
CS2220: Introduction to Computational Biology
Lecture 6: Essence of Sequence

Comparison

Limsoon Wong
16 February 2007

For written notes on this lecture, please read chapter 10 of The Practical Bioinformatician

Copyright 2007 © Limsoon Wong

Plan

• Dynamic Programming
• String Comparison
• Sequence Alignment

– Pairwise Alignment
• Needleman-Wunsch global alignment algorithm
• Smith-Waterman local alignment algorithm

– Multiple Alignment
• Popular tools

– FASTA, BLAST, Pattern Hunter
• More advanced tools

– PHI BLAST, ISS, PSI-BLAST, SAM, ...

What is Dynamic Programming

Copyright 2007 © Limsoon Wong

The Knapsack Problem

• The problem
– Each item that can go into the knapsack has a

size and a benefit. The knapsack has a certain
capacity. What should go into the knapsack so as
to maximize the total benefit?

• A dynamic programming solution
– Let wj and bj be weight and benefit for item j. Let

g(w) be max benefit that can be gained from a w
pound knapsack. Then g(w) relates to previously
calculated g values as follows:

Source: http://mat.gsia.cmu.edu/classes/dynamic/node6.html

Copyright 2007 © Limsoon Wong

An Example

• Suppose the items are

• Recall that

• To fill a w pound
knapsack, we must end off
by adding some item. If we
add item j, we end up with
a knapsack of size w − wj
to fill …

• To illustrate:
– g(0) = 0
– g(1) = 30, item 3
– g(2) = max{65 + g(0) =65, 30 + g(1)

= 60} = 65, item 1
– g(3) = max{65 + g(1) = 95, 80 + g(0)

= 80, 30 + g(2) = 95} = 95, item 1/3
– g(4) = max{65 + g(2) = 130, 80 +

g(1) = 110, 30 + g(3) = 125} = 130,
item 1

– g(5) = max{65 + g(3) = 160, 80 +
g(2) = 145, 30 + g(4) = 160} = 160,
item 1/3

⇒ For knapsack of capacity 5,
max benefit is 160, which is
gained by adding 2 of item 1
and 1 of item 3

Source: http://mat.gsia.cmu.edu/classes/dynamic/node6.html

Copyright 2007 © Limsoon Wong

g(1), g(2), … are computed many times

65

30

6530

80

g(5)

g(4)g(3) g(2)

65 80 30

65
g(2)g(0)g(1)

g(0) g(0)

30

g(1)

30

g(0)

65

g(0)

30

g(1)

30

g(0)

65 80 30

g(3)g(1)g(2)

g(0)

30

g(1)

30

g(0)

30

g(0)

65 80 30
g(2)g(0)g(1)

30

g(0)

65

g(0)

30

g(1)

30

g(0)

160160 160

Copyright 2007 © Limsoon Wong

“Memoize” to avoid recomputation

80

80

30

30

6530

80

g(5)

g(4)g(3)
65 30

65
g(2)g(0)g(1)

g(0) g(0)

65

160160

int s[]; s[0] := 0;
g’(w) = if s[w] is defined

then return s[w];
else {

s[w] := maxj{bj + g’(w – wj)};
return s[w]; }

Copyright 2007 © Limsoon Wong

Non-Recursive Version

int s[]; s[0] := 0;
g’(w) = if s[w] is defined

then return s[w];
else {

s[w] := maxj{bj + g’(w – wj)};
return s[w]; }

int s[]; s[0] := 0; s[1] := 30;
s[2] := 65; s[3] = 95;
for i := 4 .. w do

s[i] := maxj{bj + s[i – wj]};
return s[w];

g(0) = 0
g(1) = 30, item 3
g(2) = max{65 + g(0) =65, 30 + g(1) = 60} = 65, item 1
g(3) = max{65 + g(1) = 95, 80 + g(0) = 80, 30 + g(2) = 95}

= 95, item 1/3
g(4) = max{65 + g(2) = 130, 80 + g(1) = 110, 30 + g(3) =

125} = 130, item 1
g(5) = max{65 + g(3) = 160, 80 + g(2) = 145, 30 + g(4) =

160} = 160, item 1/3

80

80

30

30

6530

80

g(5)

g(4)g(3)
65 30

65
g(2)g(0)g(1)

g(0) g(0)

65

160160

Copyright 2007 © Limsoon Wong

Characteristics of Dynamic Programming

• The problem can be divided into stages with a
decision required at each stage

• Each stage has a number of states associated
• The decision at one stage transforms one state

into a state in the next stage
• Given current state, the optimal decision for

each remaining states does not depend on
previous states or decisions

• There is a recursive relationship that identifies
the optimal decision for stage j, given stage j+1
has already been solved

• The final stage must be solvable by itself

Exercise: What is a stage
in the Knapsack problem?

