given a new test sample T

bagged(T) = argmasc, cyy|{hi € H | hi(T) = G

where U = {C}, ..., C}}

Exercise: What does the above formula mean?
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CS4

 Proposed by Li et al (2003)

e CS4: Cascading and Sharing for decision trees

e Doesn’'t make use of randomness
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Main ldeas

E ----------------------- r.c.)E)..t.r.]E).d.e.é -----------------------------
@ 1

: tree-

: ~ o

5 22

:  total ktrees < O tree-2

|

E = @ tree-k

: @

Selection of root nodes is in a cascading manner!
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Decision Making by CS4

pos pos pos

rule; ,rules rule

neg neg

rule;” ruley ™, ,rule, .

k1

Z coverage(rulel”®)

i=1

k2

Score™(T) = Zcovemge(rule?eg)
i=1

Score?*®(T)

Not equal voting
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Summary of Ensemble Classifier

Bagging

AdaBoost.M1

CS4

B8 &

NUS
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of Singapore

Rules may
not be correct
when

applied to
training data

Rules correct

Exercise: Describe the 3 decision tree
ensemble classifiers not explained in this ppt
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Outline

K-Nearest Neighbour
Support Vector Machines
Bayesian Approach
Hidden Markov Models

Exercise: Name and describe one other
commonly used machine learning method

Copyright 2006 © Limsoon Wong
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How KNN Works

e Glven a new case e A common “distance”
measure betw samples X

e Find k “nearest” andyis

neighbours, i.e., k most
similar points in the \/Ef(fﬂ[f] = y[f])?

training data set

where f ranges over
e Assigh new case to the features of the samples
same class to which most
of these neighbours
belong

Exercise: What does the formula above mean?
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lllustration of KNN (k=8)

Neighborhood

5 of class ©
3 of class 4

Yo=o0

»
>

Image credit: Zaki
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Some Issues

e Simple to implement

« But need to compare new case against all training
cases

— May be slow during prediction

 No need to train
« But need to design distance measure properly
= may need expert for this

o« Can’t explain prediction outcome
— Can’t provide a model of the data

Copyright 2006 © Limsoon Wong
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« Anbeek et al, Neurolmage
21:1037-1044, 2004

e Use kNN to automated
segmentation of white
matter lesions in cranial MR
Images

 Rely oninfo from T1-
weighted, inversion
recovery, proton density-
weighted, T2-weighted, &

Fig. 3. Classification of a patient with moderate lesion load. (A) FLAIR

fI u | d atten u at| on | nvers | on image, (B) manual segmentation, (C) probability map, (D) segmentations
derived from probability map with different thresholds: black: probability

recovery sScans (P) = 0, blue: 0=P=0.3, green: 0.3<P<0.5, yellow: 0.5<P =028, red:
03<P=1.

Copyright 2006 © Limsoon Wong



: - é\_IUS
Example Use of kNN: Ovarian Cancer Dlagn (Y S
Based on SELDI Proteomic Data

n T T T T
e Lietal, Bioinformatics 2 1o
20:1638-1640, 2004 < . |
;';-' _________ i
- 3] AW —
« Use kNN to diagnose 3 ZT Rdien |
ovarian cancers using o N
proteomic spectra 5 |/ I
2| _
« Data set is from Petricoin g o —— Ll L
et al, Lancet 359572'577, Number of JLEI]J- ranked II:I.;/.I Tratios

2002

Fig. 1. Minimum, median and maximum of percentages of correct
prediction as a function of the number of top-ranked m/z ratios in
50 independent partitions into learning and validation sets.
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Example Use of kNN: Prediction of COmpOunngS
Signature Based on Gene Expr Profiles

« Hamadeh et al, Toxicological
Sciences 67:232-240, 2002

e Store gene expression =
profiles corr to biological
responses to exposures to

known compounds whose 52 ™

toxicological and 25 o ’ , r
pathological endpoints are ©

well characterized . elinducets

 Use kNN to infer effects of e
unknown compound based
on gene expr profiles
iInduced by it

9]
TR AT

* Peroxisome prolifejatqrs %

d InductionRep
Log, (Treated/Control)

2wiak Wyem
2week Gemfibrozil |
2woek Phenobarbital
24hr Clofibrate |
24hr Wyath
24hr Phanobarbital |
3462 |
3464
3468 |
4216 |
4218

4
2week Clnlmra'be
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Basic Ildea

Image credit: Zien

featurs G‘ G

space

(©)

