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Outline -
« Overview of Supervised e Other Methods
Learning — K-Nearest Neighbour
— Support Vector Machines
« Decision Trees Ensembles — Bayesian Approach
— Bagging — Hidden Markov Models

— CS4
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BE &

Computational Supervised Learnin

e Also called classification

 Learn from past experience, and use the learned
knowledge to classify new data

« Knowledge learned by intelligent algorithms

« Examples:
— Clinical diagnosis for patients
— Cell type classification
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Data

e Classification application involves > 1 class of
data. E.g.,

— Normal vs disease cells for a diagnosis problem

 Training data is a set of instances (samples,
points) with known class labels

e Test data is a set of instances whose class labels
are to be predicted
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Typical Notations

e Training data
{X0 Y Xan Yohy oo Kis Y}
where x; are n-dimensional vectors
and y; are from a discrete space Y.
E.g., Y ={normal, disease}

e Test data
{{ul, ?), (U2, ?), ..., {uk, ?),}
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Process

Training data: X

A classifier, a mapping, a hypothesis

f(U)
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Relational Representation ...NNLU,,LS
of Gene Expression Data

n features (order of 1000)

gene, gene, gene, gene, ... gene,

m samples
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Features (aka Attributes)

e (Categorical features
— color = {red, blue, green}

e Continuous or numerical features
— gene expression
— age
— blood pressure

e Discretization
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BE &
QOutlook Temp Humiudity Windy| class
Sunny 75 70 true |Play
Sunny 80 90 true |Don’t
Sunny 85 83 false |Don’t
Sunny 77 95 true |Don’t
Sunny 69 70 false |Play
Overcast 2 90 true | Play
Overcast 83 78 false |Play
Overcast 64 65 true |Play
Overcast 81 75 false |Play
Rain 71 80 true | Don’t
Rain 65 70 true |Don’t
Rain 75 80 false |Play
Rain 68 80 false |Play
Rain 70 96 false |Play
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Overall Picture of HHMSW

Supervised Learning

Labelled | Algorithms
i B

Biomedical Decision trees
Financial Emerging patterns
Government SVM

Scientific Neural networks

Classifiers (Medical Doctors)
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Evaluation of a Classifier

 Performance on independent blind test data

« K-fold cross validation: Given a dataset, divide it
Into k even parts, k-1 of them are used for
training, and the rest one part treated as test data

« LOOCYV, a special case of K-fold CV

e Accuracy, error rate

 False positive rate, false negative rate, sensitivity,
specificity, precision

Copyright 2007 © Limsoon Wong




Requirements of ...NNEMS
Biomedical Classification

 High accuracy/sensitivity/specificity/precision

 High comprehensibility
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Importance of Rule-Based Metho 18

o Systematic selection of a small number of
features used for the decision making

= Increase the comprehensibility of the knowledge
patterns

e C4.5 and CART are two commonly used rule
Induction algorithms---a.k.a. decision tree
Induction algorithms
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Structure of Decision Trees

> o /. @ Root node
. Q@ Internal nodes
> a2
@ 5 Leaf nodes

e Ifx,>a,& X,>a, thenit’'s A class
e C4.5, CART, two of the most widely used
« Easy interpretation, but accuracy generally unattractive
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Elegance of Decision Trees o
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Every path from root
to a leaf forms a
decision rule
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Brief History of Decision Trees N

CLS (Hunt et al. 1966)--- cost driven
¥
CART (Breiman et al. 1984) --- Gini Index

ID3 (Quinlan, 1986) --- Information-driven

/

C4.5 (Quinlan, 1993) --- Gain ratio + Pruning ideas
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A Simple Dataset

QOutlook Temp Humiudity Windy| class
Sunny 75 70 true |Play
Sunny 80 90 true |Don’t
Sunny 85 83 false |Don’t
Sunny 77 95 true |Don’t
Sunny 69 70 false |Play
Overcast 2 90 true | Play
Overcast 83 78 false |Play
Overcast 64 65 true |Play
Overcast 81 75 false |Play
Rain 71 80 true | Don’t
Rain 65 70 true |Don’t
Rain 75 80 false |Play
Rain 68 80 false |Play
Rain 70 96 false |Play
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A Decision Tree

rain

true

Play

2

 Construction of atree is equivalent to determination of the
root node of the tree and the root node of its sub-trees

