For written notes on this lecture, please read chapter 19 of The Practical Bioinformatician

CS2220: Introduction to Computational Biology Lecture 7: Sequence Homology Interpretation

Limsoon Wong 3 March 2006

- Recap of sequence alignment
- Guilt by association
- Active site/domain discovery
- What if no homology of known function is found?
 - Genome phylogenetic profiling
 - Protfun
 - SVM-Pairwise
 - Protein-protein interactions
- Key mutation site discovery

Very Brief Recap of Sequence Comparison/Alignment

Motivations for Sequence Comparison

- DNA is blue print for living organisms
- \Rightarrow Evolution is related to changes in DNA
- ⇒ By comparing DNA sequences we can infer evolutionary relationships between the sequences w/o knowledge of the evolutionary events themselves
- Foundation for inferring function, active site, and key mutations

Sequence Alignment

Sequence Alignment: Poor Example

Poor seq alignment shows few matched positions
 The two proteins are not likely to be homologous

Alignment by FASTA of the sequences of amicyanin and domain 1 of ascorbate oxidase

60 70 80 90 100 Amicyanin MPHNVHFVAGVLGEAALKGPMMKKEOAYSLTFTEAGTYDYHCTPHPFMRGKVVVE :: Ascorbate Oxidase ILQRGTPWADGTASISQCAINPGETFFYNFTVDNPGTFFYHGHLGMQRSAGLYGSLI 70 80 90 100 110 120 No obvious match between

Amicyanin and Ascorbate Oxidase

Sequence Alignment: Good Example

- Good alignment usually has clusters of extensive matched positions
- \Rightarrow The two proteins are likely to be homologous

D >gi|13476732|ref|NP_108301.1| unknown protein [Mesorhizobium loti]
gi|14027493|dbj|BAB53762.1| unknown protein [Mesorhizobium loti]
Length = 105

```
Score = 105 bits (262), Expect = 1e-22
Identities = 61/106 (57%), Positives = 73/106 (68%), Gaps = 1/106 (0%)
```

 Query: 1
 MKPGRLASIALATIFLPMAVPAHAATIEITMENLVISPTEVSAKVGDTIRWVNKDVFAHT 60

 MK G L ++
 MA PA AATIE+T++ LV SP V AKVGDTI WVN DV AHT

 Sbjct: 1
 MKAGALIRLSWLAALALMAAPAAAATIEVTIDKLVFSPATVEAKVGDTIEWVNNDVVAHT 60

good match between Amicyanin and unknown M. loti protein

Multiple Alignment: An Example

 seqs belonging to same "family" usually have more conserved positions in a multiple seq alignment

gi 126467	FHFTSWPDFGVPFTPIGMLKFLKKV	KACNPQYAGAIV <mark>/</mark> HCS	GVGRTGTFVVIDAMLD
gi 2499753	FHFTGWPDHGVPYHATGLLSFIRRVH	KLSNPPSAGPIV <mark>VHC</mark> S	AGAGRTGCYIVIDIMLD
gi 462550	YHYTQWPDMGVPEYALPVLTFVRRS:	SAARMPETGPVI <mark>VH</mark> CS	AGVGRTGTYIVIDSMLQ
gi 2499751	FHFTSWPDHGVPDTTDLLINFRYLV	RDYMKQSPPESPII <mark>.VH</mark> CS	AGVGRTGTFIAIDRLIY
gi 1709906	FQFTAWPDHGVPEHPTPFLAFLRRVH	KTCNPPDAGPM <mark>V</mark> VHCS	AGVGRTGCFIVIDAMLE
gi 126471	LHFTSWPDFGVPFTPIGMLKFLKKVP	KTLNPVHAGPIVVHCS	A GVGRTGTFIVIDAMMA
gi 548626	FHFTGWPDHGVPYHATGLLSFIRRVH	KLSNPPSAGPIVVHCS	AGAGRTGCYIVIDIMLD
gi 131570	FHFTGWPDHGVPYHATGLLGFVRQVI	KSKSPPNAGPLVVHCS	AGAGRTGCFIVIDIMLD
gi 2144715	FHFTSWPDHGVPDTTDLLINFRYLV	RDYMKQSPPESPIL <mark>VH</mark> CS	AGVGRTGTFIAIDRLIY
	* * * * * * * *	* * * *	* * * * * * * * *

Conserved sites

Application of Sequence Comparison: Guilt-by-Association

Emerging Patterns

- An emerging pattern is a pattern that occurs significantly more frequently in one class of data compared to other classes of data
- A lot of biological sequence analysis problems can be thought of as extracting emerging patterns from sequence comparison results

A protein is a ...

