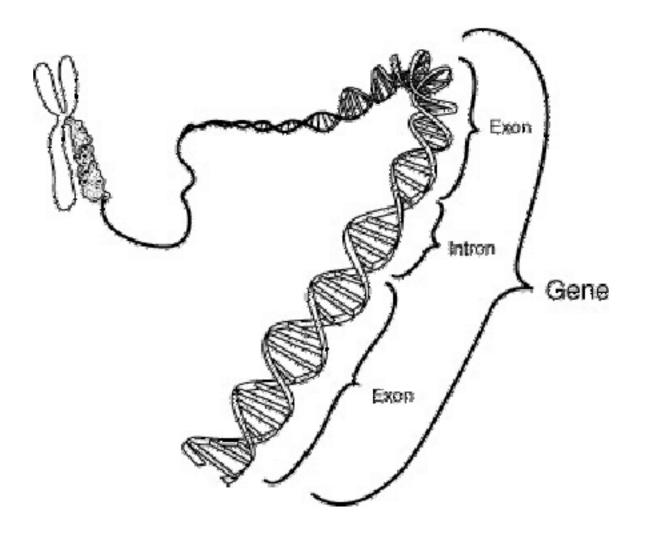
For written notes on this lecture, please read Chapters 4 and 7 of The Practical Bioinformatician

CS2220: Introduction to Computational Biology Lecture 4: Gene Feature Recognition

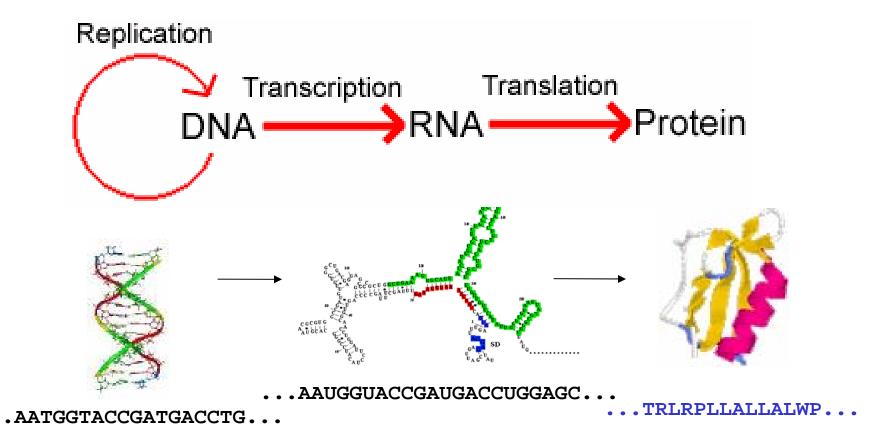
Limsoon Wong 2 February 2007

Central Dogma of Molecular Biology

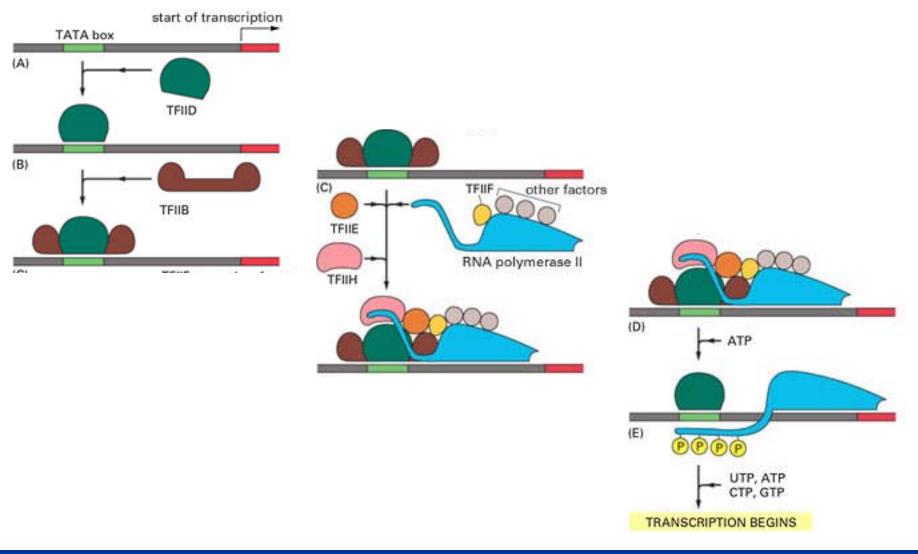
What is a gene?



