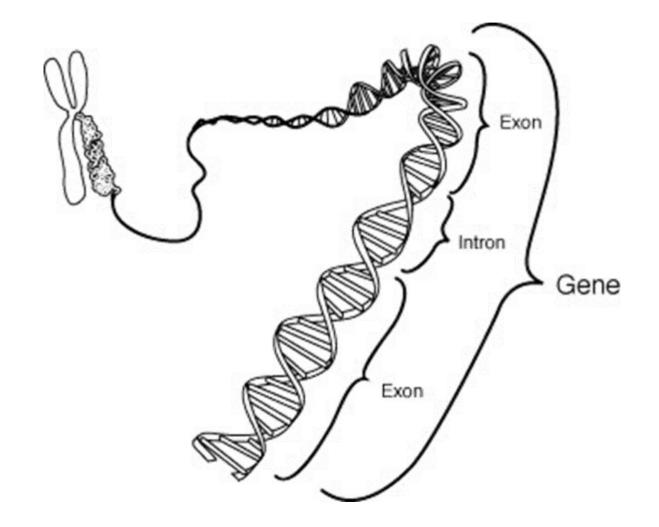
For written notes on this lecture, please read Chapters 4 and 7 of The Practical Bioinformatician

CS2220: Introduction to Computational Biology Lecture 4: Gene Feature Recognition

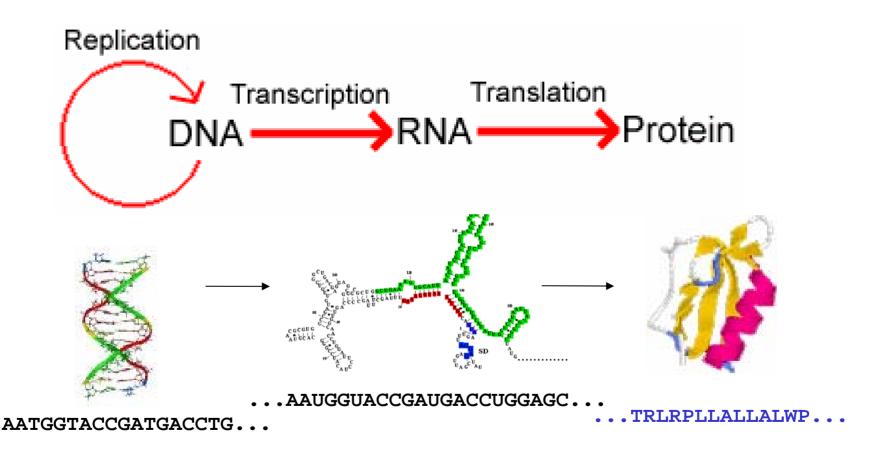
Limsoon Wong 3 February 2006

Central Dogma of Molecular Biology

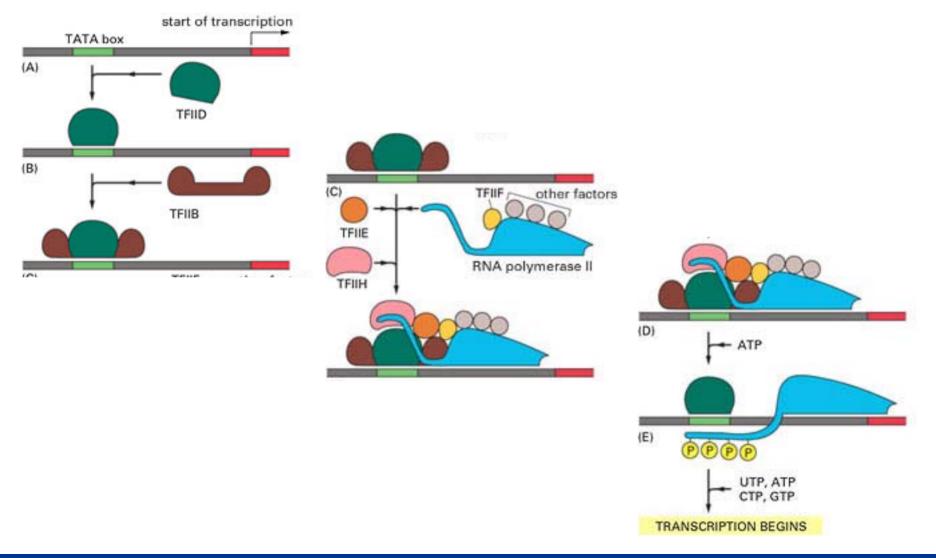
What is a gene?