(a) Linear separation not possible w/o errors
(b) Better separation by nonlinear surfaces in input space

(c ) Nonlinear surface corr to linear surface in feature space.
Map from input to feature space by “kernel” function ®

= “Linear learning machine” + kernel function as classifier
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Linear Learning Machines
 Hyperplane separating the x’s and o0’s points is

given by (WeX) + b =0, with (WeX) = 2ZW[j]*X[]]
= Decision function is lIm(X) = sign((WeX) + b))
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Linear Learning Machines

e Solution is alinear combination of training points
X, with labels Y,

WIJT = 2oy *Y X, [],
with o, >0, and Y, = 1
= lIm(X) = sign(Z, o, *Y, * (X,.*X) + b)

]

“data” appears only in dot product!
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Kernel Function 95 s

e 1Im(X) = sign o *Y,* (X oX) + b)

: _
o, O
-__.-_x---._-- L
x x x..x"-n
(©)

¢ svm(X) =sign(Z, o, *Y,* (DX, s ®X) + b)
= svm(X) = sign(Z, o, *Y, * K(X,,X) + b)
where K(X,,X) = (®X,* ®X)
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Kernel Function i

« svm(X) =sign(Z, o, *Y, * K(X,,X) + b)
= K(A,B) can be computed w/o computing @

e In fact replace it w/ lots of more “powerful”
kernels besides (A *B). E.g.,

— K(A,B) = (A « B)d
_ K(A,B) = exp(= || A B|[2/ (2*5)), ...

Copyright 2006 © Limsoon Wong
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How SVM Works

« svm(X) =sign(Z, o, *Y, * K(X,,X) + b)

 To find o, IS a quadratic programming problem
max: 2o, —0.5* 2, 2 o o, Y *Y KK X )
subject to: %, o, *Y, =0
and for all o, , C > o 20

 To find b, estimate by averaging

Yy = 2007Y ) K(Xp, Xy)
for all o, >0

Copyright 2006 © Limsoon Wong
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e Koike et al, Protein
Engineering Design &
Selection 17:165-173, 2004

» Identification of protein-
protein interaction sites is
Impt for mutant design &
prediction of protein-
protein networks

e [nteraction sites were

P redicted here usi ng SVM & Legend: green=TP, white=TN, yellow=FN, red=FP
p I'Ofi | es Of A: human macrophage migration inhibitory factor

) . B & C: the binding proteins
sequentially/spatially
neighbouring residues
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Example Use of SVM: Prediction of Gene!}[gsy
Function From Gene Expression

 Brown et al., PNAS 91:262-267, 2
2000

s

. ;!ﬂu
"] ill

* Use SVMto identify sets of §
genes w/ a c’'mon function g
L)

based on their expression
profiles

e Use SVM to predict

. _‘ 1 i i i i i A
functional roles of alpha oy ode he recod
. Hmm&ﬂ
un Char aCterlzed yeaSt Fig. 1. Expression profile of YPLO37C compared with the MYGD class of
; cytoplasmic ribosomal proteins. YPLO37Cis classified as aribosomal protein by the
O R FS b as ed on th elr SVMs but is not included in the class by MYGD. The figure shows the expression

i i profile for YPLO37C, along with standard deviation bars for the class of cytoplas-
eX p ression p rOfI l €s mic ribosomal proteins. Ticks along the x axis represent the beginnings of exper-

imental series.
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Example Use of SVM: Recognltlon of NNpSr

Protein Translation Initiation Sites

Srfiank EXorn intron eXorn intron eXxan Frfiank
.‘\;\ T e )
: ™ " [ | £ s
Y \ | [ g ;f
M ‘n‘ I I o s DNA:A,CGT
transeription ‘\H N | o J,f
Y ]‘1\ | | s 2
y ,“ | | 7 I
y 5y | [ XH ff
" Al [

5
e R ] mRNA: A,C.G,U
cading region

Zien et al., Bioinformatics 16:799-807, 2000

Use SVM to recognize protein translation initiation sites from
genomic sequences

Raw data set Is same as Liu & Wong, JBCB 1:139-168, 2003
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Bayes Theorem

P(d|h) x P(h)
P(d)

P(h|d) =

 P(h) =prior prob that hypothesis h holds
« P(d|h) = prob of observing data d given h holds
* P(h|d) = posterior prob that h holds given observed data d

Copyright 2006 © Limsoon Wong
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Bayesian Approach