Exercise: What is a state
in the Knapsack problem?

E.g., g(2) doesnt
depends on g(3)

E.g., g(0) = 0

Source: http://mat.gsia.cmu.edu/classes/dynamic/node4.html

Sequence Alignment

Copyright 2007 © Limsoon Wong

Motivations for Sequence Comparison

• DNA is blue print for living organisms
⇒ Evolution is related to changes in DNA
⇒ By comparing DNA sequences we can infer

evolutionary relationships between the
sequences w/o knowledge of the evolutionary
events themselves

• Foundation for inferring function, active site, and
key mutations

Copyright 2007 © Limsoon Wong

Earliest Research in Seq Comparison

• Doolittle et al. (Science, July 1983) searched for
platelet-derived growth factor (PDGF) in his own
DB. He found that PDGF is similar to v-sis
oncogene

PDGF-2 1 SLGSLTIAEPAMIAECKTREEVFCICRRL?DR?? 34
p28sis 61 LARGKRSLGSLSVAEPAMIAECKTRTEVFEISRRLIDRTN 100

Source: Ken Sung

Copyright 2007 © Limsoon Wong

Sequence Alignment

• Key aspect of seq
comparison is seq
alignment

• A seq alignment
maximizes the
number of
positions that are in
agreement in two
sequences

Sequence U

Sequence V

mismatch

match

indel

Copyright 2007 © Limsoon Wong

Sequence Alignment: Poor Example

• Poor seq alignment shows few matched positions
⇒ The two proteins are not likely to be homologous

No obvious match between
Amicyanin and Ascorbate Oxidase

Copyright 2007 © Limsoon Wong

Sequence Alignment: Good Example

• Good alignment usually has clusters of extensive
matched positions

⇒ The two proteins are likely to be homologous

good match between
Amicyanin and unknown M. loti protein

Copyright 2007 © Limsoon Wong

h

Alignment:

Simple-Minded Probability & Score

• Define score S(A) by simple log likelihood as
– S(A) = log(prob(A)) - [m log(s) + h log(s)], with

log(p/s) = 1
• Then S(A) = #matches - μ #mismatches - δ #indels

Exercise: Derive μ and δ

Copyright 2007 © Limsoon Wong

Global Pairwise Alignment:

Problem Definition
• Given sequences U and V of lengths n and m,

then number of possible alignments is given by
– f(n, m) = f(n-1,m) + f(n-1,m-1) + f(n,m-1)
– f(n,n) ~ (1 + √2)2n+1 n-1/2

• The problem of finding a global pairwise
alignment is to find an alignment A so that S(A) is
max among exponential number of possible
alternatives

Exercise: Explain the
recurrence above

Copyright 2007 © Limsoon Wong

Global Pairwise Alignment:

Dynamic Programming Solution
• Define an indel-similarity matrix s(.,.); e.g.,

– s(x,x) = 2
– s(x,y) = -μ, if x ≠ y

• Then

This is the basic idea of the
Needleman-Wunsch algorithm

Exercise: What is the
effect of a large δ ?

Copyright 2007 © Limsoon Wong

Needleman-Wunsch Algorithm (I)

• Consider two strings S[1..n] and T[1..m]
• Let V(i, j) be score of opt alignment betw S[1..i]

and T[1..j]

• Basis:
– V(0, 0) = 0
– V(0, j) = V(0, j −1) − δ

• Insert j times
– V(i, 0) = V(i − 1, 0) − δ

• Delete i times

Source: Ken Sung

Copyright 2007 © Limsoon Wong

Needleman-Wunsch Algorithm (II)

• Recurrence: For i>0, j>0

• In the alignment, the last pair must be either
match/mismatch, delete, insert

⎪
⎩

⎪
⎨

⎧

−−
−−

+−−
=

δ
δ

)1,(
),1(

])[],[()1,1(
max),(

jiV
jiV

jTiSsjiV
jiV

Match/mismatch

Delete

Insert

xxx…xx xxx…xx xxx…x_
| | |

xxx…yy yyy…y_ yyy…yy
Match/mismatch Delete Insert

Source: Ken Sung

Copyright 2007 © Limsoon Wong

Example (I)