- A protein is a large complex molecule made up of one or more chains of amino acids
- Protein performs a wide variety of activities in the cell

Function Assignment to Protein Sequence

SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE VT

• How do we attempt to assign a function to a new protein sequence?

Guilt-by-Association

- Compare the target sequence T with sequences
 S₁, ..., S_n of known function in a database
- Determine which ones amongst S₁, ..., S_n are the mostly likely homologs of T
- Then assign to T the same function as these homologs
- Finally, confirm with suitable wet experiments

Guilt-by-Association

Copyright 2006 © Limsoon Wong

BLAST: How It Works Altschul et al., *JMB*, 215:403--410, 1990

 BLAST is one of the most popular tool for doing "guilt-by-association" sequence homology search

Homologs obtained by BLAST

	Score	E
Sequences producing significant alignments:	(bits)	Value
	_	
<pre>qi 14193729 qb AAK56109.1 AF332081_1 protein tyrosin phosph</pre>	<u>62:</u>	e-177
gi 126467 sp P18433 PTRA_HUMAN Protein-tyrosine phosphatase	<u>621 L</u>	e-177
<pre>qi 4506303 ref NP_002827.1 protein tyrosine phosphatase, r</pre>	<u>621 L</u>	e-176
<u>qi 227294 prf 1701300A</u> protein Tyr phosphatase	<u>620</u>	e-176
<pre>qi 18450369 ref NP_543030.1 protein tyrosine phosphatase,</pre>	<u>621 L</u>	e-176
qi 32067 emb CAA37447.1 tyrosine phosphatase precursor [Ho	<u>61: L</u>	e-176
gi 285113 pir JC1285 protein-tyrosine-phosphatase (EC 3.1	<u>619</u>	e-176
<pre>qi 6981446 ref NP_036895.1 protein tyrosine phosphatase, r</pre>	<u>61:</u>	e-176
gi 2098414 pdb 1YFO A Chain A, Receptor Protein Tyrosine Ph	<u>61</u> S	e-174
qi 32313 emb CAA38662.1 protein-tyrosine phosphatase [Homo	<u>61 </u>	e-174
<u>qi 450583 qb AAB04150.1 </u> protein tyrosine phosphatase >gi 4	<u>605</u>	e-172
<pre>gi 6679557 ref NP_033006.1 protein tyrosine phosphatase, r</pre>	<u>60 L</u>	e-172
<u>qi 483922 qb AAA17990.1 </u> protein tyrosine phosphatase alpha	<u>599</u>	e-170

 Thus our example sequence could be a protein tyrosine phosphatase α (PTPα)

Example Alignment with $PTP\alpha$

Score = 632 bits (1629), Expect = e-180
Identities = 294/302 (97%), Positives = 294/302 (97%)

- Sbjct: 202 SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR 261
- Query: 61 YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE 120 YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE
- Sbjct: 262 YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE 321
- Query: 121 QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD 180 QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD
- Sbjct: 322 QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD 381
- Query: 181 VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG 240 VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG
- Sbjct: 382 VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG 441
- Query: 241 TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE 300 TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE
- Sbjct: 442 TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE 501

Guilt-by-Association: Caveats

- Ensure that the effect of database size has been accounted for
- Ensure that the function of the homology is not derived via invalid "transitive assignment"
- Ensure that the target sequence has all the key features associated with the function, e.g., active site and/or domain

Interpretation of P-value

- Seq. comparison progs, e.g. BLAST, often associate a P-value to each hit
- P-value is interpreted as prob that a random seq has an equally good alignment

- Suppose the P-value of an alignment is 10⁻⁶
- If database has 10⁷ seqs, then you expect 10⁷ * 10⁻⁶ = 10 seqs in it that give an equally good alignment
- ⇒ Need to correct for database size if your seq comparison prog does not do that!