Exercise: What is the accuracy of this tree?
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Outlook [Temperature Humidity, Wind PIaiTennis

Sunny Hot High | Weak
Outlook
LSunnyT ‘Overcast‘ ‘Ram! Example
Source: Anthony Tung
/
Humidity Wind

/. N
Normal Strong Wea
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Most Discriminatory Feature Nk

 Every feature can be used to partition the training
data

« |If the partitions contain a pure class of training
Instances, then this feature is most
discriminatory
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Example of Partitions

o Categorical feature

— Number of partitions of the training data is equal to
the number of values of this feature

« Numerical feature
— Two partitions
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Categorical feature Numerical feature =)
i ; ] ; FINUS
‘/@) of Singapore
4 | 4

Instance # Humidity Windy| class
1 Sunny 75 70 true |Play
2 Sunny 80 90 true |[Don’t
3 sunny 85 85 false |Don’t
4 Sunny (2 95 true | Don’t
5 Sunny 69 70 false |Play
6 Overcast 72 90 true |Play
7 Overcast 83 /8 false |Play
8 Overcast 64 65 true |Play
9 Overcast 81 75 false |Play

10 Rain 71 80 true |Don’t
11 Rain 65 70 true |Don’t
12 Rain 75 80 false |Play
13 Rain 68 80 false Play
14 Rain 70 96 false Play
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e

/ Outlook =
Al sunny

10
11
12
13

14

Total 14 training < Outlook =
Instances overcast

A categorical feature is 10,11,12,13,14
partitioned based on its
number of possible values
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10 |[R
11|
12 (R
13 R
14 R

Total 14 training
Instances
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5,8,11,13,14
PP,D,P,P

r Temperature
<=70

A numerical feature is
generally partitioned by
choosing a “cutting point”

Temperature/1,2,3,4,6,7,9,10,12
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Steps of Decision Tree Constructior

of Singapore

e Select the “best” feature as the root node of the
whole tree

o Partition the dataset into subsets using this
feature so that the subsets are as “pure” as
possible

o After partition by this feature, select the best
feature (wrt the subset of training data) as the
root node of this sub-tree

 Recursively, until the partitions become pure or
almost pure
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Three Measures to Evaluate ...NNLU,,LS

Which Feature I1s Best

e Giniindex
* Information gain

 Information gain ratio
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Ginl Index

Let 4 = {Ci, ..., Ci} be all the classes. Suppose we are currently at a node
and D is the set of those samples t.hd,t have been moved to this node. Let f be a feature and d[f]
be the value of the feature f in a sample d. Let 5 be a range of values that the feature f can take.
Then the Gini index for f in D for the range S is defined as

JiniP(s) =1- 3 (|{dED | d e, {E[_f]ESH)

Ci €U D

The purity of a split of the value range S of an attribute f by some split-point into subranges 5
and S5 i1s then defined as

gifli}-}(glqs:z} — Z |{":'E = D |_Dd[f] (S S}l * f,i”“_r (5")
Se{S,52} |D|

i _ we choose the feature f and the apht. pmnt. P th;ﬂ minimizes
yim'j? (51, 5-_: over all possible alternative features and split-points. a

Gini index can be thought of as the expected value of the ratio of the diff of two arbitrary
specimens to the mean value of all specimens. Thus the closer it is to 1, the closer you are to the
expected “background distribution” of that feature. Conversely, the closer it is to 0, the more
“unexpected” the feature is.
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Information Gain

the difference between the information needed to identify the class of a
s;unp]e in /{4 before and after the value of the feature f is revealed is

Gain(f,U4,51,5:) = Ent(f,U{,S, USz) — E(f,U,{51,5:2})
where

o Ent(f,l{,5) is the class entropy of a range S with respect to a feature f and a collection of
classes I{. It is defined as

{deCildifleS) ,  (Hdec,|df]les)
Ent(f,U8) == 3 raeyuTdesy ¢ (I{dE Ou T difT S}|)

el

o E(f,U,{S1,52}) is the class information entropy of the partition (51, S2). It is defined as

. {del | df]€Si} |
E(f.U,5) = ESI{JEHM TeU5T = Ent(f,U,S;)

Then the information gain is the amount of information that is gained by looking at the value of
the feature f. and is defined as