− 7C

− 6C

− 5T

− 4A

− 3A

− 2C

− 1A

− 7− 6− 5− 4− 3− 2−10_

CGTACGA_

Source: Ken Sung

Copyright 2007 © Limsoon Wong

Example (II)

− 7C

− 6C

− 5T

− 4A

− 3A

− 2C

2− 1A

− 7− 6− 5− 4− 3− 2−10_

CGTACGA_

Source: Ken Sung

2
11
11
20

max
1
1

),(
max

0,1

1,0

0,0

1,1 =
⎪
⎩

⎪
⎨

⎧

−−
−−
+

=
⎪
⎩

⎪
⎨

⎧

−
−
+

=
S
S

AAsS
S

Copyright 2007 © Limsoon Wong

Example (III)

− 7C

− 6C

− 5T

− 4A

− 3A

− 2C

12− 1A

− 7− 6− 5− 4− 3− 2−10_

CGTACGA_

Source: Ken Sung

1
12
12
11

max
1
1

),(
max

1,1

2,0

1,0

2,1 =
⎪
⎩

⎪
⎨

⎧

−
−−

−+−
=

⎪
⎩

⎪
⎨

⎧

−
−
+

=
S
S

GAsS
S

Copyright 2007 © Limsoon Wong

Example (IV)

− 7C

− 6C

− 5T

− 4A

− 3A

?11− 2C

− 4− 3− 2− 1012− 1A

− 7− 6− 5− 4− 3− 2− 10_

CGTACGA_

3 2

Exercise: Can you tell from these entries what
Are the values of s(A,G), s(A,C), s(A,A), etc.?

Source: Ken Sung

Copyright 2007 © Limsoon Wong

Example (V)

7441− 1− 4− 4− 7C

75520− 3− 3− 6C

45630− 2− 2− 5T

23441− 1− 1− 4A

2345200− 3A

-1012311− 2C

-4− 3− 2− 1012− 1A

− 7− 6− 5− 4− 3− 2−10_

CGTACGA_

Source: Ken Sung

Copyright 2007 © Limsoon Wong

Pseudo Codes
Create the table V[0..n,0..m] and P[1..n,1..m];
V[0,0] = 0;
For j=1 to m, set V[0,j] := v[0,j − 1] − δ ;
For i=1 to n, set V[i,0] := V[i − 1,0] − δ ;
For j=1 to m {

For i = 1 to n {
set V[i,j] := V[i,j − 1] − δ ;
set P[i,j] := (0, − 1);
if V[i,j] < V[i − 1,j] − δ then

set V[i,j] := V[i − 1,j] − δ ;
set P[i,j] := (− 1, 0);

if (V[i,j] < V[i − 1, j − 1] + s(S[i],T[j])) then
set V[i,j] := V[i − 1, j − 1] + s(S[i],T[j]);
set P[i,j] := (− 1, − 1);

}
}
Backtracking P[n,m] to P[0,0] to find optimal alignment;

Source: Ken Sung

Copyright 2007 © Limsoon Wong

Analysis

• We need to fill in all entries in the n×m matrix
• Each entry can be computed in O(1) time
⇒Time complexity = O(nm)
⇒Space complexity = O(nm)

Source: Ken Sung

Exercise: Write down the memoized version of
Needleman-Wunsch. What is its time/space
complexity?

Copyright 2007 © Limsoon Wong

Problem on Speed

• Aho, Hirschberg, Ullman
1976
– If we can only compare

whether two symbols are
equal or not, the string
alignment problem can
be solved in Ω(nm) time

• Hirschberg 1978
– If symbols are ordered

and can be compared,
the string alignment
problem can be solved in
Ω(n log n) time

• Masek and Paterson 1980
– Based on Four-Russian’s

paradigm, the string
alignment problem can
be solved in O(nm/log2
n) time

• Let d be the total number
of inserts and deletes.
Thus 0 ≤ d ≤ n+m. If d is
smaller than n+m, can we
get a better algorithm?
Yes!