Exercise: Name a commonly used method for correcting p-value for a situation like this

Examples of Invalid Function Assignment: The IMP Dehydrogenases (IMPDH

18 entries were found

ID	Organism	PIR	Swiss-Prot/TrEMBL	RefSeq/GenPept		
<u>NF00181857</u>	Methanococcus jannaschii	<u>E64381</u> conserved hypothetical protein MJ0653	<u>Y653_METJA</u> Hypothetical protein MJ0653	<u>g1592300</u> inosine-5'-monophosphate dehydrogenase (guaB) <u>NP_247637</u> inosine-5'-monophosphate dehydrogenase (guaB)		
NF00187788	Archaeoglobus fulgidus	C69355 MJ0653 homolog AF0847 ALT_NAMES: inosine-monophosphate dehydrogenase (guaB-1) homolog [misnomer]	O29411 INOSINE MONOPHOSPHATE DEHYDROGENASE (GUAB-1)	<u>g2649754</u> inosine monophosphate dehydrogenase (guaB-1) <u>NP_069681</u> inosine monophosphate dehydrogenase (guaB-1)		
<u>NF00188267</u>	Archaeoglobus fulgidus	<u>F69514</u> yhcV homolog 2 <i>ALT_NAMES</i> : inosine-monophosphate dehydrogenase (guaB-2) homolog [misnomer]	O28162 INOSINE MONOPHOSPHATE DEHYDROGENASE (GUAB-2)	g <u>2648410</u> inosine monophosphate dehydrogenase (guaB-2) <u>NP_070943</u> inosine monophosphate dehydrogenase (guaB-2)		
NF00188697	Archae A partia	d list of IMPdeb	nydrogenase misn	ophosphate ive inophosphate ive		
<u>NF00197776</u>	Thermo in CO	omplete genome public d	s remaining in so atabases	nophosphate d protein nonophosphate d protein		
<u>NF00414709</u>	Methanothermobacter thermautotrophicus	ALT_NAMES: inosine-monophosphate dehydrogenase related protein V [misnomer]	O27294 INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN V	onophosphate dehydrogenase related protein V <u>NP_276354</u> inosine-5'-monophosphate dehydrogenase related protein V		
<u>NF00414811</u>	1 Methanothermobacter D69035 MJ1232 protein homolog MTH126 22621166 inosine-5'-monophosphate 11 Methanothermobacter ALT_NAMES: inosine-5'-monophosphate 026229 INOSINE-5'-MONOPHOSPHATE dehydrogenase related protein VII 11 Intermautotrophicus Intermation of the protein VII 026229 INOSINE-5'-MONOPHOSPHATE g2621166 inosine-5'-monophosphate 11 Intermation of the protein VII Intermation of the protein VII Intermation of the protein VII					
<u>NF00414837</u>	Methanothermobacter thermautotrophicus	H69232 MJ1225-related protein MTH992 <i>ALT_NAMES</i> : inosine-5'-monophosphate dehydrogenase related protein IX [misnomer]	O27073 INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN IX	g2622093 inosine-5'-monophosphate dehydrogenase related protein IX <u>NP_276127</u> inosine-5'-monophosphate dehydrogenase related protein IX		
<u>NF00414969</u>	Methanothermobacter thermautotrophicus	<u>B69077</u> yhcV homolog 2 <i>ALT_NAMES:</i> inosine-monophosphate dehydrogenase related protein X [misnomer]	<u>O27616</u> INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN X	<u>g2622697</u> inosine-5'-monophosphate dehydrogenase related protein X <u>NP_276687</u> inosine-5'-monophosphate dehydrogenase related protein X		

Copyright 2006 © Limsoon Wong

IMPDH Domain Structure

	Image: PCM00487: PD0C00391,IMP dehydrogenase / GMP reductase signature Image: PF00478: IMP dehydrogenase / GMP reductase C terminus Image: PF00571: CBS domain Image: PF01381: Helix-turn-helix Image: PF01574: IMP dehydrogenase / GMP reductase N terminus Image: PF01574: IMP dehydrogenase / GMP reductase N terminus Image: PF02195: ParB-like nuclease domain
A31997 (SF000130)	
E70218 (SF000131)	
E64381 (SF004696)	194 IMPDH Misnomer in Methanococcus jannaschii
G69355 (SF004696)	**************************************
F69514 (SF004694)	••••••••••••••••••••••••••••••••••••
869407 (SF004699)	

- Typical IMPDHs have 2 IMPDH domains that form the catalytic core and 2 CBS domains.
- A less common but functional IMPDH (E70218) lacks the CBS domains.
- Misnomers show similarity to the CBS domains