Central Dogma

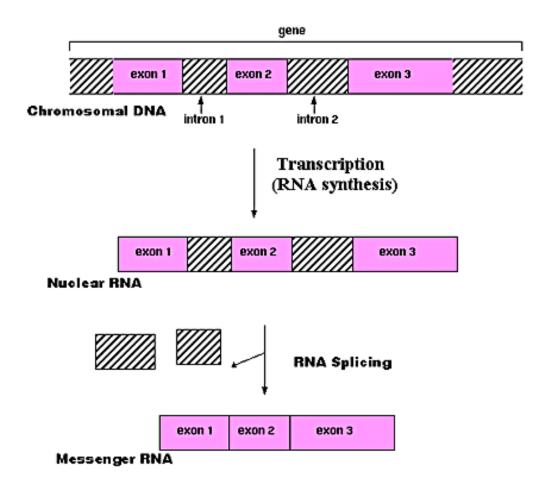


Transcription: DNA→nRNA



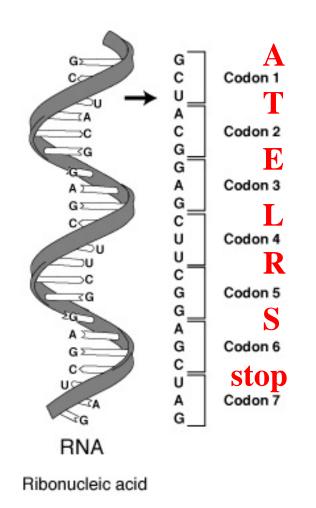
Copyright 2007 © Limsoon Wong

Splicing: nRNA→mRNA



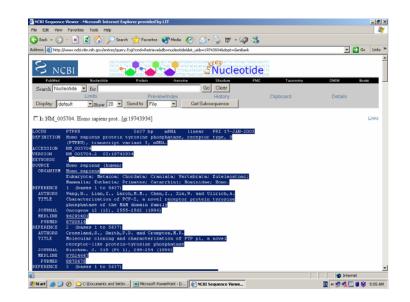
RNA synthesis and processing

Translation: mRNA→protein



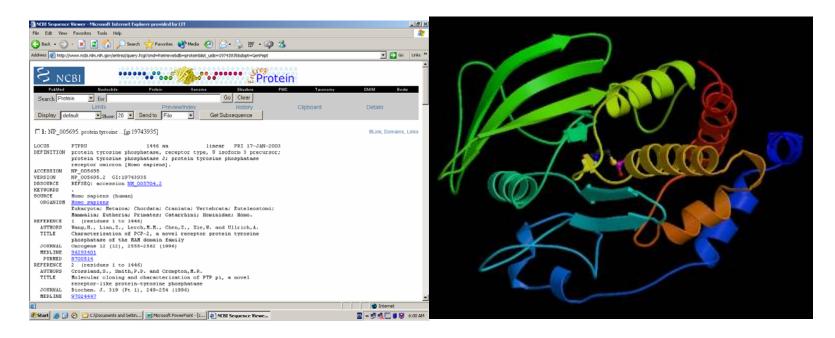
First	U	С	А	G	Last
U	Phe F	Ser <mark>S</mark>	Tyr Y	Cys C	U
	Phe	Ser	Tyr	Суз	С
	Leu 📘	Ser	Stop (Ochre)	Stop (Umber)	Α
	Leu	Ser	Stop (Amber)	Trp 🛛 🛛	G
С	Leu	Pro P	His H	Arg R	U
	Leu	Pro	His	Arg	С
	Leu	Pro	Gin Q	Arg	Α
	Leu	Pro	Gln	Arg	G
Α	lle I	Thr T	Asn N	Ser	U
	lle	Thr	Asn	Ser	С
	Ile	Thr	Lys K	Arg	Α
	Met M	Thr	Lys	Arg	G
G	Val V	Ala 🗛	Asp D	Gly G	U
	Val	Ala	Asp	Gly	С
	Val	Ala	Glu 🖪	Gly	Α
	Val	Ala	Glu	Gly	G

- A sample GenBank record from NCBI
- <u>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cm</u> <u>d=Retrieve&db=nucleotide&list_uids=19743934&</u> <u>dopt=GenBank</u>



What does protein data look like?

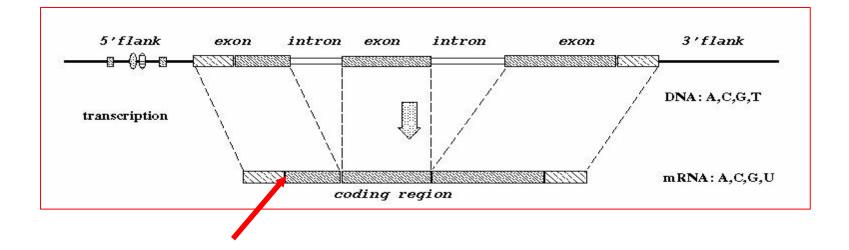
- A sample GenPept record from NCBI
- <u>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cm</u> <u>d=Retrieve&db=protein&list_uids=19743935&dopt</u> <u>=GenPept</u>



Recognition of Translation Initiation Sites

An introduction to the World's simplest TIS recognition system

Translation Initiation Site



A Sample cDNA

299 HSU27655.1 CAT U27655 Homo sapiens	
CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCC <u>ATG</u> GCTGAACACTGACTCCCAGCTGTG	80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGC <u>ATG</u> GCTTTTGGCTGTCAGGGCAGCTGTA	160
GGAGGCAG <mark>ATG</mark> AGAAGAGGGAG <mark>ATG</mark> GCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA	240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT	
	80
ieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	160
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	240
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	

• What makes the second ATG the TIS?

Approach

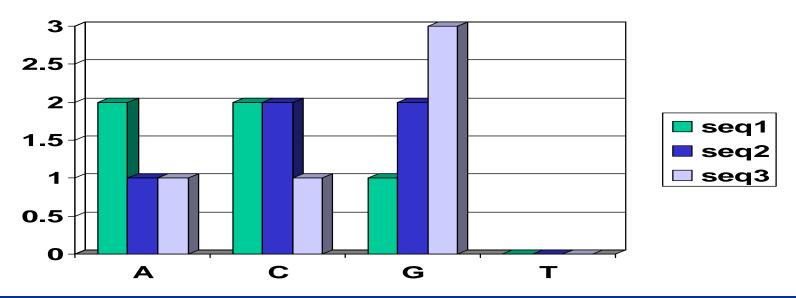
- Training data gathering
- Signal generation
 - k-grams, distance, domain know-how, ...
- Signal selection
 - Entropy, χ 2, CFS, t-test, domain know-how...
- Signal integration
 - SVM, ANN, PCL, CART, C4.5, kNN, ...