Source: Ken Sung

Copyright 2007 © Limsoon Wong

O(dn)-Time Algorithm

• The alignment should be inside the 2d+1 band
⇒No need to fill-in the lower and upper triangle
⇒Time complexity: O(dn)

2d+1

Source: Ken Sung

Copyright 2007 © Limsoon Wong

Example

• d=3
A_CAATCC
AGCA_TGC

7441C

75520C

45630-2T

23441-1-1A

345200-3A

12311-2C

-1012-1A

-3-2-10_

CGTACGA_

Copyright 2007 © Limsoon Wong

Recursive Equation for O(dn)-Time Algo

⎪
⎩

⎪
⎨

⎧

>−−−
>−−−

+−−
=

0)1,1,(
0)1,,1(

])[],[(),1,1(
max),,(

difdjiv
difdjiv

jSiSsdjiv
djiv

δ
δ

Exercise: Write down the base
cases, the memoized version, and
the non-recursive version.

Copyright 2007 © Limsoon Wong

Global Pairwise Alignment:

More Realistic Handling of Indels
• In Nature, indels of several adjacent letters are

not the sum of single indels, but the result of one
event

• So reformulate as follows:

Copyright 2007 © Limsoon Wong

Gap Penalty

• g(q):Ν ℜ is the penalty of a gap of length q
• Note g() is subadditive, i.e, g(p+q) ≤ g(p) + g(q)

• If g(k) = α + βk, the gap penalty is called affine
– A penalty (α) for initiating the gap
– A penalty (β) for the length of the gap

Source: Ken Sung

Copyright 2007 © Limsoon Wong

N-W Algorithm w/ General Gap Penalty (I)

• Global alignment of S[1..n] and T[1..m]:
– Denote V(i, j) be the score for global alignment

between S[1..i] and T[1..j]
– Base cases:

• V(0, 0) = 0
• V(0, j) = g(j)
• V(i, 0) = g(i)

Source: Ken Sung

Copyright 2007 © Limsoon Wong

N-W Algorithm w/ General Gap Penalty (II)

• Recurrence for i>0 and j>0,

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−+

−+
+−−

=

−≤≤

−≤≤

)}(),({max

)}(),({max
])[],[()1,1(

max),(

10

10

kigjkV

kjgkiV
jTiSjiV

jiV

ik

jk

δ Match/mismatch

Insert T[k+1..j]

Delete S[k+1..i]

Source: Ken Sung

Copyright 2007 © Limsoon Wong

Analysis

• We need to fill in all entries in the n×m table
• Each entry can be computed in O(max{n, m}) time
⇒Time complexity = O(nm max{n, m})
⇒Space complexity = O(nm)

Source: Ken Sung

Copyright 2007 © Limsoon Wong

Variations of Pairwise Alignment

• Fitting a “short’’ seq to a
“long’’ seq

• Indels at beginning and
end are not penalized

• Find “local” alignment

• Find i, j, k, l, so that
– S(A) is maximized,
– A is alignment of ui…uj and

vk…vl

U

V

U

V

Copyright 2007 © Limsoon Wong

Local Alignment

• Given two long DNAs, both of them contain the
same gene or closely related gene
– Can we identify the gene?

• Local alignment problem: Given two strings
S[1..n] and T[1..m], among all substrings of S and
T, find substrings A of S and B of T whose global
alignment has the highest score

Source: Ken Sung

Copyright 2007 © Limsoon Wong

Brute-Force Solution

• Algorithm:
– For every substring A of S, for every substring B of

T, compute the global alignment of A and B
– Return the pair (A, B) with the highest score

• Time:
– There are n2 choices of A and m2 choices of B
– Global alignment computable in O(nm) time
– In total, time complexity = O(n3m3)

• Can we do better?

Source: Ken Sung

Copyright 2007 © Limsoon Wong

Some Background

• X is a suffix of S[1..n] if X=S[k..n] for some k≥1
• X is a prefix of S[1..n] if X=S[1..k] for some k≤n

• E.g.
– Consider S[1..7] = ACCGATT
– ACC is a prefix of S, GATT is a suffix of S
– Empty string is both prefix and suffix of S

Source: Ken Sung

Copyright 2007 © Limsoon Wong

Dynamic Programming for
Local Alignment Problem

• Define V(i, j) be max score of global alignment of
A and B over
– all suffixes A of S[1..i] and
– all suffixes B of T[1..j]

• Then, score of local alignment is
– maxi,j V(i ,j)

Source: Ken Sung

Copyright 2007 © Limsoon Wong

Smith-Waterman Algorithm

• Basis:

V(i, 0) = V(0, j) = 0

• Recursion for i>0 and j>0:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−−
−−