Central Dogma

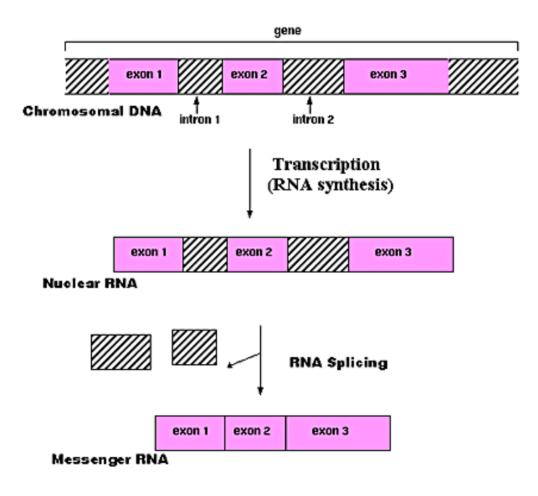


Transcription: DNA→nRNA



Copyright 2006 © Limsoon Wong

Splicing: nRNA→mRNA



RNA synthesis and processing

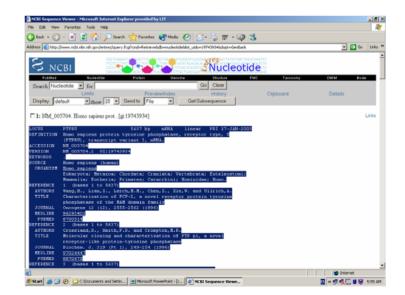
Translation: mRNA→protein



First	U	С	А	G	Last
U	Phe F	Ser <mark>S</mark>	Tyr Y	Cys C	U
	Phe	Ser	Tyr	Cys	С
	Leu L	Ser	Stop (Ochre)	Stop (Umber)	Α
	Leu	Ser	Stop (Amber)	Trp 🛛 🛛	G
С	Leu	Pro P	His H	Arg R	U
	Leu	Pro	His	Arg	С
	Leu	Pro	Gin Q	Arg	Α
	Leu	Pro	Gln	Arg	G
Α	lle I	Thr T	Asn N	Ser	U
	lle	Thr	Asn	Ser	С
	lle	Thr	Lys K	Arg	Α
	Met M	Thr	Lys	Arg	G
G	Val V	Ala 🗛	Asp D	Gly G	U
	Val	Ala	Asp	Gly	С
	Val	Ala	Glu 🖪	Gly	Α
	Val	Ala	Glu	Gly	G

What does DNA data look like?

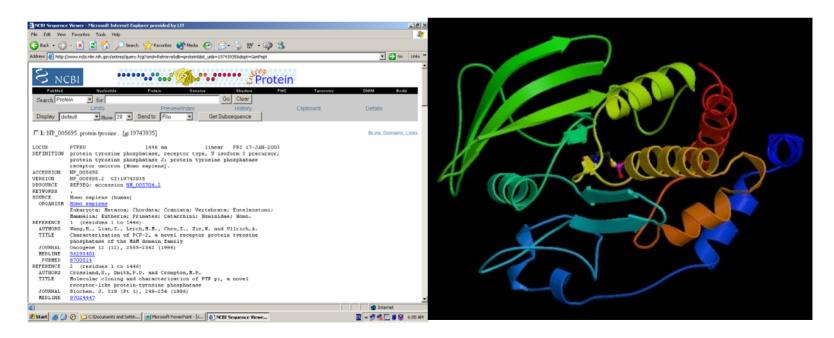
- A sample GenBank record from NCBI
- <u>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cm</u> <u>d=Retrieve&db=nucleotide&list_uids=19743934&</u> <u>dopt=GenBank</u>



NUS National University of Singapore

What does protein data look like?

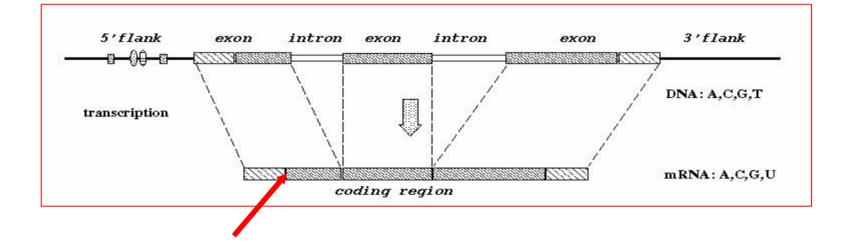
- A sample GenPept record from NCBI
- <u>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cm</u> <u>d=Retrieve&db=protein&list_uids=19743935&dopt</u> <u>=GenPept</u>



Recognition of Translation Initiation Sites

An introduction to the World's simplest TIS recognition system

Translation Initiation Site



A Sample cDNA

299 HSU27655.1 CAT U27655 Homo sapiens	
- CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCC <mark>ATG</mark> GCTGAACACTGACTCCCAGCTGTG	80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA	160
GGAGGCAG <mark>ATG</mark> AGAAGAGGGAG <mark>ATG</mark> GCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA	240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT	
	80
ieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	160
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	240
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	

• What makes the second ATG the TIS?

NU National University

Approach

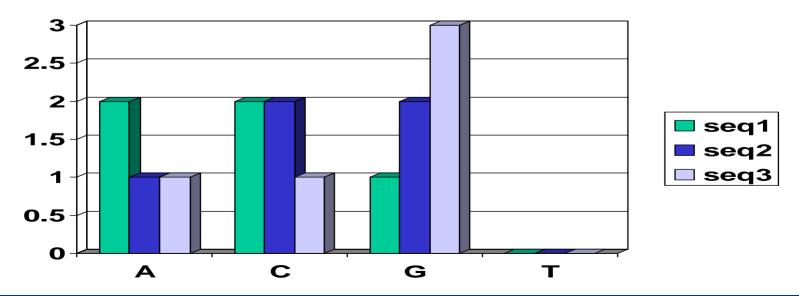
- Training data gathering
- Signal generation
 - k-grams, distance, domain know-how, ...
- Signal selection
 - Entropy, χ 2, CFS, t-test, domain know-how...
- Signal integration
 - SVM, ANN, PCL, CART, C4.5, kNN, ...