Invalid Transitive Assignment

Root of invalid transitive assignment _

B⇒	□ <u>H70468</u>	SF001258	051440	phosphoribosyl-AMP cyclohydrolase 3.5.4.19) / phosphoribosyl-ATP pyro (EC 3.6.1.31) [similarity]	: (EC phosphatase	Aquifex aeolicus	Prok/other	594.3	4.8e-26	205	39.086	197		
	□ <u>\$76963</u>	<u>SF001258</u>	<u>039935</u>	phosphoribosyl-AMP cyclohydrolase 3.5.4.19) / phosphoribosyl-ATP pyro (EC 3.6.1.31) [similarity]	: (EC phosphatase	Synechocystis sp.	Prok/gram-	557.0	5.7e-24	230	39.175	194		
	T35073	SF029243	005738	probable phosphoribosyl-AMP cyclol	hydrolase	Streptomyces coelicolor	Prok/gram+	399.3	3.5e-15	128	42.157	102		
	□ <u>\$53349</u>	<u>SF001257</u>	<u>001188</u>	phosphoribosyl-AMP cyclohydrolase 3.5.4.19) / phosphoribosyl-ATP pyro (EC 3.6.1.31) / histidinol dehydrogen 1.1.1.23)	<u>: (EC</u> phosphatase ase (EC	Saccharomyces cerevisiae	Euk/fungi	384.1	2.5e-14	799	31.863	204		
$A \rightarrow$	E <u>E69493</u>	SF029243	005738	phosphoribosyl-AMP cyclohydrolase 3.5.4.19) [similarity]	: (EC	Archaeoglobus fulgidus	Archae	396.8	4.8e-15	108	47.778	90		
C	□ <u>G64337</u>	SF006833	<u>030827</u>	phosphoribosyl-ATP pyrophosphatas 3.6.1.31) [similarity]	se (EC	Methanococcus jannaschii	Archae	246.9	1.1e-0ó	95	36.842	95	_	
	D81178	<u>SF006833</u>	<u>101491</u>	phosphoribosyl-ATP pyrophosphatas 3 (1.31) NMB0603 [similarity]	se (EC	Neisseria meninoitidis	Prok/oram-	239.9	2 ńe-Nń	107	35 227	88	_	
	□ <u>G81925</u>	SF006833	<u>101491</u>	hosphoribosyl-ATP pyrophosphat 3.6.1.31) NMA0807 [similarity]		$A \rightarrow B$	-> C =	=> /	A -> (C	/			-
	□ <u>\$51513</u>	<u>SF001257</u>	001188	phosphoribosyl-AMP cyclohydrola 3.5.4.19) / phosphoribosyl-ATP py (EC 3.6.1.31) / histidinol dehydrog 1.1.1.23)		1	B (SF0	01258						
N	Ais-as	ssign	me	ent	A	(SF029243)	*		C	(SF	'00 <mark>683</mark>	3)		
0	f fun	ction	l		No I	MPDH do	main							
								Co	pyrigh	nt 2	006@) Lii	nsoon V	Non

Emerging Pattern

- Most IMPDHs have 2 IMPDH and 2 CBS domains
- Some IMPDH (E70218) lacks CBS domains
- \Rightarrow IMPDH domain is the emerging pattern

Application of Sequence Comparison: Active Site/Domain Discovery

Discover Active Site and/or Domain

- How to discover the active site and/or domain of a function in the first place?
 - Multiple alignment of homologous seqs
 - Determine conserved positions
 - \Rightarrow Emerging patterns relative to background
 - \Rightarrow Candidate active sites and/or domains
- Easier if sequences of distance homologs are used

Exercise: Why?

Multiple Alignment of PTPs

gi 126467	FHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTGTFVVIDAMLD
gi 2499753	FHFTGWPDHGVPYHATGLLSFIRRVKLSNPPSAGPIVVHCSAGAGRTGCYIVIDIMLD
gi 462550	YHYTQWPDMGVPEYALPVLTFVRRSSAARMPETGPVLVHCSAGVGRTGTYIVIDSMLQ
gi 2499751	FHFTSWPDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLIY
gi 1709906	FQFTAWPDHGVPEHPTPFLAFLRRVKTCNPPDAGPMVVHCSAGVGRTGCFIVIDAMLE
gi 126471	LHFTSWPDFGVPFTPIGMLKFLKKVKTLNPVHAGPIVVHCSAGVGRTGTFIVIDAMMA
gi 548626	FHFTGWPDHGVPYHATGLLSFIRRVKLSNPPSAGPIVVHCSAGAGRTGCYIVIDIMLD
gi 131570	FHFTGWPDHGVPYHATGLLGFVRQVKSKSPPNAGPLVVHCSAGAGRTGCFIVIDIMLD
gi 2144715	FHFTSWPDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLIY
	* *** .** . ****** **** **