Training & Testing Data

- Vertebrate dataset of Pedersen & Nielsen [ISMB'97]
- 3312 sequences
- 13503 ATG sites
- 3312 (24.5%) are TIS
- 10191 (75.5%) are non-TIS
- Use for 3-fold x-validation expts

Signal Generation

- K-grams (ie., k consecutive letters)
 - $K = 1, 2, 3, 4, 5, \dots$
 - Window size vs. fixed position
 - Up-stream, downstream vs. any where in window
 - In-frame vs. any frame



Signal Generation: An Example

- Window = ± 100 bases
- In-frame, downstream
 - GCT = 1, TTT = 1, ATG = 1...
- Any-frame, downstream

- GCT = 3, TTT = 2, ATG = 2...

• In-frame, upstream

- GCT = 2, TTT = 0, ATG = 0, ...

Exercise: Find the in-frame downstream ATG

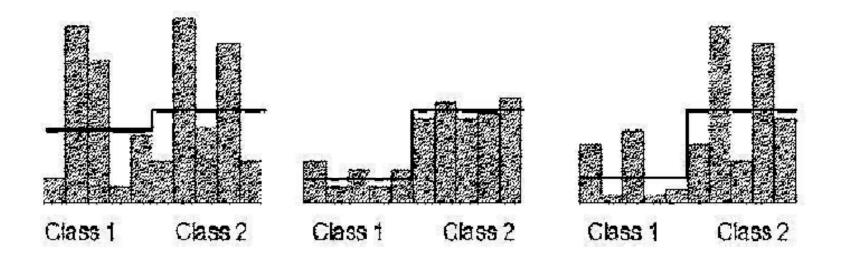
Exercise: What are the possible k-grams (k=3) in this sequence?

Too Many Signals

- For each value of k, there are 4^k * 3 * 2 k-grams
- If we use k = 1, 2, 3, 4, 5, we have 24 + 96 + 384 + 1536 + 6144 = 8184 features!
- This is too many for most machine learning algorithms

Signal Selection (Basic Idea)

- Choose a signal w/ low intra-class distance
- Choose a signal w/ high inter-class distance



Signal Selection (e.g., t-statistics)

The t-stats of a signal is defined as $t = \frac{|\mu_1 - \mu_2|}{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}}$

where σ_i^2 is the variance of that signal in class *i*, μ_i is the mean of that signal in class *i*, and n_i is the size of class *i*.

Signal Selection (e.g., MIT-correlation)

The MIT-correlation value of a signal is defined as

$$MIT = \frac{|\mu_1 - \mu_2|}{\sigma_1 + \sigma_2}$$

where σ_i is the standard deviation of that signal in class *i* and μ_i is the mean of that signal in class *i*.

Signal Selection (e.g., $\chi 2$)

The \mathcal{X}^2 value of a signal is defined as:

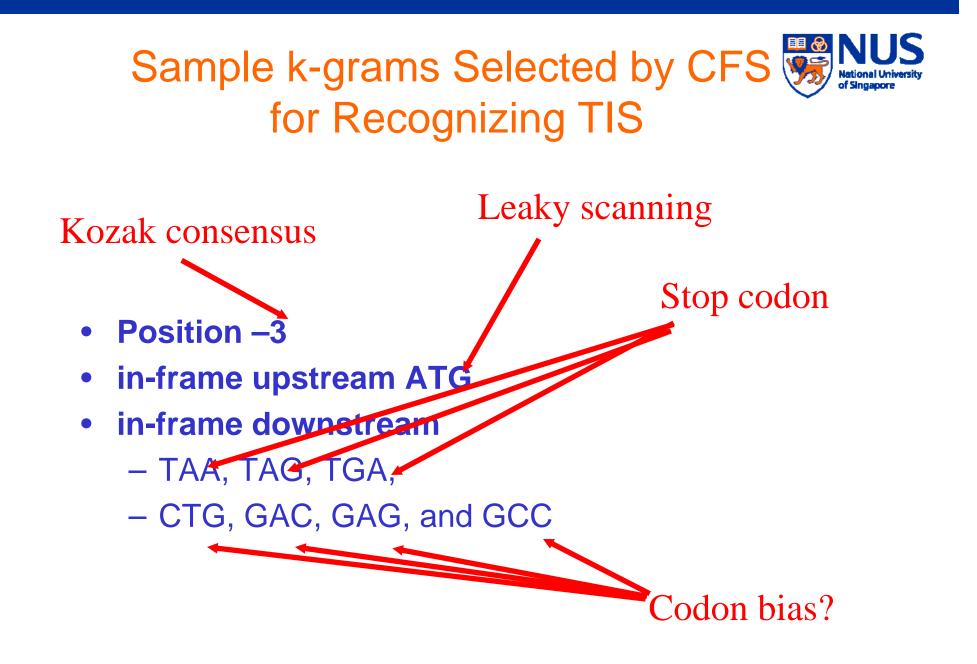
$$\mathcal{X}^2 = \sum_{i=1}^m \sum_{j=1}^k \frac{(A_{ij} - E_{ij})^2}{E_{ij}},$$

where m is the number of intervals, kthe number of classes, A_{ij} the number of samples in the *i*th interval, *j*th class, R_i the number of samples in the *i*th interval, C_j the number of samples in the *j*th class, N the total number of samples, and E_{ij} the expected frequency of A_{ij} ($E_{ij} = R_i * C_j/N$).