Training & Testing Data

- Vertebrate dataset of Pedersen & Nielsen [ISMB'97]
- 3312 sequences
- 13503 ATG sites
- 3312 (24.5%) are TIS
- 10191 (75.5%) are non-TIS
- Use for 3-fold x-validation expts

Signal Generation

- K-grams (ie., k consecutive letters)
 - $K = 1, 2, 3, 4, 5, \dots$
 - Window size vs. fixed position
 - Up-stream, downstream vs. any where in window
 - In-frame vs. any frame



Signal Generation: An Example

- Window = ±100 bases
- In-frame, downstream

- GCT = 1, TTT = 1, ATG = 1...

• Any-frame, downstream

- GCT = 3, TTT = 2, ATG = 2...

In-frame, upstream

- GCT = 2, TTT = 0, ATG = 0, ...

Exercise: Find the in-frame downstream ATG

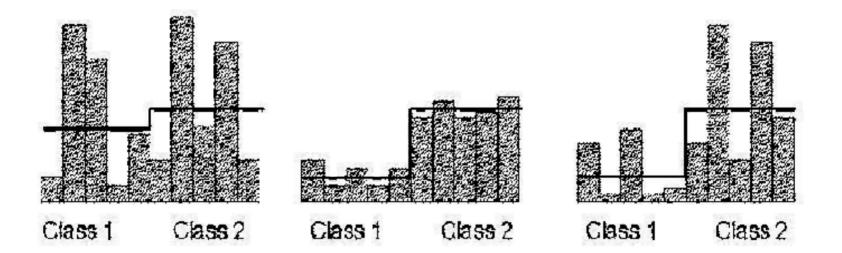
Exercise: What are the possible k-grams (k=3) in this sequence?

Too Many Signals

- For each value of k, there are 4^k * 3 * 2 k-grams
- If we use k = 1, 2, 3, 4, 5, we have 24 + 96 + 384 + 1536 + 6144 = 8184 features!
- This is too many for most machine learning algorithms

Signal Selection (Basic Idea)

- Choose a signal w/ low intra-class distance
- Choose a signal w/ high inter-class distance



Signal Selection (e.g., t-statistics)

The t-stats of a signal is defined as $t=\frac{|\mu_1-\mu_2|}{\sqrt{(\sigma_1^2/n_1)+(\sigma_2^2/n_2)}}$

where σ_i^2 is the variance of that signal in class i, μ_i is the mean of that signal in class i, and n_i is the size of class i.

Signal Selection (e.g., MIT-correlation)

The MIT-correlation value of a signal is defined as

$$MIT = \frac{|\mu_1 - \mu_2|}{\sigma_1 + \sigma_2}$$

where σ_i is the standard deviation of that signal in class *i* and μ_i is the mean of that signal in class *i*.

Signal Selection (e.g., $\chi 2$) The χ^2 value of a signal is defined as:

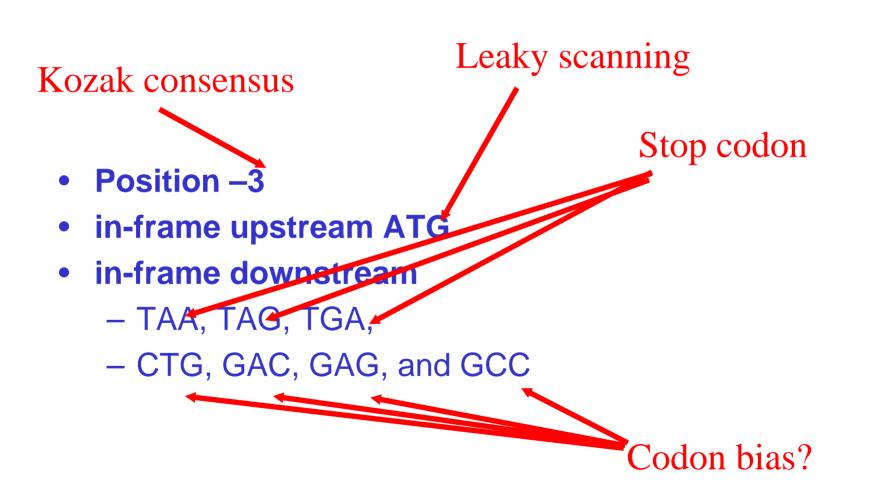
$$\mathcal{X}^2 = \sum_{i=1}^{m} \sum_{j=1}^{k} \frac{(A_{ij} - E_{ij})^2}{E_{ij}},$$

where m is the number of intervals, kthe number of classes, A_{ij} the number of samples in the *i*th interval, *j*th class, R_i the number of samples in the *i*th interval, C_j the number of samples in the *j*th class, N the total number of samples, and E_{ij} the expected frequency of A_{ij} ($E_{ij} = R_i * C_j/N$).