- Notice the PTPs agree with each other on some positions more than other positions
- These positions are more impt wrt PTPs
- Else they wouldn't be conserved by evolution
- \Rightarrow They are candidate active sites

Guilt-by-Association: What if no homolog of known function is found?

genome phylogenetic profiles protfun's feature profiles

Phylogenetic Profiling Pellegrini et al., *PNAS*, 96:4285--4288, 1999

- Gene (and hence proteins) with identical patterns of occurrence across phyla tend to function together
- ⇒ Even if no homolog with known function is available, it is still possible to infer function of a protein

EC

 $\mathbb{P}1$

P2

P3

P4

P5

P6

P7

Phylogenetic **Profiling:** How it Works

Copyright 2006 © Limsoon Wong

Phylogenetic Profiling: P-value

The probability of observing by chance z occurrences of genes X and Y in a set of N lineages, given that X occurs in x lineages and Y in y lineages is

$$P(z|N, x, y) = \frac{w_z * \overline{w_z}}{W}$$

where

No. of ways to distribute
$$z$$

co-occurrences over N
lineage's
No. of ways to distribute
 $W = \binom{N-z}{x-z} * \binom{N-z}{y-z}$
No. of ways to distribute
the remaining $x - z$ and $y - z$
occurrences over the remaining
 $N - z$ lineage's
 $W_z = \binom{N}{x} * \binom{N}{y}$
No. of ways of
distributing X and Y
over N lineage's
without restriction

Phylogenetic Profiles: Evidence

Pellegrini et al., PNAS, 96:4285--4288, 1999

Keyword	No. of non- homologous proteins in group	No. neighbors in keyword group	No. neighbors in random group
Ribosome	60	197	27
Transcription	36	17	10
tRNA synthase and ligase	26	11	5
Membrane proteins*	25	89	5
Flagellar	21	89	3
Iron, ferric, and ferritin	19	31	2
Galactose metabolism	18	31	2
Molybdoterin and Molybdenum,			
and molybdoterin	12	6	1
Hypothetical [†]	1,084	108,226	8,440

• E. coli proteins grouped based on similar keywords in SWISS-PROT have similar phylogenetic profiles

 Proteins having low hamming distance (thus highly similar phylogenetic profiles) tend to share common pathways
 Exercise: Why do proteins having high hamming distance also have this behaviour?

Copyright 2006 © Limsoon Wong

The ProtFun Approach Jensen, JMB, 319:1257--1265, 2002

- A protein is not alone when performing its biological function
- It operates using the same cellular machinery for modification and sorting as all other proteins do, such as glycosylation, phospharylation, signal peptide cleavage, ...
- These have associated consensus motifs, patterns, etc.

- Proteins performing similar functions should share some such "features"
- ⇒ Perhaps we can predict protein function by comparing its "feature" profile with other proteins?

ProtFun: How it Works

Abbriviation	Encoding	Description	-
ec	single value	Extinction coefficient predicted by ExPASy ProtParam	
gravy	single value	Hydrophobicity predicted by ExPASy ProtParam	
nneg	single value	Number of negatively charged residues counted by ExPASy ProtPara	am
npos	single value	Number of positively charged residues counted by ExPASy ProtPara	m
nglyc	potential in 5 bins	N-glycosylation sites predicted by NetNGlyc	
oglyc	potential-threshold in 10 bins	GaINAc O-glycosylations predicted by NetOGlyc	
pest	fraction in 10 bins	PEST rich regions identified by PESTfind	
phosST	potential in 10 bins	Serine and threonine phosporylations predicted by NetPhos	
phosY	potential in 10 bins	Tyrosine phosporylations predicted by <u>NetPhos</u>	ict feature
psipred	helix, sheet, coil in 5 bins	Predicted secondary structure from PSI-Pred profi	le of protein
psort	20 probabilities	Subcellular location predtions by PSORT	various
seg	fraction in 10 bins	Low-complexity regions identified by SEG	etion mothods
signalp	meanS, maxY, log(cleavage pos)	Signal peptide predictions made by SignalP	euon memous
tmhmm	inside, outside, membrane in 5 bins	Transmembrane helix predictions made by TMHMM	

Category	Hidden units	Input features
Amino acid biosynthesis	30	ec psipred psort tmhmm
	30	ec psipred tmhmm
A years go the output of	, 30	ec netoglyc psipred psort
Average the output of	30	gravy psipred psort
the 5 component ANN	S 30	oglyc psipred psort

