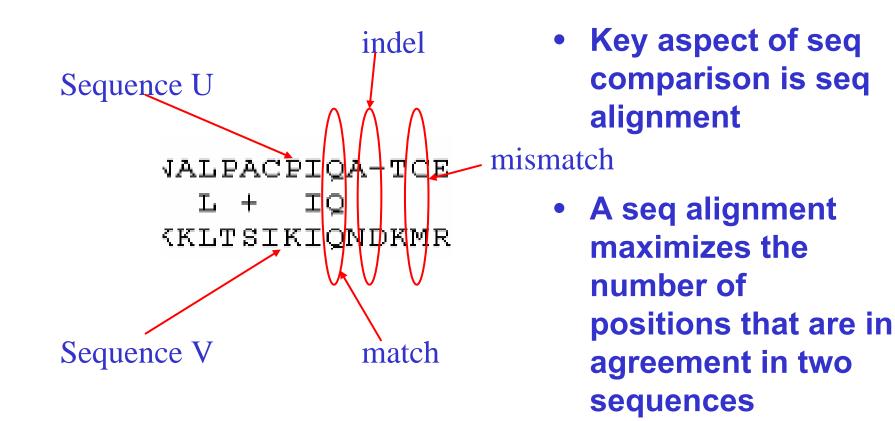
For written notes on this lecture, please read chapter 19 of The Practical Bioinformatician

CS2220: Introduction to Computational Biology Lecture 7: Sequence Homology Interpretation

Limsoon Wong 9 March 2007

- Recap of sequence alignment
- Guilt by association
- Active site/domain discovery
- What if no homology of known function is found?
 - Genome phylogenetic profiling
 - Protfun
 - SVM-Pairwise
 - Protein-protein interactions
- Key mutation site discovery

Very Brief Recap of Sequence Comparison/Alignment



Motivations for Sequence Comparison Singapore

- DNA is blue print for living organisms
- \Rightarrow Evolution is related to changes in DNA
- ⇒ By comparing DNA sequences we can infer evolutionary relationships between the sequences w/o knowledge of the evolutionary events themselves
- Foundation for inferring function, active site, and key mutations

Sequence Alignment

Sequence Alignment: Poor Example

Poor seq alignment shows few matched positions
 The two proteins are not likely to be homologous

Alignment by FASTA of the sequences of amloyanin and domain 1 of ascorbate oxidase

60 70 80 100Amicyanin **MPHNVHFVAGVLGEAALKGPMMKKEOAYSLTFTEAGTYDYHCTPHPFMRGKVVVE** 11. 11 Ascorbate Oxidase ILQRGT9WADGTASISQCAINPGETFFYNFTVDNPGTFFYHGHLGMQRSAGLYGSLI 7080 90 100 110120 No obvious match between Amicyanin and Ascorbate Oxidase

Sequence Alignment: Good Example

- Good alignment usually has clusters of extensive matched positions
- \Rightarrow The two proteins are likely to be homologous

D >gil13476732|ref|NP_108301.1|
 unknown protein [Mesorhizobium loti]
 gil14027493|dbj|BAB53762.1|
 unknown protein [Mesorhizobium loti]
 Length = 105

```
Score = 105 bits (262), Expect = 1e-22
Identities = 61/106 (57%), Positives = 73/106 (68%), Gaps = 1/106 (0%)
```

Query: 1 MKPGRLASIALAIIFLPMAVPAHAATIEITMENLVISPTEVSAKVGDTIRWVNKDVFAHT 60 MK G L ++ MA PA AATIE+T++ LV SP V AKVGDTI WVN DV AHT Sbjct: 1 MKAGALIRLSWLAALALMAAPAAAATIEVTIDKLVFSPATVEAKVGDTIEWVNNDVVAHT 60

> good match between Amicyanin and unknown M. loti protein

Multiple Alignment: An Example

- Multiple seq alignment maximizes number of positions in agreement across several seqs
- seqs belonging to same "family" usually have more conserved positions in a multiple seq alignment

gi 126467
gi 2499753
gi 462550
gi 2499751
gi 1709906
gi 126471
gi 548626
gi 131570
gi 2144715

FHFTSWPDFGVPFTPIGMLKFLKKVKACNP--QYAGAIVVHCSAGVGRTGTFVVIDAMLD FHFTGWPDHGVPYHATGLLSFIRRVKLSNP--PSAGPIVVHCSAGAGRTGCYIVIDIMLD YHYTQWPDMGVPEYALPVLTFVRRSSAARM--PETGPVIVHCSAGVGRTGTYIVIDSMLQ FHFTSWPDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLIY FQFTAWPDHGVPEHPTPFLAFLRRVKTCNP--PDAGPMVVHCSAGVGRTGCFIVIDAMLE LHFTSWPDFGVPFTPIGMLKFLKKVKTLNP--VHAGPIVVHCSAGVGRTGTFIVIDAMLA FHFTGWPDHGVPYHATGLLSFIRRVKLSNP--PSAGPIVVHCSAGAGRTGCYIVIDIMLD FHFTGWPDHGVPYHATGLLGFVRQVKSKSP--PNAGPLVVHCSAGAGRTGCFIVIDIMLD FHFTSWPDHGVPYHATGLLGFVRQVKSKSP--PNAGPLVVHCSAGAGRTGCFIVIDIMLD