Signal Selection (e.g., CFS)

- Instead of scoring individual signals, how about scoring a group of signals as a whole?
- CFS
 - Correlation-based Feature Selection
 - A good group contains signals that are highly correlated with the class, and yet uncorrelated with each other

Exercise: What is the main challenge in implementing CFS?



Signal Integration

- kNN
 - Given a test sample, find the k training samples that are most similar to it. Let the majority class win
- SVM
 - Given a group of training samples from two classes, determine a separating plane that maximises the margin of error
- Naïve Bayes, ANN, C4.5, ...

Results (3-fold x-validation)

	predicted	predicted
	as positive	as negative
positive	TP	FN
negative	FP	TN

Exercise: What is TP/(TP+FP)?

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
Naïve Bayes	84.3%	86.1%	66.3%	85.7%
SVM	73.9%	93.2%	77.9%	88.5%
Neural Network	77.6%	93.2%	78.8%	89.4%
Decision Tree	74.0%	94.4%	81.1%	89.4%

Improvement by Voting

• Apply any 3 of Naïve Bayes, SVM, Neural Network, & Decision Tree. Decide by majority

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB+SVM+NN	79.2%	92.1%	76.5%	88.9%
NB+SVM+Tree	78.8%	92.0%	76.2%	88.8%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+NN+Tree	75.9%	94.3%	81.2%	89.8%
Best of 4	84.3%	94.4%	81.1%	89.4%
Worst of 4	73.9%	86.1%	66.3%	85.7%

Improvement by Scanning

- Apply Naïve Bayes or SVM left-to-right until first ATG predicted as positive. That's the TIS
- Naïve Bayes & SVM models were trained using TIS vs. Up-stream ATG

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB	84.3%	86.1%	66.3%	85.7%
SVM	73.9%	93.2%	77.9%	88.5%
NB+Scanning	87.3%	96.1%	87.9%	93.9%
SVM+Scanning	88.5%	96.3%	88.6%	94.4%

Performance Comparisons

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB	84.3%	86.1%	66.3%	85.7%
Decision Tree	74.0%	94.4%	81.1%	89.4%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+Scanning	88.5%	96.3%	88.6%	94.4%*
Pedersen&Nielsen	78%	87%	-	85%
Zien	69.9%	94.1%	-	88.1%
Hatzigeorgiou	-	-	-	94%*

* result not directly comparable

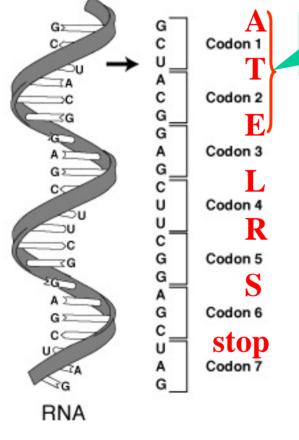
Technique Comparisons

- Pedersen&Nielsen [ISMB'97]
 - Neural network
 - No explicit features
- Zien [Bioinformatics'00]
 - SVM+kernel engineering
 - No explicit features
- Hatzigeorgiou [Bioinformatics'02]
 - Multiple neural networks
 - Scanning rule
 - No explicit features

• Our approach

- Explicit feature generation
- Explicit feature selection
- Use any machine learning method w/o any form of complicated tuning
- Scanning rule is optional

mRNA->protein



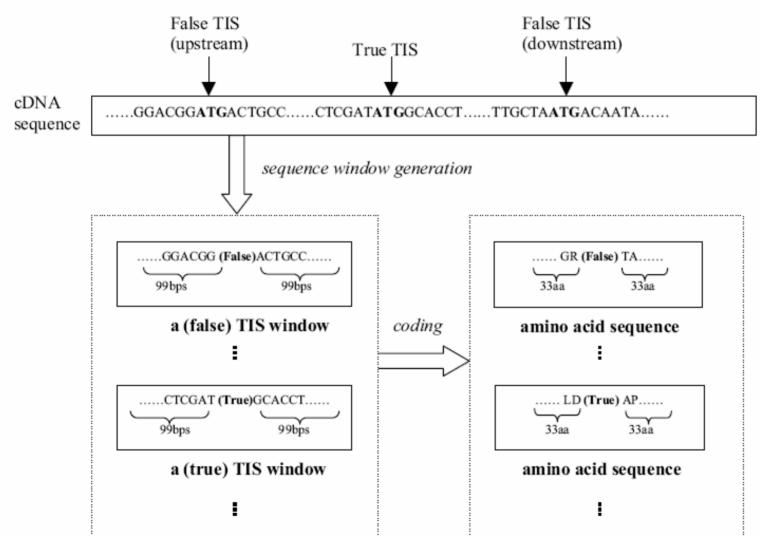
Ribonucleic acid

Exercise: List the first 10 amino acid in our example sequence

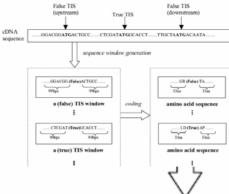
How about using k-grams from the translation?