« Let Hbe all possible classes. Given a test
Instance w/ feature vector {f, = vy, ..., f, = v}, the
most probable classification is given by

a‘rgmaxhjEHP(hjlfl =V1,--- fn = Un)

 Using Bayes Theorem, rewrites to

P(fl =U1:”':fn — Uﬂ|h.}') *P(hj)

P(fi=wvi,...,fn ="vn)

« Since denominator is independent of h;, this

simplifies to

argmaxy, ¢y P(fi = v1,..., fa = vnlh;) * P(h;)

Copyright 2006 © Limsoon Wong
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- An Example
Training samples

® 4 ® ° : ® Frior probability for GREEN o« Wumber of GRERN objects = 40 / 60
e @ o P90 0" o Total number of ohjecis
ee ® %409 8, © Number of RED object
oo’ o : : : Frior probability for RED o e ° J_EC c = 20/60
A . S oo Tatal number af ohjecis
e ® ®

A testing instance X

e ® Likelihood of X given GREEN = MNumber of GREREN in the vicinify of X — 1/40
e ® P 00, Total numbear of FREEN cases
e ® %, 520°% %%, .
. RV 8020 Likefihood of X given RED Mumber of RED in the vicinity of X — 3/20
secie, /0 o L] Total number of AED cases
. o o, s °
L I @
Fosterior probability of X being GREEN o« Wwe CIaSSify X as RED
Priar prababifity of GREEN ¥ Likelibhood of X given GREEN . . .
a1 since its class membership
£ 40 A : .
Fosterior probabilityaf X being RED = aChIeveS the IargeSt pOSterlor
Prior probability of RED ¥ Likelhood of X given RED p ro b ab| | |ty
_e 31
& 20 Z0

Source:
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Nalve Bayes

But estimating P(f,=v,, ..., f,=v|h;) accurately may
not be feasible unless training data set IS
sufficiently large

“Solved” by assuming f,, ..., f, are independent

Then argmaxy, g P(fi = v1,..., fn = valh;) x P(hj)
= argmaxy . c g HP(,}% = ’Uilhj) * P(hj)

where P(h;) and P(fi:viﬁ\j) can often be estimated
reliably from typical training data set

Exercise: How do you estimate P(h;) and P(f;=v|h;)?
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Example Use of Bayesian: DeSign of Screens W

Macromolecular Crystallization

Hennessy et al., Acta Cryst
D56:817-827, 2000

Xtallization of proteins
requires search of expt
settings to find right
conditions for diffraction-
guality xtals

BMCD is a db of known
xtallization conditions

Use Bayes to determine
prob of success of a set of
expt conditions based on
BMCD

INUS

L/ Mational University

of Singapore

Diffraction §
Limit :

Y, Concen g8

._:: -__7-\.. - -"‘-\._
! ¢ Macmol
AR TR \ .
— .H . Class
e R
‘_z' "y i _| \,
I‘. -

| __'\ J-\. ; _,-" Y
o . / B .’ T..-x.{\_\- o \
o -.ff- - —~ ||I'I --ql| f"‘q:‘%\x\ %\‘"" “'
.-r/ a L -1* 34\
Hulfur * | Temp ; I/ PET K\ . Muunnl ;
. & \k Concen
.:x\
— _-f’ Tsall S

F'E’T
\\ Concen @

Fizure 1

Crystallization parameter dependency graph. The graph represents the
parameters included in the calculation of the estimated probability of

success and their dependencies. A connecting arc from

pH to buffer

indicates that the probability distribution for the buffer may depend on
the value of the pH. The lack of a connecting arc between two parameters
reflects conditional independence (the probability distribution for a
parameter is independent of the value of the other parameter).
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What is a HMM 9%

HMM is a stochastic

generative model for a,

sequences a,

Defined by model ‘ ‘
parameters

— finite set of states S
— finite alphabet A

— transition prob matrix T
— emission prob matrix E
Move from state to state

according to T while emitting
symbols according to E
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The Order of a HMM

 In nth order HMM, T & E depend on all n previous
states

 E.g., for 1st order HMM, given emissions X = Xy, X,,
., & states S=s,, S,, ..., the prob of this seq is

Prob(X,S) = HProb ,\q)-—*HEJrh,)*T i 1.8;)
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Using HMM
 Given the model parameters, compute the
probability of a particular output sequence. Solved
by the forward algorithm

e Given the model parameters, find the most likely
sequence of (hidden) states which could have
generated a given output sequence. Solved by the
Viterbi algorithm

e Given an output sequence, find the most likely set
of state transition and output probabilities. Solved
by the Baum-Welch algorithm

Exercise: Describe these algorithms
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Example: Dishonest Casino

e (Casino has two dices:
— Fair dice
e P(i)=1/6,i=1..6
— Loaded dice
e P(i)=1/10,i=1.5
e P()=1/2,i=6

e Casino switches betw fair

& loaded die with prob 1/2.