Application of Sequence Comparison: Guilt-by-Association

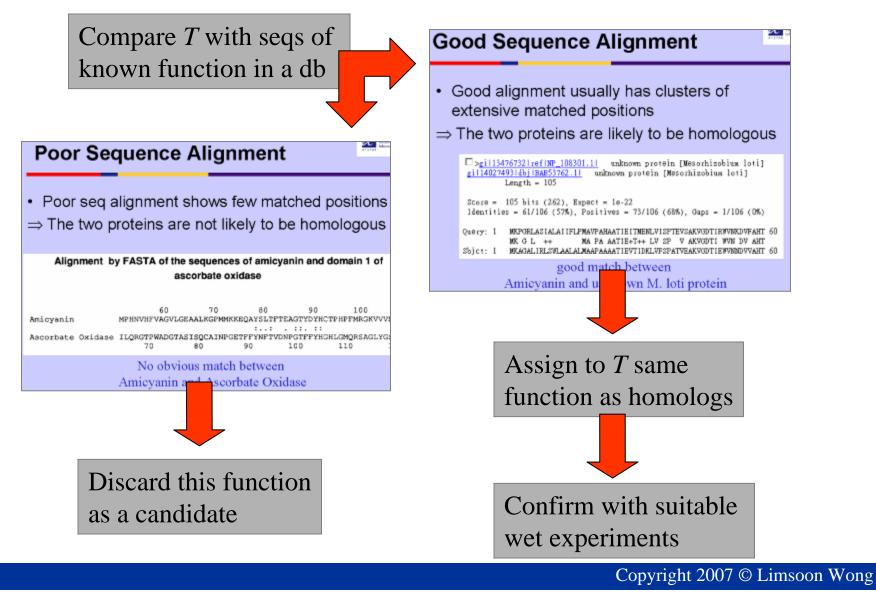
A protein is a ...

- A protein is a large complex molecule made up of one or more chains of amino acids
- Protein performs a wide variety of activities in the cell

Function Assignment to Protein Sequence

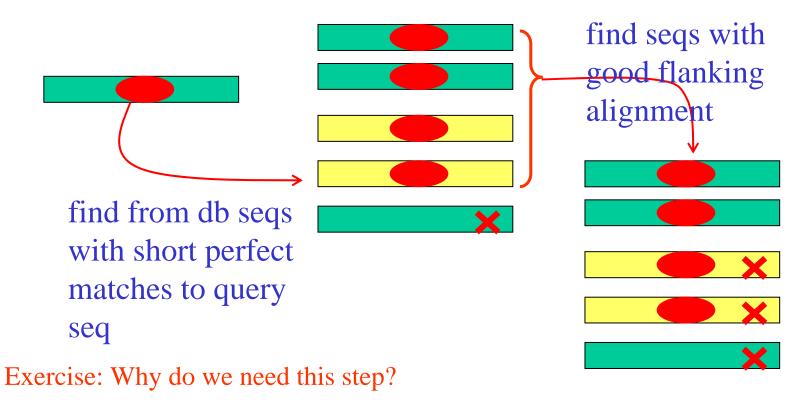
SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE VT

• How do we attempt to assign a function to a new protein sequence?



Guilt-by-Association

- Compare the target sequence T with sequences
 S₁, ..., S_n of known function in a database
- Determine which ones amongst S₁, ..., S_n are the mostly likely homologs of T
- Then assign to T the same function as these homologs
- Finally, confirm with suitable wet experiments


Guilt-by-Association

BLAST: How It Works Altschul et al., *JMB*, 215:403--410, 1990

 BLAST is one of the most popular tool for doing "guilt-by-association" sequence homology search