+−−
=

δ
δ

)1,(
),1(

])[],[()1,1(
0

max),(

jiV
jiV

jTiSsjiV
jiV

Match/mismatch

Delete

Insert

Ignore initial segment

Source: Ken Sung

Copyright 2007 © Limsoon Wong

Example (I)
• Score for match = 2
• Score for insert, delete,

mismatch = −1

0G

0C

0T

0A

0A

0C

0A

00000000_

CGTACTC_

Source: Ken Sung

Copyright 2007 © Limsoon Wong

Example (II)

G

C

?00T

12330000A

12341100A

20112120C

00120000A

00000000_

CGTACTC_

1 22

• Score for match = 2
• Score for insert, delete,

mismatch = −1

Source: Ken Sung

Copyright 2007 © Limsoon Wong

Example (III)CAATCG
C_AT_G

56333110G

64434120C

34521200T

12330000A

12341100A

20112120C

00120000A

00000000_

CGTACTC_

Source: Ken Sung

Copyright 2007 © Limsoon Wong

Analysis

• Need to fill in all entries in the n×m matrix
• Each entries can be computed in O(1) time
• Finally, finding the entry with the max value
⇒Time complexity = ??
⇒Space complexity = O(nm)

Exercise: What is the time complexity?

Source: Ken Sung

Multiple Sequence Alignment

Copyright 2007 © Limsoon Wong

What is a domain

• A domain is a component of a protein that is self-
stabilizing and folds independently of the rest of
the protein chain
– Not unique to protein products of one gene; can

appear in a variety of proteins
– Play key role in the biological function of proteins
– Can be "swapped" by genetic engineering betw

one protein and another to make chimeras
• May be composed of one, more than one, or not

any structural motifs (often corresponding to
active sites)

Copyright 2007 © Limsoon Wong

Discovering Domain and Active Sites

• How do we find the domain and associated active
sites in the protein above?

>gi|475902|emb|CAA83657.1| protein-tyrosine-phosphatase alpha
MDLWFFVLLLGSGLISVGATNVTTEPPTTVPTSTRIPTKAPTAAPDGGTTPRVSSLNVSSPMTTSAPASE
PPTTTATSISPNATTASLNASTPGTSVPTSAPVAISLPPSATPSALLTALPSTEAEMTERNVSATVTTQE
TSSASHNGNSDRRDETPIIAVMVALSSLLVIVFIIIVLYMLRFKKYKQAGSHSNSFRLPNGRTDDAEPQS
MPLLARSPSTNRKYPPLPVDKLEEEINRRIGDDNKLFREEFNALPACPIQATCEAASKEENKEKNRYVNI
LPYDHSRVHLTPVEGVPDSHYINTSFINSYQEKNKFIAAQGPKEETVNDFWRMIWEQNTATIVMVTNLKE
RKECKCAQYWPDQGCWTYGNIRVSVEDVTVLVDYTVRKFCIQQVGDVTNKKPQRLVTQFHFTSWPDFGVP
FTPIGMLKFLKKVKTCNPQYAGAIVVHCSAGVGRTGTFIVIDAMLDMMHAERKVDVYGFVSRIRAQRCQM
VQTDMQYVFIYQALLEHYLYGDTELEVTSLEIHLQKIYNKVPGTSSNGLEEEFKKLTSIKIQNDKMRTGN
LPANMKKNRVLQIIPYEFNRVIIPVKRGEENTDYVNASFIDGYRRRTPTCQPRPVQHTIEDFWRMIWEWK
SCSIVMLTELEERGQEKCAQYWPSDGSVSYGDINVELKKEEECESYTVRDLLVTNTRENKSRQIRQFHFH
GWPEVGIPSDGKGMINIIAAVQKQQQQSGNHPMHCHCSAGAGRTGTFCALSTVLERVKAEGILDVFQTVK
SLRLQRPHMVQTLEQYEFCYKVVQEYIDAFSDYANFK

Copyright 2007 © Limsoon Wong

Domain/Active Sites as Emerging Patterns

• How to discover active site and/or domain?
• If you are lucky, domain has already been

modelled
– BLAST,
– HMMPFAM, …

• If you are unlucky, domain not yet modelled
– Find homologous seqs
– Do multiple alignment of homologous seqs
– Determine conserved positions
⇒ Emerging patterns relative to background
⇒ Candidate active sites and/or domains