Signal Selection (e.g., CFS)

- Instead of scoring individual signals, how about scoring a group of signals as a whole?
- CFS
 - Correlation-based Feature Selection
 - A good group contains signals that are highly correlated with the class, and yet uncorrelated with each other

Exercise: What is the main challenge in implementing CFS?



Copyright 2007 © Limsoon Wong

Signal Integration

- kNN
 - Given a test sample, find the k training samples that are most similar to it. Let the majority class win
- SVM
 - Given a group of training samples from two classes, determine a separating plane that maximises the margin of error
- Naïve Bayes, ANN, C4.5, ...

Results (3-fold x-validation)

	predicted as positive	predicted as negative
positive	TP	FN
negative	FP	TN

Exercise: What is TP/(TP+FP)?

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
Naïve Bayes	84.3%	86.1%	66.3%	85.7%
SVM	73.9%	93.2%	77.9%	88.5%
Neural Network	77.6%	93.2%	78.8%	89.4%
Decision Tree	74.0%	94.4%	81.1%	89.4%

Improvement by Voting

• Apply any 3 of Naïve Bayes, SVM, Neural Network, & Decision Tree. Decide by majority

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB+SVM+NN	79.2%	92.1%	76.5%	88.9%
NB+SVM+Tree	78.8%	92.0%	76.2%	88.8%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+NN+Tree	75.9%	94.3%	81.2%	89.8%
Best of 4	84.3%	94.4%	81.1%	89.4%
Worst of 4	73.9%	86.1%	66.3%	85.7%

Improvement by Scanning

- Apply Naïve Bayes or SVM left-to-right until first ATG predicted as positive. That's the TIS
- Naïve Bayes & SVM models were trained using TIS vs. Up-stream ATG

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB	84.3%	86.1%	66.3%	85.7%
SVM	73.9%	93.2%	77.9%	88.5%
NB+Scanning	87.3%	96.1%	87.9%	93.9%
SVM+Scanning	88.5%	96.3%	88.6%	94.4%

Performance Comparisons

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB	84.3%	86.1%	66.3%	85.7%
Decision Tree	74.0%	94.4%	81.1%	89.4%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+Scanning	88.5%	96.3%	88.6%	94.4%*
Pedersen&Nielsen	78%	87%	-	85%
Zien	69.9%	94.1%	-	88.1%
Hatzigeorgiou	-	-	-	94%*

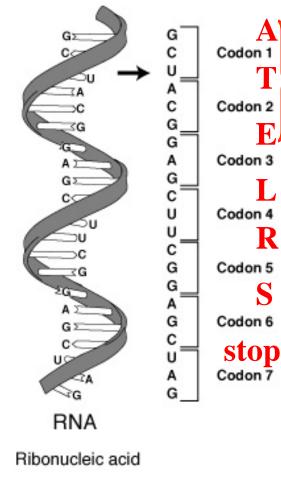
* result not directly comparable

Technique Comparisons

- Pedersen&Nielsen [ISMB'97]
 - Neural network
 - No explicit features
- Zien [Bioinformatics'00]
 - SVM+kernel engineering
 - No explicit features
- Hatzigeorgiou [Bioinformatics'02]
 - Multiple neural networks
 - Scanning rule
 - No explicit features

- Our approach
 - Explicit feature generation
 - Explicit feature selection
 - Use any machine learning method w/o any form of complicated tuning
 - Scanning rule is optional

mRNA→protein

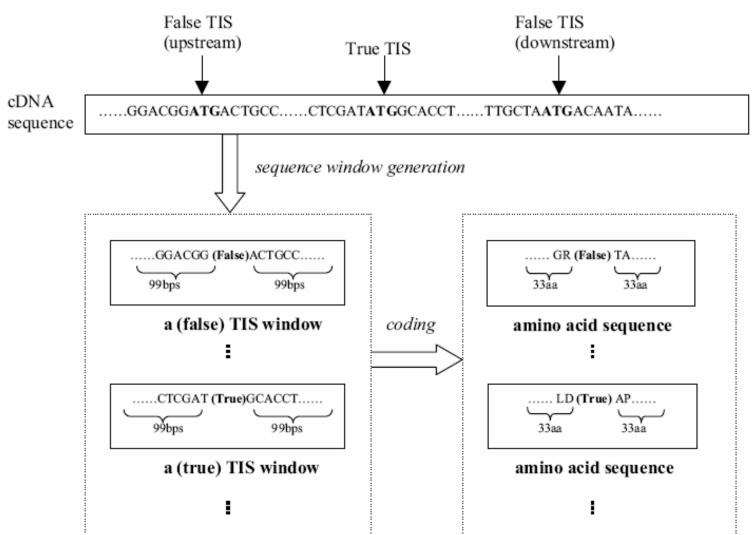


Exercise: List the first 10 amino acid in our example sequence

How about using k-grams from the translation?