Initially, dice is always fair

Mational University
of Singapore

TN US
9%

Game:

— You bet $1

— You roll

— Casino rolls

— Highest number wins $2

Question: Suppose we
played 2 games, and the
sequence of rolls was 1, 6,
2, 6. Were we likely to have
been cheated?
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“Visualization” of Dishonest Casing® ==

1/2
1/2 1/2

1/2

Emission Matrix Transition Matrix

H1|Fair)= 1/6 E1|Loaded)= 1/10 T(Loaded,Loaded) = 1/2
H2|Fair)= 1/6 EZ2|Loaded)= 1/10 T({Loaded,Fair)= 1/2
H3|Fairy= 1/6 H3|Loaded)= 1/10 T(Fair,Fair) = 1/2
H4|Fair)= 1/6 H4|Loaded) = 1/10 T(Fair,Loaded) = 1/2
H5|FRairy= 1/6 E5|Loaded) = 1/10 T(?Fairj= 1.0
HE|Fair)= 1/6 HEG|Loaded)= 1/2 T(?Loaded)= 0.0
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1,6, 2, 67 95 N>
We were probably cheated...
Prob(X.S = Fair, Fair, Fair, Fair) = FE(1|Fair)«=T(?. Fair)

(?,

E(6|Fair) « T(Fair, Fm:]

E(2|Fair) « T(Fair, Fair) =
(

E(6|Fair) = T(Fair, Fair)
— l*l*l*l*l l*l*l
6 6 2 6 2 6 2
= 9.6451%10°°
Prob(X.S = Fair, Loaded, Fair, Loaded) = (1|Fair) = T(?, Fair) =

E(6|Laﬂd€d) * T(Fair, Loaded) *
E(2|Loaded) » T ( Loaded, Fair) *
E(6| Loaded) x T Fair, Loaded)
1 1 1 1 1 1 1

= =kl =k=mk=mk ==k =
6 2 2 6 2 2 2

= 8.6806% 10"
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Example Use of HMM: Protein Families Mode 0. é;ﬂ‘;;:'pi:;vm.w

« PBaldietal.,, PNAS 91:1059-
1063, 1994 a

e HMM is used to model
families of biological
sequences, such as S | = E
kinases, globins, &
Immunoglobulins

e Bateman et al., NAR 32:D138-
D141, 2004

; FiG.1. HMM architecture. 5 and E are the start and end states.
* HMMis us ed o mo d el Sequence of main states m; is the backbone. Side states d; (resp. i;)

6190 fam | I | es Of p rotei n correspond to deletions (resp. insertions).
domains in Pfam
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Example Use of HMM: Gene Flndlng Nﬂ?sy
In Bacterial Genomes

« Borodovsky et al., NAR ST SwssPRT

23:3554-3562, 1995 " sl .
T T 1 T T ' To T ]

 Investigated statistical | A
features of 3 classes (wrt o "o of8 &
level of codon usage bias) I M

c e 8 . & e0 =
of E. coli genes 8%, e ? T .
2 s o 0O, 2
S 04 - Egj o 3
n S o*

e HMM for nucleotide . % 00
sequences of each class |- C o o |
was developed - o

u'ﬂu,r:r l ulz ni = I:I!E ' uta l 1.0
Class | score

Figure 4. Distribution of GeneMark scores for 126 new genes. The x axis
represents the score computed by GM5_ECO| program, y axis represents the
score computed by GM4_ECO3 program. The quadrant x < 0.4, y < 0.4 is
empty since a threshold of 0.4 was applied.
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The University of Singapore
of Waikato

« Weka is a collection of machine learning
algorithms for data mining tasks. The algorithms
can either be applied directly to a dataset or
called from your own Java code. Weka contains
tools for data pre-processing, classification,
regression, clustering, association rules, and
visualization.

Exercise: Download a copy of WEKA. What are the names
of classifiers in WEKA that correspond to C4.5 and SVM?
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http://www.cs.waikato.ac.nz/ml/weka
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