Copyright 2007 © Limsoon Wong

In the course of evolution…

Copyright 2007 © Limsoon Wong

Multiple Alignment: An Example

• Multiple seq alignment maximizes number of
positions in agreement across several seqs

• seqs belonging to same “family” usually have
more conserved positions in a multiple seq
alignment

Conserved sites

Copyright 2007 © Limsoon Wong

Multiple Alignment:
Naïve Approach

• Let S(A) be the score of a multiple alignment A.
The optimal multiple alignment A of sequences
U1, …, Ur can be extracted from the following
dynamic programming computation of Sm1,…,mr:

• This requires O(2r) steps
Exercise for the Brave:
Propose a practical approximation

Popular Tools for Sequence Comparison:
FASTA, BLAST, Pattern Hunter

Copyright 2007 © Limsoon Wong

30 billion nt
in year 2005

0
1
2
3
4
5
6
7
8

1980 1985 1990 1995 2000

Years

N
uc

le
ot

id
es

(b
ill

io
n)

Scalability of Software

• Increasing number of sequenced genomes:
yeast, human, rice, mouse, fly, …

• S/w must be “linearly” scalable to large datasets

Copyright 2007 © Limsoon Wong

Need Heuristics for
Sequence Comparison

• Time complexity for
optimal alignment is O(n2),
where n is sequence
length

⇒ Given current size of
sequence databases, use
of optimal algorithms is
not practical for database
search

• Heuristic techniques:
– BLAST
– FASTA
– Pattern Hunter
– MUMmer, ...

• Speed up:
– 20 min (optimal

alignment)
– 2 min (FASTA)
– 20 sec (BLAST)

Exercise: Describe MUMer

Copyright 2007 © Limsoon Wong

Basic Idea: Indexing & Filtering

• Good alignment includes short identical, or
similar fragments

⇒ Break entire string into substrings, index the
substrings

⇒ Search for matching short substrings and use as
seed for further analysis

⇒ Extend to entire string find the most significant
local alignment segment

Copyright 2007 © Limsoon Wong

BLAST in 3 Steps
Altschul et al, JMB 215:403-410, 1990

• Similarity matching of
words (3 aa’s, 11 bases)
– No need identical words

• If no words are similar,
then no alignment
– Won’t find matches for

very short sequences

• MSP: Highest scoring pair
of segments of identical
length. A segment pair is
locally maximal if it cannot
be improved by extending
or shortening the
segments

• Find alignments w/ optimal
max segment pair (MSP)
score

• Gaps not allowed
• Homologous seqs will

contain a MSP w/ a high
score; others will be
filtered out

Copyright 2007 © Limsoon Wong

BLAST in 3 Steps
Altschul et al, JMB 215:403-410, 1990

Step 1
• For the query, find the list of high scoring words

of length w

Image credit: Barton

Copyright 2007 © Limsoon Wong

BLAST in 3 Steps
Altschul et al, JMB 215:403-410, 1990

Step 2
• Compare word list to db & find exact matches

Image credit: Barton

Copyright 2007 © Limsoon Wong

BLAST in 3 Steps
Altschul et al, JMB 215:403-410, 1990

Step 3
• For each word match, extend alignment in both

directions to find alignment that score greater
than a threshold s

Image credit: Barton

Copyright 2007 © Limsoon Wong

Spaced Seeds
• 111010010100110111 is an example of a spaced seed model

with
– 11 required matches (weight=11)
– 7 “don’t care” positions

GAGTACTCAACACCAACATTAGTGGCAATGGAAAAT…
|| ||||||||| ||||| || ||||| ||||||
GAATACTCAACAGCAACACTAATGGCAGCAGAAAAT…

111010010100110111

• 11111111111 is the BLAST seed model for comparing DNA
seqs

Copyright 2007 © Limsoon Wong

Observations on Spaced Seeds

• Seed models w/ different shapes can detect
different homologies
– the 3rd base in a codon “wobbles” so a seed like

110110110… should be more sensitive when
matching coding regions

⇒ Some models detect more homologies
− More sensitive homology search
– PatternHunter I

⇒ Use >1 seed models to hit more homologies
– Approaching 100% sensitive homology search
– PatternHunter II Exercise: Why does

the 3rd base wobbles?