First	U	С	Α	G	Last
U	Phe 📊	Ser S	Tyr 🗸	Cys	U
	Phe	Ser	Tyr	Cys	С
	Leu T.	Ser	Stop (Ochre)	Stop (Umber)	Α
	Leu	Ser	Stop (Amber)	Trp W	G
С	Leu	Pro P	His H	Arg R	U
	Leu	Pro	His	Arg	С
	Leu	Pro	Gin 이	Arg	Α
	Leu	Pro	Gin	Arg	G
А	Ile 🗕	Thr 📊	Asn N	Ser	U
	Ile 📩	Thr	Asn	Ser	С
	Ile	Thr	Lys K	Arg	Α
	Met M	Thr	Lys	Arg	G
G	Val V	Ala 🗛	Asp D	Gly G	U
	Val	Ala	Asp	Gly	С
	Val	Ala	Glu 🖪	Gly	Α
	Val	Ala	Glu	Gly	G

Amino-Acid Features



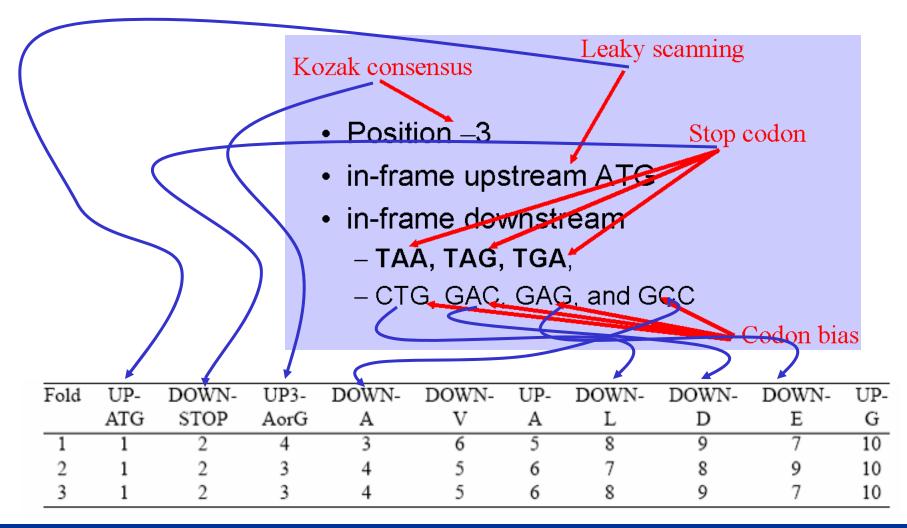
Copyright 2007 © Limsoon Wong

Amino-Acid Features

	False TIS (upstream)	True TIS	False TIS (downstream)
cDNA sequence	GGACGGATGACTGCCCTCC	ATATGGCACCT	TTGCTAATGACAATA
	sequence wi	ndow generation	
	998ps 998ps		GR (False) TA
	a (false) TIS window	coding	amino acid sequence
	1	\Longrightarrow	I
	99tps 99tps		LD(Trae) AP 33aa 33aa
	a (true) TIS window		amino acid sequence
	I		$\sqrt{2}$

New feature space (total of 927 features + class label)						
42 1-gram amino acid patterns	882 2-gram amino acid patterns	3 bio-know- ledge patterns	class label			
UP-A, UP-R,UP-AA, UP-AR,,,UP-N, DOWN-UP-NN, DOWN-AA,A, DOWN-R,,DOWN-AR ,,DOWN-NDOWN-NN(numeric type)(numeric type)		DOWN4-G UP3-AorG, UP-ATG (boolean type, Y or N)	True, False			
	Frequency as val	ues	-			
1, 3, 5, 0, 4,	6, 2, 7, 0, 5,	N, N, N,	False			
6, 5, 7, 9, 0, i	2, 0, 3, 10, 0,	Y, Y, Y, I	True I			

Amino Acid K-grams Discovered (by entropy)



Copyright 2007 © Limsoon Wong

Independent Validation Sets

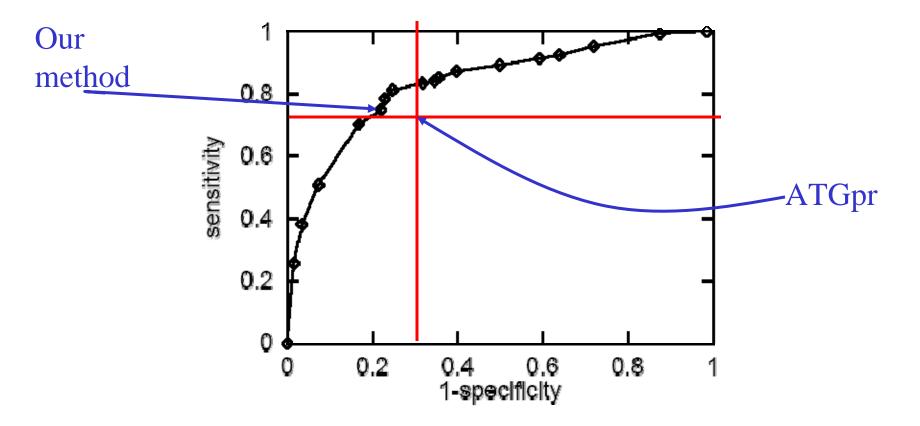
- A. Hatzigeorgiou:
 - 480 fully sequenced human cDNAs
 - 188 left after eliminating sequences similar to training set (Pedersen & Nielsen's)
 - 3.42% of ATGs are TIS
- Our own:
 - well characterized human gene sequences from chromosome X (565 TIS) and chromosome 21 (180 TIS)

Validation Results (on Hatzigeorgious)

Algorithm	Sensitivity	Specificity	Precision	Accuracy
SVMs(linear)	96.28%	89.15%	25.31%	89.42%
SVMs(quad)	94.14%	90.13%	26.70%	90.28%
Ensemble Trees	92.02%	92.71%	32.52%	92.68%
2010-000 gr /d I - 3	A # A 4 A /	AA #14/	A 1 200/	AA AAA/

 Using top 100 features selected by entropy and trained on Pedersen & Nielsen's dataset

Validation Results (on Chr X and Chr 21)