InfoGain(f,U) = max{Gain(f,l{, 5, 52) | (51,52) is a partitioning of the
values of f in | JI{ by some point T}
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Information Gain Ratio

Gain(f,U, 5, 52)
SplitInfo(f, U, 51, 52)

GainRatio( f,l{, 51, 5:) =

where SplitInfo(f U, S1,S82) = Ent(f {U7", U?}, 51U Sy), and UF = g i {d € Ci | d[f] € S}

Then the information gain ratio is defined as

InfoGainRatio( f,U) = max{GainRatio( f,U, 51, 52) | (S1,S52) is a partitioning
of the values of f in | I/ by some point 7'}
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Characteristics of C4.5 Trees s

e Single coverage of training data (elegance)
 Divide-and-conquer splitting strategy

« Fragmentation problem = Locally reliable but
globally insignificant rules
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Example Use of Decision Tree Methods: PIroteomi
Approaches to Biomarker Discovery

e In prostate and bladder cancers (Adam et al.
Proteomics, 2001)

 In serum samples to detect breast cancer (Zhang
et al. Clinical Chemistry, 2002)

 In serum samples to detect ovarian cancer
(Petricoin et al. Lancet; Li & Rao, PAKDD 2004)
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Motivating Example

h,, h,, hy are indep classifiers w/ accuracy = 60%
C,, C, are the only classes
tis atestinstancein C;
h(t) = argmaxcer ey I, €{hy, hy, ha} | hy(t) = CY
Then prob(h(t) = C,)
= prob(h,(t)=C, & h,(t)=C; & h4(t)=C,) +
prob(h,(t)=C, & h,(t)=C, & h4(t)=C,) +
prob(h,(t)=C, & h,(t)=C, & h4(t)=C,) +
prob(h,(t)=C, & h,(t)=C; & h,4(t)=C,)
= 60% * 60% * 60% + 60% * 60% * 40% +
60% * 40% * 60% + 40% * 60% * 60% = 64.8%
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Bagging
 Proposed by Breiman (1996)

 Also called Bootstrap aggregating

« Make use of randomness injected to training data

Copyright 2007 © Limsoon Wong
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Original training set -
".. Draw 100 samples
*~.with replacement
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Decision Making by Bagging %)

Given a new test sample T

bagged(T) = argmaxe, ¢ |th; € H | hi(T) = Gy}

where U = {C}, ..., C}}

Exercise: What does the above formula mean?
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CS4

 Proposed by Li et al (2003)
e CS4: Cascading and Sharing for decision trees

e Doesn’'t make use of randomness
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Main ldeas

root nodes

@D
— @\' tree-1
2S
total k trees =< tree-2

Selection of root nodes is in a cascading manner!
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Decision Making by CS4

pos POS pos

rule; ,rules 'rule

neg neg neg

rule; ”,rule, rule .

k1

ScoreP”®(T) = Zcoverage(rulep %)
1=1
k2

Z coverage(rule
1=1

Score™(T)

neg)

Not equal voting
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Summary of Ensemble Classifier““"m

Bagging | Rules may
not be correct
..................................................................................................................... . when
applied to
j training data
CS4 Rules correct

Exercise: Describe the 3 decision tree
ensemble classifiers not explained in this ppt

Copyright 2007 © Limsoon Wong
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Outline

 K-Nearest Neighbour

e Support Vector Machines
« Bayesian Approach

« Hidden Markov Models

Exercise: Name and describe one other
commonly used machine learning method
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How KNN Works

e Gilven anew case e A common “distance”
measure betw samples x

e Find k “nearest” andyis

neighbours, i.e., k most

similar points in the \/Z,ff-fﬂ[f] - y[f])?

training data set

where f ranges over
 Assign new case to the features of the samples
same class to which most
of these neighbours
belong

Exercise: What does the formula above mean?
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lllustration of KNN (k=8)

g Neighborhood
5 of class ©
3 of class +
-0
0 o w

Image credit: Zaki
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Some Issues

« Simple to implement

« But need to compare new case against all training
cases

— May be slow during prediction

 No need to train
« But need to design distance measure properly
= may need expert for this

o« Can’t explain prediction outcome
— Can’t provide a model of the data

Copyright 2007 © Limsoon Wong




Anbeek et al, Neurolmage
21:1037-1044, 2004

Use kNN to automated
segmentation of white
matter lesions in cranial MR
Images

Rely on info from T1-
weighted, inversion
recovery, proton density-
weighted, T2-weighted, &
fluid attenuation inversion
recovery scans