Copyright 2006 © Limsoon Wong

ProtFun: Evidence

Combinations of "features" seem to characterize some functional categories

ProtFun: Example Output

	Prion	A4	TTHY
Amino acid biosynthesis	0.011	0.011	0.011
Biosynthesis of cofactors	0.041	0.161	0.034
Cell envelope	0.146	0.804	0.698
Cellular processes	0.027	0.027	0.051
Central intermediary metabolism	0.047	0.139	0.059
Energy metabolism	0.029	0.023	0.046
Fatty acid metabolism	0.017	0.017	0.023
Purines and pyrimidines	0.528	0.417	0.153
Regulatory functions	0.013	0.014	0.014
Replication and transcription	0.020	0.029	0.040
Translation	0.035	0.027	0.032
Transport and binding	0.831	0.827	0.812
Enzyme	0.233	0.367	0.227
Non-enzyme 🤇	0.767	0.633	0.773
Oxidoreductase (EC 1)	0.070	0.024	0.055
Transferase (EC 2)	0.031	0.208	0.037
Hydrolase (EC 3 – . – . –)	0.101	0.090	0.208
Isomerase (EC 4.–.–.–)	0.020	0.020	0.020
Ligase (EC 5)	0.010	0.010	0.010
Lyase (EC 6)	0.017	0.078	0.017

- At the seq level, Prion, A4, & TTHY are dissimilar
- ProtFun predicts them to be cell envelope-related, tranport & binding
- This is in agreement w/ known functionality of these proteins

ProtFun: Performance

SVM-Pairwise Framework

Image credit: Kenny Chua

Performance of SVM-Pairwise

Receiver Operating Characteristic (ROC)

- The area under the curve derived from plotting true positives as a function of false positives for various thresholds.
- Rate of median False Positives (RFP)
 - The fraction of negative test examples with a score better or equals to the median of the scores of positive test examples.

median RFP Copyright 2000 © Limsoon wong

Level-1 neighbour

Protein Function Prediction from Protein Interactions

An illustrative Case of Indirect Functional Association?

- Is indirect functional association plausible?
- Is it found often in real interaction data?
- Can it be used to improve protein function prediction from protein interaction data?

Freq of Indirect Functional Association

Copyright 2006 © Limsoon Wong

Over-Rep of Functions in Neighbourg

• Functional Similarity:

$$S(i,j) = \frac{\left|F_i \cap F_j\right|}{\left|F_i \cup F_j\right|}$$

 where F_k is the set of functions of protein k

- L1 ∩ L2 neighbours show greatest over-rep
- L3 neighbours show little observable over-rep

Source: Kenny Chua

Prediction Power By Majority Votin

- Remove overlaps in level-1 and level-2 neighbours to study predictive power of "level-1 only" and "level-2 only" neighbours
- Sensitivity vs Precision analysis

$$PR = \frac{\sum_{i}^{K} k_{i}}{\sum_{i}^{K} m_{i}} \quad SN = \frac{\sum_{i}^{K} k_{i}}{\sum_{i}^{K} n_{i}}$$

- n_i is no. of fn of protein i
- m_i is no. of fn predicted for protein i
- k_i is no. of fn predicted correctly for protein i

- ⇒ "level-2 only" neighbours performs better
- ⇒ L1 ∩ L2 neighbours has greatest prediction power

Use L1 & L2 Neighbours for Prediction

Weighted Average

- Over-rep of functions in L1 and L2 neighbours
- Each observation of L1 or L2 neighbour is summed

$$f_x(u) = \frac{1}{Z} \left[\lambda r_{\text{int}} \pi_x + \sum_{v \in N_u} \left(S_{TR}(u, v) \delta(v, x) + \sum_{w \in N_v} S_{TR}(u, w) \delta(w, x) \right) \right]$$

- S_{TR}(u,v) is an "index" for function xfer betw u and v,
- δ(k, x) = 1 if k has function x, 0 otherwise
- N_k is the set of interacting partners of k
- π_x is freq of function x in the dataset
- λ is contribution of background freq to the score
- r_{int} is fraction of all interaction pairs that share some functions

$$Z = 1 + \sum_{v \in N_u} \left(S_{TR}(u, v) + \sum_{w \in N_v} S_{TR}(u, w) \right)$$

Source: Kenny Chua

Copyright 2006 © Limsoon Wong

Functional Similarity Estimate: Czekanowski-Dice Distance

• Functional distance between two proteins (Brun et al, 2003)

$$D(u,v) = \frac{|N_u \Delta N_v|}{|N_u \cup N_v| + |N_u \cap N_v|}$$

- N_k is the set of interacting partners of k
- X \triangle Y is symmetric diff betw two sets X and Y
- Greater weight given to similarity