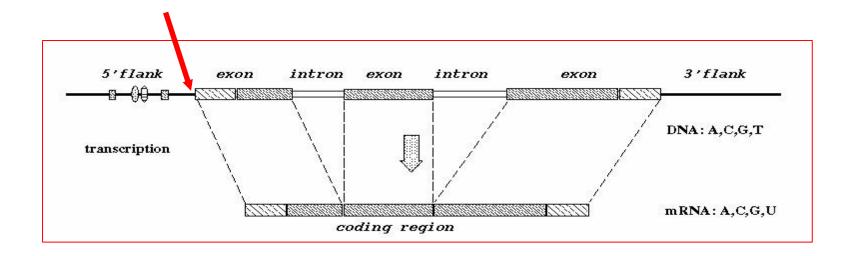


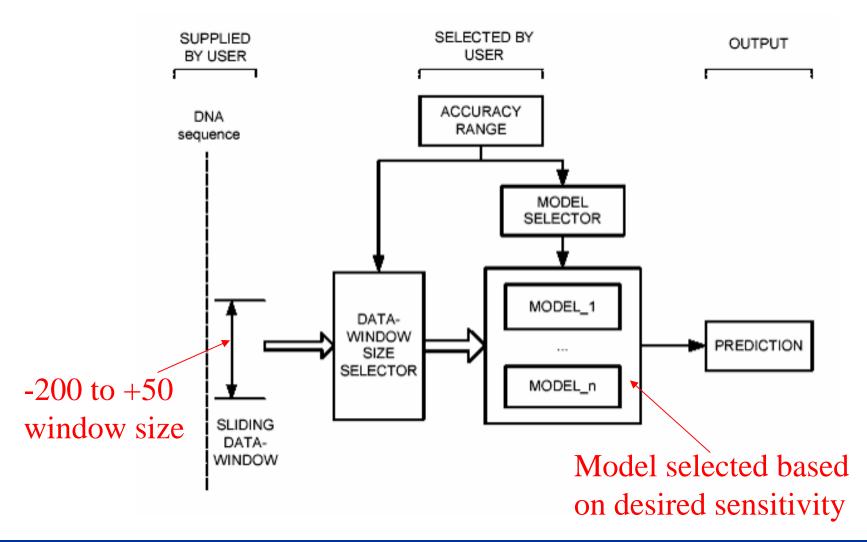
• Using top 100 features selected by entropy and trained on Pedersen & Nielsen's

Recognition of Transcription Start Sites

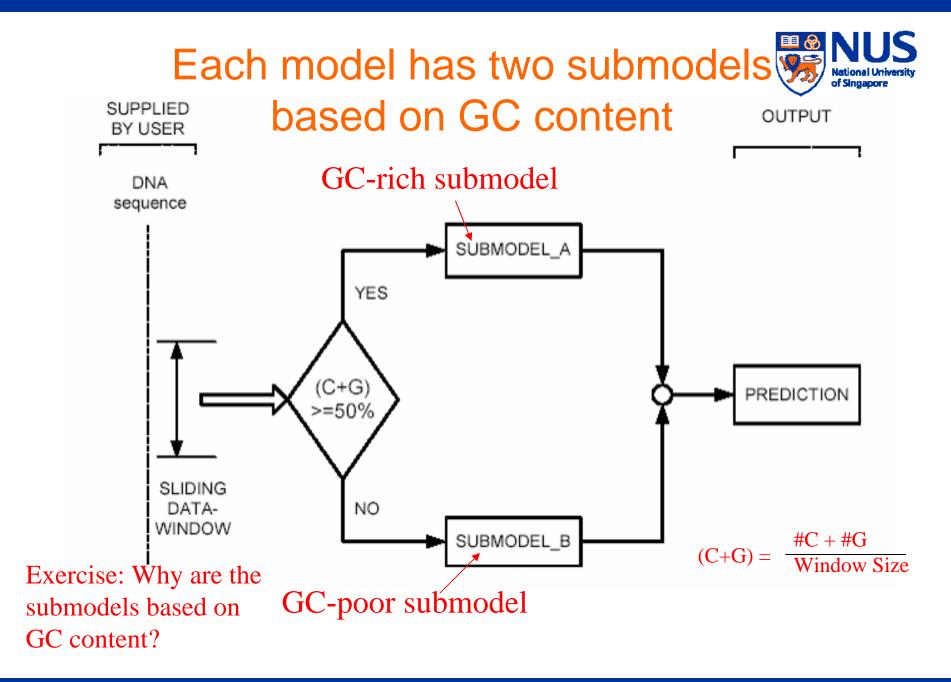
An introduction to the World's best TSS recognition system: A heavy tuning approach