ANUS

% National University

of Singapore

Fig. 3. Classification of a patient with moderate lesion load. (A) FLAIR
image, (B) manual segmentation, (C) probability map, (D) segmentations
derived from probability map with different thresholds: black: probability
(P)y =0, blue: 0=P=0.3, green: 0.3<P=0.5, vellow: 0.5<=P =038, red:
DE<P=1.
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example Use of kh: Ovarian Cancer Diagn® 9 mlmeS

Based on SELDI Proteomic Data

n T T T T
e Lietal, Bioinformatics 2 o
20:1638-1640, 2004 ~ . _
;';-' __________ I Spp
z ® LAY =
 Use kNN to diagnose ¥ ST Hdlian |
ovarian cancers using o B
proteomic spectra b J
Bl _
« Data set is from Petricoin g 80 —— Ll
et al, Lancet 359572'577, Number of JLO]] ranked mfz ratios

2002

Fig. 1. Minimum, median and maximum of percentages of correct
= =

prediction as a function of the number of top-ranked m/z ratios in

50 independent partitions into learning and validation sets.
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Example Use of khN: Prediction of Compounwmgmsw
Signature Based on Gene Expr Profiles
profiles corr to biological

Peroxisome prolifgratdrs
responses to exposures to L

known compounds whose g *

toxicological and 5 o ’ , r
pathological endpoints are

well characterized h einducers

e Use kNN to infer effects of -«

« Hamadeh et al, Toxicological
Sciences 67:232-240, 2002

.|.|.¢.| Lal

e Store gene expression =

n
RETE. ST

Log, (Treated/Control)

Fold Induction/Repression

RNTSsecEyscoEcassagg assaydss:s
unknown compound based HiH i
on gene expr profiles 25;

iInduced by it
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Basic Ildea

Image credit: Zien

feature ﬂ ﬂ

space

(©

(a) Linear separation not possible w/o errors
(b) Better separation by nonlinear surfaces in input space

(c ) Nonlinear surface corr to linear surface in feature space.
Map from input to feature space by “kernel” function ®

= “Linear learning machine” + kernel function as classifier
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Linear Learning Machines

 Hyperplane separating the x’s and 0’s points Is
given by (WeX) + b =0, with (WeX) = XW[j]*X[j]
= Decision function is [Im(X) = sign((WeX) + b))

Copyright 2007 © Limsoon Wong
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Linear Learning Machines

e Solution is alinear combination of training points
X, with labels Y,

W] = Zyou XY, X, ],
with o, > 0, and Y, = +1
= lIm(X) = sign(Z, o, *Y, * (X,.*X) + b)

“data” appears only in dot product!
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Kernel Function
o IIm(X) = sign(Z, o, XY, * (X *X) + b)

¢ svm(X) =sign(Z, o, *Y,* (DX, s ®X) + b)
= svm(X) = sign(Z, o, *Y, * K(X,,X) + b)
where K(X,,X) = (®X,* ©X)

Copyright 2007 © Limsoon Wong
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Kernel Function

e svm(X) =sign(Z, o, *Y,* K(X,,X) + b)
= K(A,B) can be computed w/o computing ®

* In fact replace it w/ lots of more “powerful”
kernels besides (A *B). E.g.,

_ K(A,B) = (A » B)d
_ K(A,B) = exp(— || A B|[2/ (2*5)), ...

Copyright 2007 © Limsoon Wong
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How SVM Works

e svm(X) =sign(Z, o, *Y,* K(X,,X) + b)

e To find o, IS a quadratic programming problem
max: o, —0.5* 2, 2 o o Y *Y KK X )
subject to: %, a, *Y, =0
and for all o, , C > o 20

 To find b, estimate by averaging

Y = Zyop*Y, K (X, X))
for all o, 20
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Example Use of svm: Prediction of Protelr'mymsw

of Singapore

Protein Interaction Sites From Sequences

 Koike et al, Protein
Engineering Design &
Selection 17:165-173, 2004

* |dentification of protein-
protein interaction sites is
Impt for mutant design &
prediction of protein-
protein networks