First	U	С	A	G	Last
U	Phe 📊	Ser 5	Tyr 🗸	Cys	U
	Phe	Ser	Tyr	Cys	С
	Leu	Ser	Stop (Ochre)	Stop (Umber)	Α
	Leu	Ser	Stop (Amber)	Trp W	G
С	Leu	Pro P	His H	Arg R	U
	Leu	Pro	His	Arg	С
	Leu	Pro	Gin O	Arg	Α
	Leu	Pro	Gln	Arg	G
А	Ile 🗕	Thr 🛖	Asn N	Ser	U
	Ile 📕	Thr	Asn	Ser	С
	lle	Thr	Lys K	Arg	Α
	Met M	Thr	Lys	Arg	G
G	Val 🗸	Ala 🗛	Asp D	Gly G	U
	Val	Ala	Asp	Gly	С
	Val	Ala	Glu 🖪	Gly	Α
	Val	Ala	Glu	Gly	G

Amino-Acid Features



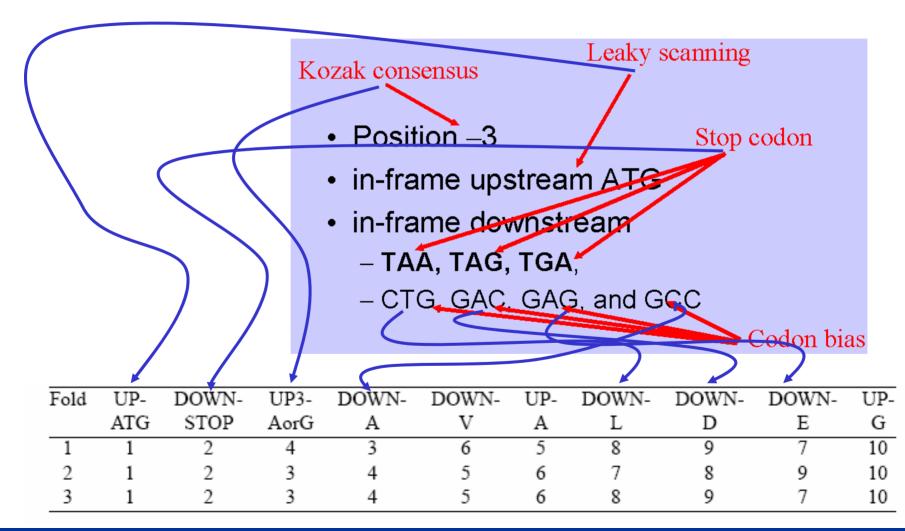
Amino-Acid Features



	V				
New feature space (total of 927 features + class label)					
42 1-gram amino acid patterns	3 bio-know- ledge patterns	class label			
UP-A, UP-R,UP-AA, UP-AR,,,UP-N, DOWN-UP-NN, DOWN-AA,A, DOWN-R,,DOWN-AR ,,DOWN-NDOWN-NN(numeric type)(numeric type)		DOWN4-G UP3-AorG, UP-ATG (boolean type, Y or N)	True, False		
Frequency as values					
1, 3, 5, 0, 4,	6, 2, 7, 0, 5,	N, N, N,	False		
6, 5, 7, 9, 0,	2, 0, 3, 10, 0,	Y, Y, Y,	True		

Copyright 2006 © Limsoon Wong

Amino Acid K-grams Discovered (by entropy)



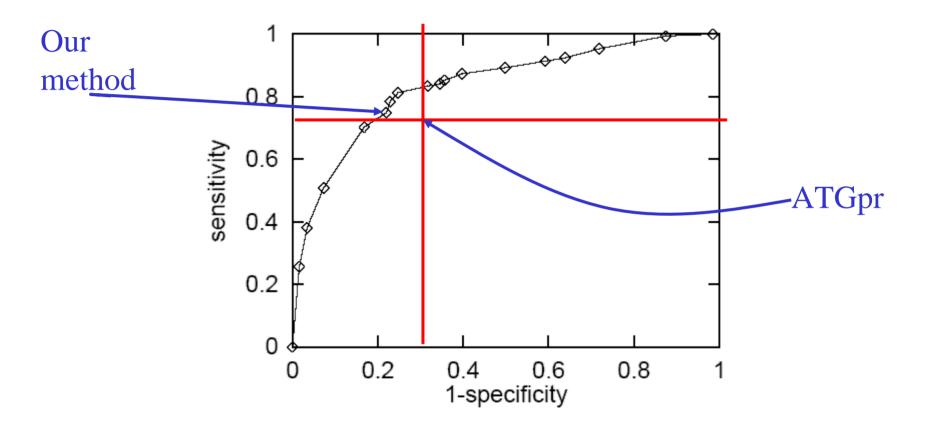
Independent Validation Sets

- A. Hatzigeorgiou:
 - 480 fully sequenced human cDNAs
 - 188 left after eliminating sequences similar to training set (Pedersen & Nielsen's)
 - 3.42% of ATGs are TIS
- Our own:
 - well characterized human gene sequences from chromosome X (565 TIS) and chromosome 21 (180 TIS)