Copyright 2007 © Limsoon Wong

CAA?A??A?C??TA?TGG?
|||?|??|?|??||?|||?
CAA?A??A?C??TA?TGG?
111010010100110111
111010010100110111

PatternHunter I
Ma et al., Bioinformatics 18:440-445, 2002

• BLAST’s seed usually
uses more than one hits to
detect one homology

⇒ Wasteful

• Spaced seeds uses fewer
hits to detect one
homology

⇒ Efficient

TTGACCTCACC?
|||||||||||?
TTGACCTCACC?
11111111111
11111111111

1/4 chances to have 2nd hit
next to the 1st hit 1/46 chances to have 2nd hit

next to the 1st hit

Copyright 2007 © Limsoon Wong

PatternHunter I
Ma et al., Bioinformatics 18:440-445, 2002

Proposition. The expected number of hits of a
weight-W length-M model within a length-L region of
similarity p is (L – M + 1) * pW

Proof.
For any fixed position, the prob of a hit is pW.
There are L – M + 1 candidate positions.
The proposition follows.

Copyright 2007 © Limsoon Wong

Implication
• For L = 1017

– BLAST seed expects
(1017 – 11 + 1) * p11 =
1007 * p11 hits

– But ~1/4 of these overlap
each other. So likely to
have only ~750 * p11

distinct hits
– Our example spaced seed

expects (1017 – 18 + 1) *
p11 = 1000 * p11 hits

– But only 1/46 of these
overlap each other. So
likely to have ~1000 * p11

distinct hits

Spaced
seeds

likely to
be more
sensitive
& more
efficient

Copyright 2007 © Limsoon Wong

Sensitivity of PatternHunter I

Image credit: Li

Copyright 2007 © Limsoon Wong

Speed of PatternHunter I
• Mouse Genome

Consortium used
PatternHunter to
compare mouse
genome & human
genome

• PatternHunter did the
job in a 20 CPU-days ---
it would have taken
BLAST 20 CPU-years!

Nature, 420:520-522, 2002

Copyright 2007 © Limsoon Wong

How to Increase Sensitivity?

• Ways to increase sensitivity:
– “Optimal” seed
– Reduce weight by 1
– Increase number of spaced seeds by 1

• Intuitively, for DNA seq,
– Reducing weight by 1 will increase number of

matches 4 folds
– Doubling number of seeds will increase number of

matches 2 folds
• Is this really so?

Copyright 2007 © Limsoon Wong

How to Increase Sensitivity?

• Ways to increase
sensitivity:
– “Optimal” seed
– Reduce weight by 1
– Increase number of

spaced seeds by 1

• For L = 1017 & p = 50%
– 1 weight-11 length-18

model expects 1000/211

hits
– 2 weight-12 length-18

models expect 2 *
1000/212 = 1000/211 hits

⇒ When comparing
regions w/ >50%
similarity, using 2 weight-
12 spaced seeds
together is more
sensitive than using 1
weight-11 spaced seed!

Exercise: Proof this claim

Copyright 2007 © Limsoon Wong

PatternHunter II
Li et al, GIW, 164-175, 2003

• Idea
– Select a group of spaced

seed models
– For each hit of each

model, conduct extension
to find a homology

• Selecting optimal multiple
seeds is NP-hard

• Algorithm to select
multiple spaced seeds
– Let A be an empty set
– Let s be the seed such

that A ⋃ {s} has the
highest hit probability

– A = A ⋃ {s}
– Repeat until |A| = K

• Computing hit probability
of multiple seeds is NP-
hard

Copyright 2007 © Limsoon Wong

One weight-12

Two weight-12

One weight-11

Sensitivity of PatternHunter II

• Solid curves: Multiple (1, 2,
4, 8,16) weight-12 spaced
seeds

• Dashed curves: Optimal
spaced seeds with weight
= 11,10, 9, 8

⇒ “Doubling the seed
number” gains better
sensitivity than
“decreasing the weight by
1”

se
ns

iti
vi

ty

Image credit: Ma

Copyright 2007 © Limsoon Wong

Expts on Real Data

• 30k mouse ESTs (25Mb) vs 4k human ESTs (3Mb)
– downloaded from NCBI genbank
– “low complexity” regions filtered out

• SSearch (Smith-Waterman method) finds “all”
pairs of ESTs with significant local alignments

• Check how many percent of these pairs can be
“found” by BLAST and different configurations of
PatternHunter II

Copyright 2007 © Limsoon Wong

In fact, at 80%
similarity, 100%
sensitivity can
be achieved

using 40
weight-9 seeds

Results

Image credit: Ma

Copyright 2007 © Limsoon Wong

Farewell to the Supercomputer Age
of Sequence Comparison!