 [nteraction sites were )
predICted here USIﬂg SVM & Legend: green=TP, white=TN, yellow=FN, red=FP
i A: human macrophage migration inhibitory factor
prOfIIeS Of B & C: the binding proteins
sequentially/spatially '
neighbouring residues
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Example Use of SVM: Prediction of Gene Qo:}_gn'fmsw
Function From Gene Expression

« Brown et al., PNAS 91:262-267, 2
2000

* Use SVMto identify sets of §
genes w/ a c’'mon function g
)

based on their expression
profiles

« Use SVM to predict

. _‘ 1 i i i i i A
functional roles of alpha o ods he recod
. Hhm:urwnz:w
u nCharaCterlzed yeaSt Fig. 1.  Expression profile of YPLO37C compared with the MYGD class of
T cytoplasmic ribosomal proteins. YPLO37C s classified as aribosomal protein by the
O R FS b as ed on th eir SVMs but is not included in the class by MYGD. The figure shows the expression
I I profile for YPLO37C, along with standard deviation bars for the class of cytoplas-
520 p ression p ro fl I €s mic ribosomal proteins. Ticks along the x axis represent the beginnings of exper-

imental series.
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Example Use of svu: Recognition of mgms

Protein Translation Initiation Sites

Srfiank EXOI intron exon intron eXan Frfiank
.‘x;\ IEEEEEETE R TR,
§ : * kS [ | /. £
", Y | | s fe’
b ‘x\ I I g s DNA:A,CGT
transcription ‘\\ %, | | ),f J,‘F
\ g i £
! o l ;'f ,.*'f
" | I

x
TS A e e mRNA: A CLGU
coding region

Zien et al., Bioinformatics 16:799-807, 2000

Use SVM to recognize protein translation initiation sites from
genomic sequences

Raw data set Is same as Liu & Wong, JBCB 1:139-168, 2003
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Bayes Theorem

Pt = P+ PO

* P(h) = prior prob that hypothesis h holds
« P(d|h) = prob of observing data d given h holds
* P(h|d) = posterior prob that h holds given observed data d

Copyright 2007 © Limsoon Wong
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Bayesian Approach

« Let HDbe all possible classes. Given a test
Instance w/ feature vector {f, = vy, ..., f, = v}, the
most probable classification is given by

argmaxy, cgP(hilfi =v1,..., fa = Un)
 Using Bayes Theorem, rewrites to

P(.fl =¥,-.-; fn =ﬂﬂ|hj)*P(kﬁ)
are hi €H P(fi=m fn=%n)

-----

« Since denominator is independent of h;, this
simplifies to

argmaxy, e g P(fi = v1,..., fn = vnlly) » P(Ry)
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- An Example
Training samples

o ® S . Prior probability for GREEN = Jwmberof GREENenjects — — A [
." . © : 0e.%, o Tatal number aof abjecis
e o0 % 9,0 © _
so’ 0 o 3 : : Frior probabifity jor REL o« Number of RED OE}J_ECE — 20/ 60
: :‘ ‘- ¢ oo, Total number af objecis
0o . * 9

A testing instance X

e o ® Likelihood of X given GREEN = Number of GREEN in the vicinity of X — 1/40
e ® ° o t'.:,: . Total number of GREEN cazes
see® %o 02 ® @ .
. RV 00000 Likelihood of X given RED Mumber of RED in the vicinity aof X — 3/20
se® e, /0 @ L] Total number of BB cases
RAT
a
Fagtarior probabifity of X being GREEN o Wwe CIaSSify X as RED
FPrior prabability aof GREEN ¥ Likelibood of X given GREEN . . .
a1 since its class membership
& 40 &0 : .
Fagterior probabilityof X being RED « aChIeveS the IargeSt pOSterlor
Prior probability of RED ¥ Likelihood of X given RED p robabi | |ty
= E}( i = i
6 20 20

Source:
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Nalve Bayes

But estimating P(f,=v,, ..., f,=v,|h;) accurately may
not be feasible unless training data set is
sufficiently large

 “Solved” by assuming f,, ..., f, are conditionally
Independent of each other

* Then argmax, cxP(fi =vi,..., fn = valh;) » P(hy)
= argmax;, cgr || P(fe = wilhy) » P(h;)

« where P(h;) and P(f;=v;|h;) can often be estimated
reliably from typical training data set

Exercise: How do you estimate P(h;) and P(f,=v;|h;)?