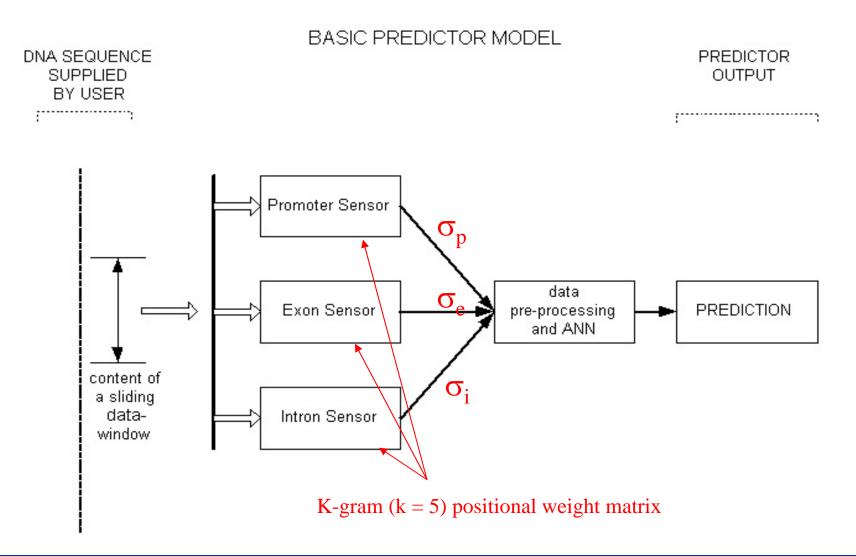
Transcription Start Site





Copyright 2007 © Limsoon Wong





Promoter, Exon, Intron Sensors

- These sensors are positional weight matrices of k-grams, k = 5 (aka pentamers)
- They are calculated as below using promoter, exon, intron data respectively Pentamer at ith

Window size
$$\left(\sum_{i=1}^{L-4} p_j^i \otimes f_{j,i}\right)$$

$$\sigma = \left(\sum_{i=1}^{L-4} p_j^i \otimes f_{j,i}\right)$$

$$p_j^i \otimes f_{j,i} = \begin{cases} f_{j,i}, \text{ if } p_i = p_j^i \\ 0, \text{ if } p_i \neq p_j^i \end{cases}$$

$$p_j^{\text{th pentamer at ith position in training window}}$$

Just to make sure you know what I mean sure you know what I mean

- Give me 3 DNA seq of length 10:
 - Seq₁ = ACCGAGTTCT
 - Seq₂ = AGTGTACCTG
 - Seq₃ = AGTTCGTATG
- Then

1-mer	pos1	pos2	pos3	pos4	pos5	pos6	pos7	pos8	pos9	pos10
Α	3/3	0/3	0/3							
С	0/3	1/3	1/3		Exerc	ise: Fil	l in the	rest of t	he table	e
G	0/3	2/3	0/3							
Т	0/3	0/3	2/3							

Just to make sure you know what I mean

- Give me 3 DNA seq of length 10:
 - Seq₁ = ACCGAGTTCT
 - Seq₂ = AGTGTACCTG
 - Seq₃ = AGTTCGTATG

• Then

Exercise: How many rows should this 2-mer table have? How many rows should the pentamer table have?

2-mer	pos1	pos2	pos3	pos4	pos5	pos6	pos7	pos8	pos9
AA	0/3	0/3	0/3						
AC	1/3	0/3	0/3		Exerci	se: Fill	in the re	est of th	e table
тт	0/3	0/3	1/3				1/3		

Data Preprocessing & ANN

Tuning parameters

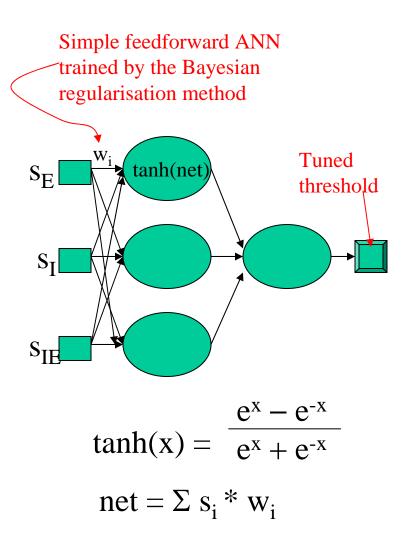
$$s_{E} = sat(\sigma_{p} - \sigma_{e}, a_{e}, b_{e}),$$

$$s_{I} = sat(\sigma_{p} - \sigma_{i}, a_{i}, b_{i}),$$

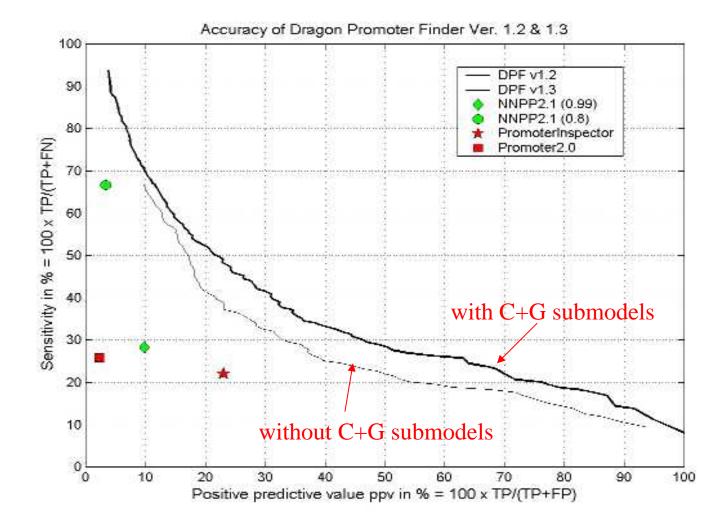
$$s_{EI} = sat(\sigma_{e} - \sigma_{i}, a_{ei}, b_{ei}),$$

where the function sat is defined by

$$sat(x,a,b) = \begin{cases} a, if & x > a \\ x, if & b \le x \le a. \\ b, if & b > x \end{cases}$$



Accuracy Comparisons



Copyright 2007 © Limsoon Wong

Training Data Criteria & Preparation

- Contain both positive and negative sequences
- Sufficient diversity, resembling different transcription start mechanisms
- Sufficient diversity, resembling different nonpromoters
- Sanitized as much as possible