Image credit: Bioinformatics Solutions Inc

More Advanced
Sequence Comparison Methods

PHI-BLAST
Iterated BLAST

PSI-BLAST
SAM

Copyright 2007 © Limsoon Wong

PHI-BLAST
(Pattern-Hit Initiated BLAST)

• Input
– protein sequence and
– pattern of interest that it

contains

• Output
– protein sequences

containing the pattern
and have good alignment
surrounding the pattern

• Impact
– able to detect statistically

significant similarity
between homologous
proteins that are not
recognizably related
using traditional one-
pass methods

Copyright 2007 © Limsoon Wong

PHI-BLAST: How it works

find from database
all seq containing
given pattern

find sequences with
good flanking
alignment

Copyright 2007 © Limsoon Wong

PHI-BLAST: IMPACT

Copyright 2007 © Limsoon Wong

ISS
(Intermediate Sequence Search)

• Two homologous seqs, which have diverged
beyond the point where their homology can be
recognized by a simple direct comparison, can be
related through a third sequence that is suitably
intermediate between the two

• High score betw A & C, and betw B & C, imply A &
B are related even though their own match score
is low

Copyright 2007 © Limsoon Wong

ISS: Search Procedure
Input
seq A

Matched seqs
M1, M2, ...

Matched regions
R1, R2, ...

Results
H1, H2, ...

BLAST against db
(p-value @ 0.081)

Keep regions in M1,
M2, … that match A.
Discard rest of M1,
M2, ...

BLAST against db
(p-value @ 0.0006)

Copyright 2007 © Limsoon Wong

ISS: IMPACT

No obvious match between
Amicyanin and Ascorbate Oxidase

Copyright 2007 © Limsoon Wong

Convincing homology
via Plastocyanin

Previously only
this part was
matched

ISS: IMPACT

Copyright 2007 © Limsoon Wong

PSI-BLAST
(Position-Specific Iterated BLAST)

• Given a query seq, initial
set of homologs is
collected from db using
GAP-BLAST

• Weighted multiple
alignment is made from
query seq and homologs
scoring better than
threshold

• Position-specific score
matrix is constructed from
this alignment

• Matrix is used to search db
for new homologs

• New homologs with good
score are used to
construct new position-
specific score matrix

• Iterate the search until no
new homologs found, or
until specified limit is
reached

Copyright 2007 © Limsoon Wong

SAM-T98 HMM Method

• Similar to PSI-BLAST
• But use HMM instead of position-specific score

matrix

Copyright 2007 © Limsoon Wong

Comparisons

Iterated seq.
comparisons vs
pairwise seq.
comparison

Any Question?

Copyright 2007 © Limsoon Wong

Acknowledgements

• Some slides on popular sequence alignment
tools are based on those given to me by Bin Ma
and Dong Xu

• Some slides on Needleman-Wunsch and Smith-
Waterman are based on those given to me by Ken
Sung

Copyright 2007 © Limsoon Wong

References
• J. Park et al. “Sequence comparisons using multiple sequences detect

three times as many remote homologs as pairwise methods”, JMB,
284(4):1201--1210, 1998

• J. Park et al. “Intermediate sequences increase the detection of
homology between sequences”, JMB, 273:349--354, 1997

• Z. Zhang et al. “Protein sequence similarity searches using patterns as
seeds”, NAR, 26(17):3986—3990, 1996

• B. Ma et al. “PatternHunter: Faster and more sensitive homology
search”, Bioinformatics, 18:440—445, 2002

• M. Li et al. “PatternHunter II: Highly sensitive and fast homology
search”, GIW, 164—175, 2003

• D. Brown et al. “Homology Search Methods”, The Practical
Bioinformatician, Chapter 10, pp 217—244, WSPC, 2004

Copyright 2007 © Limsoon Wong

References
• S.F.Altshcul et al. “Basic local alignment search tool”, JMB, 215:403--

410, 1990
• S.F.Altschul et al. “Gapped BLAST and PSI-BLAST: A new generation of

protein database search programs”, NAR, 25(17):3389--3402, 1997
• S.B.Needleman, C.D.Wunsch. “A general method applicable to the

search for similarities in the amino acid sequence of two proteins”, JMB,
48:444—453, 1970

• T.F.Smith, M.S.Waterman. “Identification of common molecular
subsequences”, JMB, 147:195—197, 1981