Source: Kenny Chua

Functional Similarity Estimate: Modified Equiv Measure

Modified Equivalence measure

$$S(u,v) = \frac{2|N_u \cap N_v|}{|N_u - N_v| + 2|N_u \cap N_v|} \times \frac{2|N_u \cap N_v|}{|N_v - N_u| + 2|N_u \cap N_v|}$$

- N_k is the set of interacting partners of k
- Greater weight given to similarity

 \Rightarrow Rewriting this as

Exercise: What else should we consider in this formula?

$$S(u,v) = \frac{2X}{2X+Y} \times \frac{2X}{2X+Z}$$

Reliability of Expt Sources

- Diff Expt Sources have diff reliabilities
 - Assign reliability to an interaction based on its
 expt sources (Nabieva et al, 2004)
- Reliability betw u and v computed by:

$$r_{u,v} = 1 - \prod_{i \in E_{u,v}} (1 - r_i)$$

- r_i is reliability of expt source i,
- E_{u,v} is the set of expt sources in which interaction betw u and v is observed

Source	Reliability
Affinity Chromatography	0.823077
Affinity Precipitation	0.455904
Biochemical Assay	0.666667
Dosage Lethality	0.5
Purified Complex	0.891473
Reconstituted Complex	0.5
Synthetic Lethality	0.37386
Synthetic Rescue	1
Two Hybrid	0.265407

An "Index" for Function Transfer

• Take reliability into consideration when computing Equiv Measure:

$$S_{R}^{r}(u,v) = \frac{2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}}{\left(\sum_{w \in N_{u}} r_{u,w} + \sum_{w \in (N_{u} \cap N_{v})} r_{u,w}(1-r_{v,w})\right) + 2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}} \times \frac{2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}}{\left(\sum_{w \in N_{v}} r_{v,w} + \sum_{w \in (N_{u} \cap N_{v})} r_{u,w}\right) + 2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}}}$$

- N_k is the set of interacting partners of k
- r_{u,w} is reliability weight of interaction betw u and v

NUS National University of Singapore

Functional Similarity Estimate: Transitive Functional Association

- If protein u is similar to protein w, and protein w is similar to protein v, proteins u and v may show some degree of similarity
- So we estimate functional similarity betw u and v by product of functional similarity betw u and w, and that between w and v:

$$S_{TR}(u, v) = \max\left(S_{R}(u, v), \max_{w \in N_{u}} S_{R}(u, w)S_{R}(w, v)\right)$$

Correlation with Functional Similarity

Neighbours	CD-Distance	FS-Weight	FS-Weight R	Transitive FS- Weight R
S1	0.471810	0.498745	0.532596	0.532626
S_2	0.224705	0.298843	0.375317	0.381966
$S_1 \cup S_2$	0.224581	0.29629	0.363025	0.369378

Performance Evaluation

- Prediction performance improves after incorporation of interaction reliability
- ⇒ Indirect functional association is plausible
- ⇒ It is found often in real interaction data
- ⇒ It can be used to improve protein function prediction from protein interaction data

Application of Sequence Comparison: Key Mutation Site Discovery

Identifying Key Mutation Sites K.L.Lim et al., *JBC*, 273:28986--28993, 1998

Sequence from a typical PTP domain D2

>gi|00000|PTPA-D2 EEEFKKLTSIKIQNDKMRTGNLPANMKKNRVLQIIPYEFNRVIIPVKRGEENTDYVNASF IDGYRQKDSYIASQGPLLHTIEDFWRMIWEWKSCSIVMLTELEERGQEKCAQYWPSDGLV SYGDITVELKKEEECESYTVRDLLVTNTRENKSRQIRQFHFHGWPEVGIPSDGKGMISII AAVQKQQQQSGNHPITVHCSAGAGRTGTFCALSTVLERVKAEGILDVFQTVKSLRLQRPH MVQTLEQYEFCYKVVQEYIDAFSDYANFK

- Some PTPs have 2 PTP domains
- PTP domain D1 is has much more activity than PTP domain D2
- Why? And how do you figure that out?