Validation Results (on Hatzigeorgiou's

Algorithm	Sensitivity	Specificity	Precision	Accuracy
SVMs(linear)	96.28%	89.15%	25.31%	89.42%
SVMs(quad)	94.14%	90.13%	26.70%	90.28%
Ensemble Trees	92.02%	92.71%	32.52%	92.68%
07.D.C. (1' \	0.5.010/	00 5 40 /	A 1 (00)/	00.000/

 Using top 100 features selected by entropy and trained on Pedersen & Nielsen's dataset

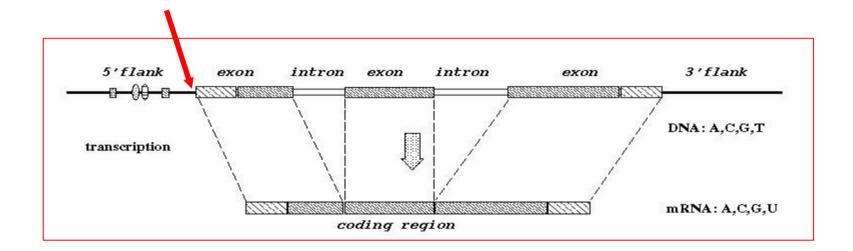


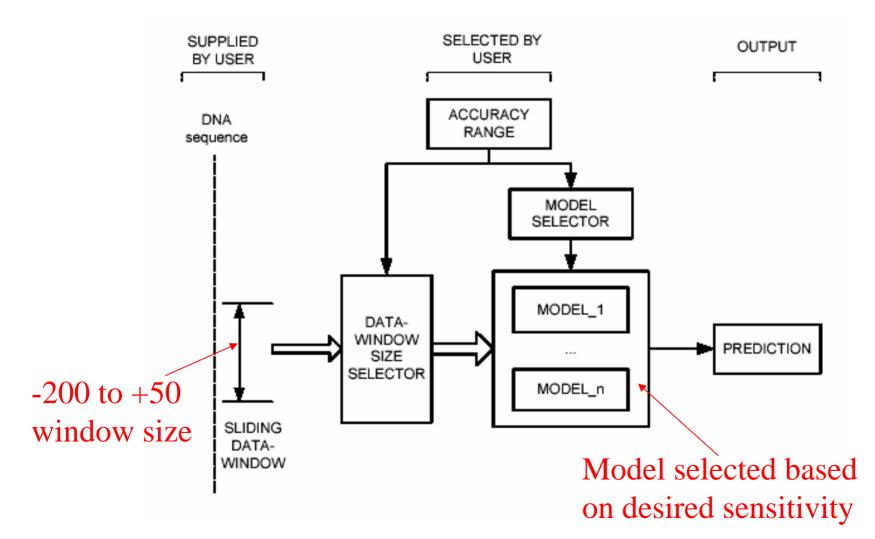
 Using top 100 features selected by entropy and trained on Pedersen & Nielsen's

Recognition of Transcription Start Sites

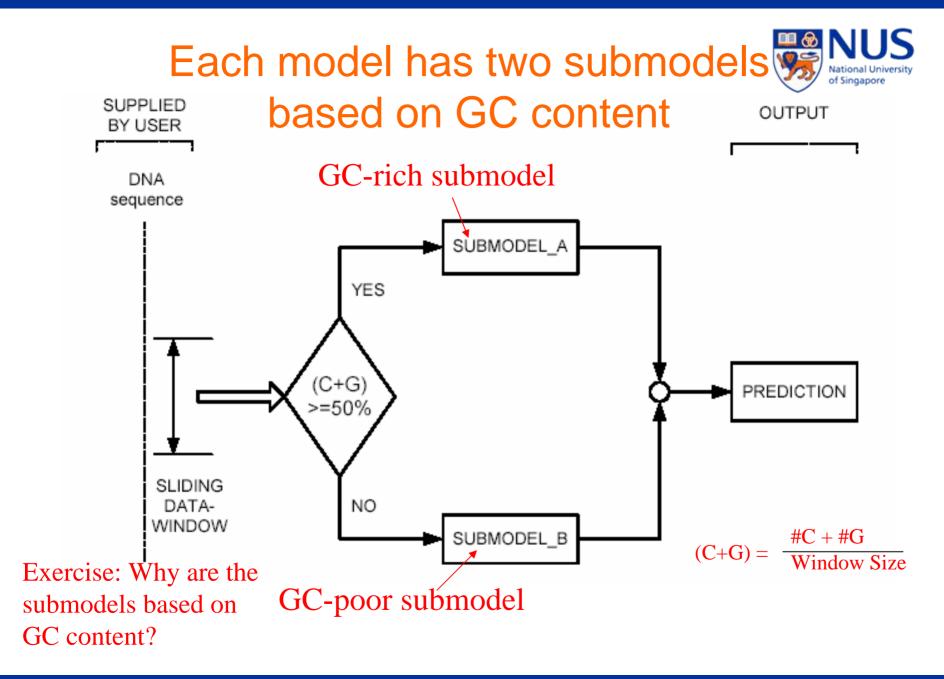
An introduction to the World's best TSS recognition system: A heavy tuning approach