Copyright 2007 © Limsoon Wong




Abstractly, the probability model for a classifier is a conditional model

p(C|Fy,. .., F,)

over a dependent class variable ¢ with a small number of outcomes or classes, conditional on several feature vanables 7| through .. The
prablem is that if the number of features s is large or when a feature can take on a large number of values, then basing such a madel on
probability tables is infeasible. YWe therefore reformulate the model to make it more tractable.

Using Bayes' theorem, we write

plF,..., Fy) '

In practice we are anly interested in the numerator of that fraction, since the denominator does not depend on < and the values of the features
F are given, so that the denorminator is effectively constant. The numerator is equivalent to the joint probability model

p(C, Fy,...,F,)
which can be rewritten as follows, using repeated applications of the definition of conditional probability:
p(C, Fy,...,F,)
=p(C) p(F.,. .., F,|C)
= p(C) p(F1|C) p(F,.. ., Fy|C, Fy)
= p(C) p(F\|C) p(F|C, Fy) p(Fs, ..., Fy|C, Fy, Fy)
= p(C) p(F1|C) p(F:|C, Fy) p(F3|C, Fy, Fy) p(Fy, ..., R |C, F, F3, Fy)

and so forth. Mow the “naive” conditional independence assumptions corme into play: assume that each feature 7 is conditionally independent
of every other feature F, far J % T . This means that

p(Ei|C, Fy) = p(Fi|C)
and so the joint model can be expressed as

p(C, Fy, ..., F,) = p(C) p(Fi|C) p(F:|C) p(F5|C) ---
=p(C) [ [ »(E|C).

i=1

p(C|F, ..., Fy) =

Source: Wikipedia
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Independence vs
Conditional Independence
 Independence: P(A,B) = P(A) * P(B)
 Conditional Independence: P(A,B|C) = P(A|C) * P(B|C)
 Indep does not imply conditional indep

— Consider tossing a fair coin twice
e Ais event of getting head in 1st toss
B is event of getting head in 2nd toss
 Cis event of getting exactly one head

— Then A={HT, HH}, B={HH, TH} and C={HT, TH}
— P(A,B|C) =P({HH}|C)=0

— P(A|C) = P(A,C)/P(C) =P({HT})/P(C)=(1/4)/(1/2) =1/2
_ Similarly, P(B|C) =1/2
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Example Use of Bayesian: DeSign of Screens
Macromolecular Crystallization

e Hennessy et al., Acta Cryst .
D56:817-827, 2000

Diffraction

« Xtallization of proteins _
requires search of expt o /{" b
settings to find right ot ( e 3 (b Y (er \ff'é?ﬁfili‘.g
conditions for diffraction- \-)h J

--_a:__\_\::__. - _____,_,.- > \‘L\'H I| --_:-,." ___-'\.\

quality xtals = S 72

e« BMCD is adb of known Figure 1

Crystallization parameter dependency graph. The graph represents the

', Concen g8

Xtal ||Zat|0n Cond|t|0ns parameters included in the calculation of the estimated probability of
success and their dependencies. A connecting arc from pH to buffer

° I indicates that the probability distribution for the buffer may depend on
Use Bayes to d eterm ine the value of the pH. The lack of a connecting arc between two parame ters

reflects conditional independence (the probability distribution for a
prOb Of Success Of a Set Of paran:ctcr i5 i;dc pcndcntp:jf the ‘a-'alu:: {JEFL}hc {JLhc:’para;'chc:i.
expt conditions based on
BMCD
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What is a HMM e
« HMM is a stochastic
generative model for a,
sequences a,
 Defined by model ‘ ‘
parameters

— finite set of states S
— finite alphabet A

— transition prob matrix T
— emission prob matrix E
« Move from state to state

according to T while emitting
symbols according to E
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The Order of a HMM

 In nth order HMM, T & E depend on all n previous
states

 E.g., for 1st order HMM, given emissions X = X4, X,
..., & states S=s,, S,, ..., the prob of this seq is

Prob(X, 81 = [[Pmb(mf |8:) = ]:[E{a?.;lar-;} T 8;.1.8;)
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Using HMM
 Given the model parameters, compute the
probability of a particular output sequence. Solved
by the forward algorithm

 Given the model parameters, find the most likely
sequence of (hidden) states which could have
generated a given output sequence. Solved by the
Viterbi algorithm

 Given an output sequence, find the most likely set
of state transition and output probabilities. Solved
by the Baum-Welch algorithm

Exercise: Describe these algorithms
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Example: Dishonest Casino

e (Casino has two dices:
— Fair dice
e P()=1/6,i=1..6
— Loaded dice
e P())=1/10,i=1.5
« P()=1/2,i=6

e (Casino switches betw fair

& loaded die with prob 1/2.