- TSS taken from
 - 793 vertebrate promoters from EPD
 - -200 to +50 bp of TSS
- non-TSS taken from
 - GenBank,
 - 800 exons
 - 4000 introns,
 - 250 bp,
 - non-overlapping,
 - <50% identities</p>

Tuning Data Preparation

- To tune adjustable system parameters in Dragon, we need a separate tuning data set
- TSS taken from
 - 20 full-length gene seqs
 with known TSS
 - -200 to +50 bp of TSS
 - no overlap with EPD
- Non-TSS taken from
 - 1600 human 3'UTR seqs
 - 500 human exons
 - 500 human introns
 - 250 bp
 - no overlap

Testing Data Criteria & Preparation Stringapore

- Seqs should be from the training or evaluation of other systems (no bias!)
- Seqs should be disjoint from training and tuning data sets
- Seqs should have TSS
- Seqs should be cleaned to remove redundancy, <50% identities

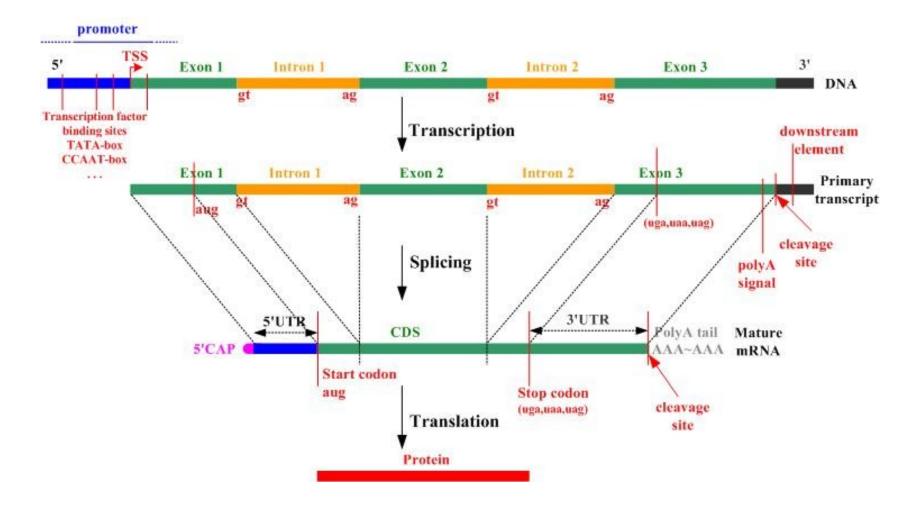
- 159 TSS from 147 human and human virus seqs
- cummulative length of more than 1.15Mbp
- Taken from GENESCAN, Geneld, Genie, etc.

Accuracy on Human Chromosome

Human chromosome 22 (known genes)				
Se	Ppv			
49%	48%			
58%	42%			
64%	33%			
74%	30%			
80%	23%			

Other Gene Features

Other Gene Features



Any Question?

References (TIS Recognition)

- A. G. Pedersen, H. Nielsen, "Neural network prediction of translation initiation sites in eukaryotes", *ISMB* 5:226--233, 1997
- L. Wong et al., "Using feature generation and feature selection for accurate prediction of translation initiation sites", *GIW* 13:192--200, 2002
- A. Zien et al., "Engineering support vector machine kernels that recognize translation initiation sites", *Bioinformatics* 16:799--807, 2000
- A. G. Hatzigeorgiou, "Translation initiation start prediction in human cDNAs with high accuracy", *Bioinformatics* 18:343--350, 2002
- J. Li et al., "Techniques for Recognition of Translation Initiation Sites", *The Practical Bioinformatician*, Chapter 4, pages 71—90, 2004

References (TSS Recognition)

- V.B.Bajic et al., "Computer model for recognition of functional transcription start sites in RNA polymerase II promoters of vertebrates", J. Mol. Graph. & Mod. 21:323--332, 2003
- J.W.Fickett, A.G.Hatzigeorgiou, "Eukaryotic promoter recognition", Gen. Res. 7:861--878, 1997
- A.G.Pedersen et al., "The biology of eukaryotic promoter prediction---a review", Computer & Chemistry 23:191--207, 1999
- M.Scherf et al., "Highly specific localisation of promoter regions in large genome sequences by PromoterInspector", JMB 297:599--606, 2000
- V.B.Bajic and A. Chong. "Tuning the Dragon Promoter Finder System for Human Promoter Recognition", *The Practical Bioinformatician*, Chapter 7, pages 157—165, 2004

References (Feature Selection)

- M. A. Hall, "Correlation-based feature selection machine learning", PhD thesis, Dept of Comp. Sci., Univ. of Waikato, New Zealand, 1998
- U. M. Fayyad, K. B. Irani, "Multi-interval discretization of continuous-valued attributes", *IJCAI* 13:1022-1027, 1993
- H. Liu, R. Sentiono, "Chi2: Feature selection and discretization of numeric attributes", *IEEE Intl. Conf. Tools with Artificial Intelligence* 7:338--391, 1995

References (Misc.)

- C. P. Joshi et al., "Context sequences of translation initiation codon in plants", *PMB* 35:993--1001, 1997
- D. J. States, W. Gish, "Combined use of sequence similarity and codon bias for coding region identification", *JCB* 1:39--50, 1994
- G. D. Stormo et al., "Use of Perceptron algorithm to distinguish translational initiation sites in E. coli", *NAR* 10:2997--3011, 1982
- J. E. Tabaska, M. Q. Zhang, "Detection of polyadenylation signals in human DNA sequences", *Gene* 231:77--86, 1999