Transcription Start Site

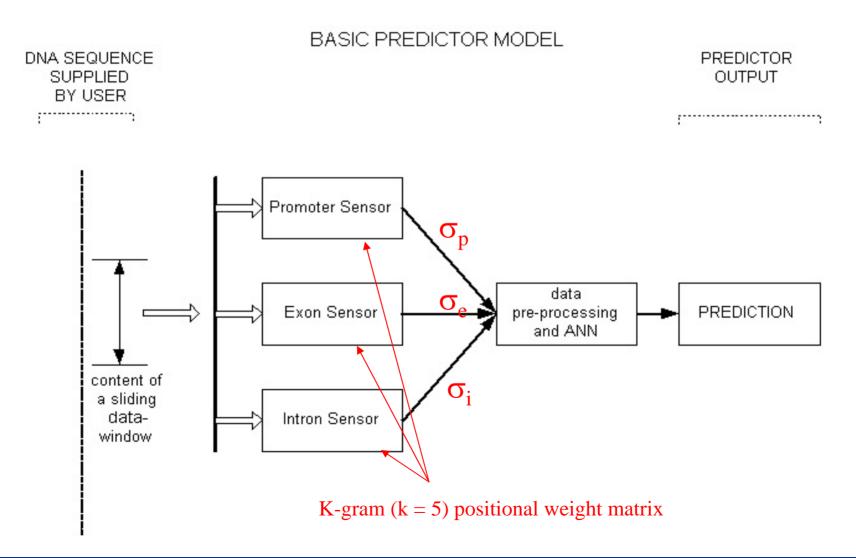




Copyright 2006 © Limsoon Wong



Data Analysis Within Submodel



Copyright 2006 © Limsoon Wong

Promoter, Exon, Intron Sensors

- These sensors are positional weight matrices of k-grams, k = 5 (aka pentamers)
- They are calculated as below using promoter, exon, intron data respectively Pentamer at ith

Window size
$$\left(\sum_{i=1}^{L-4} p_j^i \otimes f_{j,i}\right)$$
, $p_j^i \otimes f_{j,i} = \begin{cases} f_{j,i}, \text{ if } p_i = p_j^i \\ f_{j,i}, \text{ if } p_i = p_j^i \end{cases}$, $0, \text{ if } p_i \neq p_j^i$, $j^{\text{th pentamer at ith position in training window}}$

Data Preprocessing & ANN

Tuning parameters

$$s_{E} = sat(\sigma_{p} - \sigma_{e}, a_{e}, b_{e}),$$

$$s_{I} = sat(\sigma_{p} - \sigma_{i}, a_{i}, b_{i}),$$

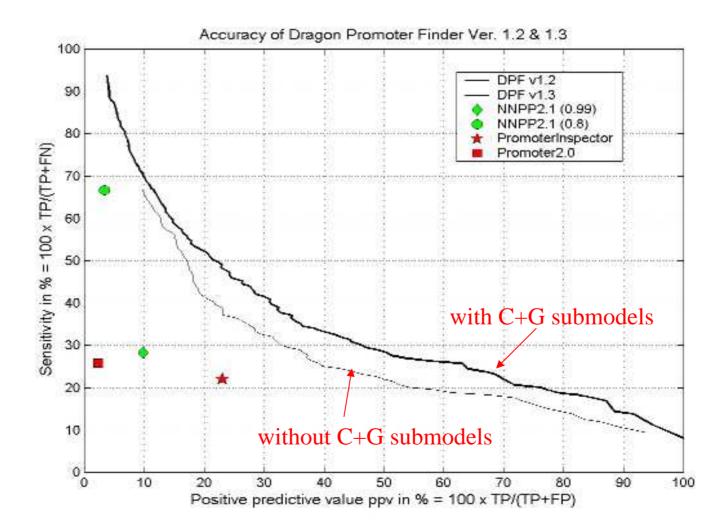
$$s_{EI} = sat(\sigma_{e} - \sigma_{i}, a_{ei}, b_{ei}),$$

where the function *sat* is defined by

$$sat(x,a,b) = \begin{cases} a, if & x > a \\ x, if & b \le x \le a. \\ b, if & b > x \end{cases}$$

Simple feedforward ANN trained by the Bayesian regularisation method W Tuned tanh(net $\mathbf{S}_{\mathbf{E}}$ threshold SI SIF $tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$ $net = \sum s_i * w_i$

Accuracy Comparisons



Training Data Criteria & Preparation Singapore

- Contain both positive and negative sequences
- Sufficient diversity, resembling different transcription start mechanisms
- Sufficient diversity, resembling different nonpromoters
- Sanitized as much as possible

- TSS taken from
 - 793 vertebrate promoters from EPD
 - -200 to +50 bp of TSS
- non-TSS taken from
 - GenBank,
 - 800 exons
 - 4000 introns,
 - 250 bp,
 - non-overlapping,
 - <50% identities</p>

Tuning Data Preparation

• To tune adjustable system parameters in Dragon, we need a separate tuning data set • TSS taken from