Initially, dice is always fair

National University
of Singapore

TINUS
3

Game:

— You bet $1

— You roll

— Casino rolls

— Highest number wins $2

Question: Suppose we
played 2 games, and the
sequence of rolls was 1, 6,
2, 6. Were we likely to have
been cheated?
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“Visualization” of Dishonest Casing ==

1/2
1/2 1/2

1/2

Emission Matrix Transition Matrix

E1|Fair)y= 1/6 E1|Loaded)= 1/10 T({Loaded,Loaded) = 1/2
H2|Fair)= 1/6 E2|Loaded)= 1/10 T(Loaded Fair)= 1/2
Hi|Fairy= 1/6 H3|Loaded)= 1/10 T(Fair,Fair)= 1/2
H4|Fair)= 1/6 H4|Loaded) = 1/10 T(Fair,Loaded) = 1/2
HS5|Rairy= 1/6 H5|Loaded) = 1/10 T(?Fair)= 1.0
HE|Fair)= 1/6 EbE|Loaded) = 1/2 T(?Loaded)= 0.0
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1,6,2,6? 95 MU
We were probably cheated...

Probi X, & = Fair, Fair, Fair, Fair) = E(1|Fair)«T(7. Falr)s
E(§|Fair) « T{ Fair, Fatr]
E(2|Fair) & T Fatr. Fatr}

E(@|Fair) « T'{ Fatr. Fatr]

1$1$1$1$1$1$1$1
¢ 6 2 6 2 &

- 9.6451 5 10~"

Probi X, & = Fafr, Eoaded, Fair, Loaded) = E(1|Fair)sT(7. Falr)s
E{@)Loaded) & T'( Fair, Loaded) s
E(2|Loaded) » T Loaded, Fafr) »

E(6)Loaded) & T'( Fair, Loaded)

1,g,1,1,1.1.1 1
6 s g E%s" 5

= §.68064 10~
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Example Use of HMM: Protein Families Modelbig

« Baldietal.,, PNAS 91:1059-
1063, 1994 d;

e HMM is used to model
families of biological
sequences, such as S | oy E
kinases, globins, &
Immunoglobulins

e Bateman et al., NAR 32:D138-
D141, 2004

; FiG. 1. HMM architecture, S and E are the start and end states.
y HMM IS US ed to mo d el Sequence of main states m; is the backbone. Side states d; (resp. ;)

6190 fam | I | es Of pI‘Otei n correspond to deletions (resp. insertions).
domains in Pfam
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Example Use of HMM: GENE Flndlng NUS

INn Bacterial Genomes

Nutmnal University
Singapore

« Borodovsky et al., NAR - gmmm-wﬁ
23:3554-3562, 1995 e b "“"HMW _
&
= o .
 Investigated statistical osl- o ol
3
features of 3 classes (wrt - . ae Em::& {
level of codon usage bias) ol o et | My b
i & = S o Bpd® |
of E. coli genes 8 5, m ? i
E E ¢ p 929, %
o 3]
. &IM-— ﬁh:' =
« HMM for nucleotide : o -
sequences of each class oz - ""a"%_ e o
was developed g
T E?Es: a6 e e
o 1]

Figure 4. Distbwtion of GeneMark scores ior 126 new gencs, The & axk
represenis. the, spore qomputed by C845_ECOr] prosram, ¥ 2515 Pepresepts e
score compuiad by (hid_ program. The quadront x < B4, y B4 ks
empty siwce a threshold of (14 was applied.
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« Wekais a collection of machine learning
algorithms for data mining tasks. The algorithms
can either be applied directly to a dataset or
called from your own Java code. Weka contains
tools for data pre-processing, classification,
regression, clustering, association rules, and
visualization.

Exercise: Download a copy of WEKA. What are the names
of classifiers in WEKA that correspond to C4.5 and SVM?
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