NUS National University of Singapore

Emerging Patterns of PTP D1 vs D

- Collect example PTP D1 sequences
- Collect example PTP D2 sequences
- Make multiple alignment A1 of PTP D1
- Make multiple alignment A2 of PTP D2
- Are there positions conserved in A1 that are violated in A2?
- These are candidate mutations that cause PTP activity to weaken
- Confirm by wet experiments

Emerging Patterns of PTP D1 vs D

This site is consistently conserved in D1, but is not consistently missing in D2 \Rightarrow it is not an EP \Rightarrow not a likely cause of D2's loss of function Exercise: Why?

This site is consistently conserved in D1, but is consistently missing in D2 ⇒ it is an EP ⇒ possible cause of D2's loss of function

Key Mutation Site: PTP D1 vs D2²³

gi|00000|P gi|126467| gi|2499753 gi|462550| gi|2499751 gi|1709906 gi|126471| gi|548626| gi|131570| gi|2144715

2 2 2 2 2 22 QFHFHGWPEVGIPSDGKGMISIIAAVQKQQQQ-SGNHPITVHCSAGAGRTGTFCALSTVL OFHFTSWPDFGVPFTPIGMLKFLKKVKACNP--OYAGAIVVHCSAGVGRTGTFVVIDAML OFHFTGWPDHGVPYHATGLLSFIRRVKLSNP--PSAGPIVVHCSAGAGRTGCYIVIDIML OYHYTOWPDMGVPEYALPVLTFVRRSSAARM--PETGPVLVHCSAGVGRTGTYIVIDSML OF HF TSWPDHGVPDTTDLL INFRYLVRDYMKOSPPESPILVHCSAGVGRTGTFIAIDRLI QFQFTAWPDHGVPEHPTPFLAFLRRVKTCNP--PDAGPMVVHCSAGVGRTGCFIVIDAML D1-OLHFTSWPDFGVPFTPIGMLKFLKKVKTLNP--VHAGPIVVHCSAGVGRTGTFIVIDAMM OFHFTGWPDHGVPYHATGLLSFIRRVKLSNP--PSAGPIVVHCSAGAGRTGCYIVIDIML OFHFTGWPDHGVPYHATGLLGFVROVKSKSP--PNAGPLVVHCSAGAGRTGCFIVIDIML QFHFTSWPDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLI Τ. **. *.* ***** ****

- Positions marked by "!" and "?" are likely places responsible for reduced PTP activity
 - All PTP D1 agree on them
 - All PTP D2 disagree on them

Key Mutation Site: PTP D1 vs D2²²

 Positions marked by "!" are even more likely as 3D modeling predicts they induce large distortion to structure

Confirmation by Mutagenesis Expt

- What wet experiments are needed to confirm the prediction?
 - Mutate E \rightarrow D in D2 and see if there is gain in PTP activity
 - Mutate D \rightarrow E in D1 and see if there is loss in PTP activity

Exercise: Why do you need this 2-way expt?

Any Questions?

Acknowledgements

 Some of the slides are based on slides given to me by Kenny Chua

- T.F.Smith & X.Zhang. "The challenges of genome sequence annotation or `The devil is in the details'", *Nature Biotech*, 15:1222--1223, 1997
- D. Devos & A.Valencia. "Intrinsic errors in genome annotation", *TIG*, 17:429--431, 2001
- K.L.Lim et al. "Interconversion of kinetic identities of the tandem catalytic domains of receptor-like protein tyrosine phosphatase PTP-alpha by two point mutations is synergist and substrate dependent", *JBC*, 273:28986--28993, 1998
- S.F.Altshcul et al. "Basic local alignment search tool", *JMB*, 215:403--410, 1990
- S.F.Altschul et al. "Gapped BLAST and PSI-BLAST: A new generation of protein database search programs", *NAR*, 25(17):3389--3402, 1997

- S.E.Brenner. "Errors in genome annotation", *TIG*, 15:132--133, 1999
- M. Pellegrini et al. "Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles", *PNAS*, 96:4285--4288, 1999
- J. Wu et al. "Identification of functional links between genes using phylogenetic profiles", *Bioinformatics*, 19:1524--1530, 2003
- L.J.Jensen et al. "Prediction of human protein function from post-translational modifications and localization features", *JMB*, 319:1257--1265, 2002
- C. Wu, W. Barker. "A Family Classification Approach to Functional Annotation of Proteins", *The Practical Bioinformatician*, Chapter 19, pages 401—416, WSPC, 2004

- H.N. Chua, W.-K. Sung. <u>A better gap penalty for pairwise SVM</u>. Proc. APBC05, pages 11-20
- T. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for detecting remote homologies. *JCB*, 7(1-2):95— 11, 2000