- 20 full-length gene seqs with known TSS
- -200 to +50 bp of TSS
- no overlap with EPD
- Non-TSS taken from
 - 1600 human 3'UTR seqs
 - 500 human exons
 - 500 human introns
 - 250 bp
 - no overlap

Testing Data Criteria & Preparation

- Seqs should be from the training or evaluation of other systems (no bias!)
- Seqs should be disjoint from training and tuning data sets
- Seqs should have TSS
- Seqs should be cleaned to remove redundancy, <50% identities

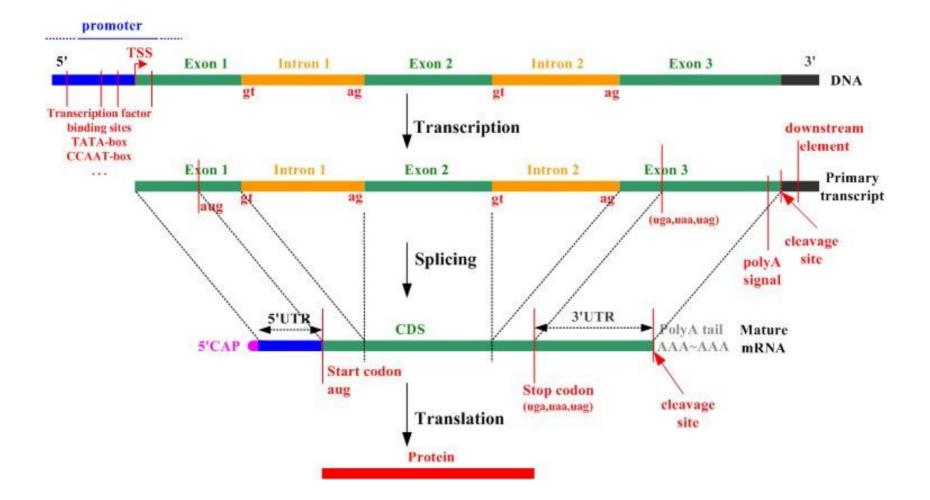
- 159 TSS from 147 human and human virus seqs
- cummulative length of more than 1.15Mbp
- Taken from GENESCAN, Geneld, Genie, etc.

Accuracy on Human Chromosome

Human chromosome 22	
(known genes)	
Se	Ppv
49%	48%
58%	42%
64%	33%
74%	30%
80%	23%

Other Gene Features

Other Gene Features



Copyright 2006 © Limsoon Wong

Any Question?

References (TIS Recognition)

- A. G. Pedersen, H. Nielsen, "Neural network prediction of translation initiation sites in eukaryotes", *ISMB* 5:226--233, 1997
- L. Wong et al., "Using feature generation and feature selection for accurate prediction of translation initiation sites", *GIW* 13:192--200, 2002
- A. Zien et al., "Engineering support vector machine kernels that recognize translation initiation sites", *Bioinformatics* 16:799--807, 2000
- A. G. Hatzigeorgiou, "Translation initiation start prediction in human cDNAs with high accuracy", *Bioinformatics* 18:343--350, 2002
- J. Li et al., "Techniques for Recognition of Translation Initiation Sites", *The Practical Bioinformatician*, Chapter 4, pages 71—90, 2004

References (TSS Recognition)

- V.B.Bajic et al., "Computer model for recognition of functional transcription start sites in RNA polymerase II promoters of vertebrates", J. Mol. Graph. & Mod. 21:323--332, 2003
- J.W.Fickett, A.G.Hatzigeorgiou, "Eukaryotic promoter recognition", Gen. Res. 7:861--878, 1997
- A.G.Pedersen et al., "The biology of eukaryotic promoter prediction---a review", Computer & Chemistry 23:191--207, 1999
- M.Scherf et al., "Highly specific localisation of promoter regions in large genome sequences by PromoterInspector", JMB 297:599--606, 2000
- V.B.Bajic and A. Chong. "Tuning the Dragon Promoter Finder System for Human Promoter Recognition", *The Practical Bioinformatician*, Chapter 7, pages 157—165, 2004

References (Feature Selection)

- M. A. Hall, "Correlation-based feature selection machine learning", PhD thesis, Dept of Comp. Sci., Univ. of Waikato, New Zealand, 1998
- U. M. Fayyad, K. B. Irani, "Multi-interval discretization of continuous-valued attributes", *IJCAI* 13:1022-1027, 1993
- H. Liu, R. Sentiono, "Chi2: Feature selection and discretization of numeric attributes", *IEEE Intl. Conf. Tools with Artificial Intelligence* 7:338--391, 1995

References (Misc.)

- C. P. Joshi et al., "Context sequences of translation initiation codon in plants", *PMB* 35:993--1001, 1997
- D. J. States, W. Gish, "Combined use of sequence similarity and codon bias for coding region identification", *JCB* 1:39--50, 1994
- G. D. Stormo et al., "Use of Perceptron algorithm to distinguish translational initiation sites in E. coli", *NAR* 10:2997--3011, 1982
- J. E. Tabaska, M. Q. Zhang, "Detection of polyadenylation signals in human DNA sequences", *Gene* 231:77--86, 1999