Homologs obtained by BLAST

qi 14193729 qb AAK56109.1 AF332081_1 protein tyrosin phosph62: qi 126467 sp P18433 PTRA_HUMANProtein-tyrosine phosphatase62: qi 4506303 ref NP_002827.1 protein tyrosine phosphatase, r62: qi 227294 prf 1701300Aprotein Tyr phosphatase62: qi 18450369 ref NP_543030.1 protein tyrosine phosphatase, r62: qi 18450369 ref NP_543030.1 protein tyrosine phosphatase,62: qi 285113 pir JC1285 protein-tyrosine-phosphatase (EC 3.161: e-176qi 6981446 ref NP_036895.1 protein tyrosine phosphatase, r61: e-176qi 2098414 pdb 1YFO AChain A, Receptor Protein Tyrosine Ph61: e-174qi 450583 qb AAB04150.1 protein tyrosine phosphatase Homo61: e-174		Score E	
qi 126467 sp P18433 PTRA_HUMANProtein-tyrosine phosphatase621e-177qi 4506303 ref NP_002827.1 protein tyrosine phosphatase, r621e-176qi 227294 prf 1701300Aprotein Tyr phosphatase620e-176qi 32067 emb CAA37447.1 tyrosine phosphatase precursor [Ho611e-176qi 285113 pir JC1285protein-tyrosine-phosphatase (EC 3.1619e-176qi 6981446 ref NP_036895.1 protein tyrosine phosphatase, r611e-176qi 2098414 pdb 1YFO AChain A, Receptor Protein Tyrosine Ph615e-174qi 32313 emb CAA38662.1 protein-tyrosine phosphatase [Homo61e-174qi 450583 qb AAB04150.1 protein tyrosine phosphatase >gi 4605e-172	Sequences producing significant alignments:	(bits) Value	2
qi 126467 sp P18433 PTRA_HUMANProtein-tyrosine phosphatase621e-177qi 4506303 ref NP_002827.1 protein tyrosine phosphatase, r621e-176qi 227294 prf 1701300Aprotein Tyr phosphatase620e-176qi 32067 emb CAA37447.1 tyrosine phosphatase precursor [Ho611e-176qi 285113 pir JC1285protein-tyrosine-phosphatase (EC 3.1619e-176qi 6981446 ref NP_036895.1 protein tyrosine phosphatase, r611e-176qi 2098414 pdb 1YFO AChain A, Receptor Protein Tyrosine Ph615e-174qi 32313 emb CAA38662.1 protein-tyrosine phosphatase [Homo61e-174qi 450583 qb AAB04150.1 protein tyrosine phosphatase >gi 4605e-172			
qi 4506303 ref NP 002827.1 protein tyrosine phosphatase, r621 e-176qi 227294 prf 1701300A protein Tyr phosphatase620 e-176qi 18450369 ref NP 543030.1 protein tyrosine phosphatase,621 e-176qi 132067 emb CAA37447.1 tyrosine phosphatase precursor [Ho611 e-176qi 285113 pir JC1285 protein-tyrosine-phosphatase (EC 3.1619 e-176qi 6981446 ref NP 036895.1 protein tyrosine phosphatase, r611 e-176qi 2098414 pdb 1YFO A Chain A, Receptor Protein Tyrosine Ph611 e-174qi 32313 emb CAA38662.1 protein-tyrosine phosphatase [Homo61 e-174qi 450583 qb AAB04150.1 protein tyrosine phosphatase >gi 4605	<u>qi 14193729 qb AAK56109.1 AF332081_1</u> protein tyrosin phosp)h <u>62:</u> e-17 ⁻	7
q1 227294 prf 1701300Aprotein Tyr phosphatase620e-176q1 18450369 ref NP 543030.1protein tyrosine phosphatase,621e-176q1 32067 emb CAA37447.1tyrosine phosphatase precursor [Ho611e-176q1 285113 pir JC1285protein-tyrosine-phosphatase (EC 3.1619e-176q1 6981446 ref NP 036895.1protein tyrosine phosphatase, r611e-176q1 2098414 pdb 1YFO AChain A, Receptor Protein Tyrosine Ph611e-174q1 32313 emb CAA38662.1protein-tyrosine phosphatase [Homo611e-174q1 450583 gb AAB04150.1protein tyrosine phosphatase >gi 4605e-172	<u>qi 126467 sp P18433 PTRA_HUMAN</u> Protein-tyrosine phosphatas	3e <u>621<mark>1</mark></u> e-17 ⁻	7
qi 18450369 ref NP_543030.1 protein tyrosine phosphatase,621e-176qi 32067 emb CAA37447.1 tyrosine phosphatase precursor [Ho611e-176qi 285113 pir JC1285protein-tyrosine-phosphatase (EC 3.1619e-176qi 6981446 ref NP_036895.1 protein tyrosine phosphatase, r611e-176qi 2098414 pdb 1YFO AChain A, Receptor Protein Tyrosine Ph611e-174qi 32313 emb CAA38662.1 protein-tyrosine phosphatase [Homo611e-174qi 450583 qb AAB04150.1 protein tyrosine phosphatase >gi 4605e-172	<pre>qi 4506303 ref NP 002827.1 protein tyrosine phosphatase,</pre>	r <u>621</u> e-170	6
gi 32067 emb CAA37447.1 tyrosine phosphatase precursor [Ho611 e-176gi 285113 pir JC1285protein-tyrosine-phosphatase (EC 3.1619 e-176gi 6981446 ref NP_036895.1 protein tyrosine phosphatase, r611 e-176gi 2098414 pdb 1YFO AChain A, Receptor Protein Tyrosine Ph611 e-174gi 32313 emb CAA38662.1 protein-tyrosine phosphatase [Homo611 e-174gi 450583 gb AAB04150.1 protein tyrosine phosphatase >gi 4605 e-172	<u>qi 227294 prf 1701300A</u> protein Tyr phosphatase	<u>620</u> e-176	6
qi 285113 pir JC1285protein-tyrosine-phosphatase (EC 3.1619e-176qi 6981446 ref NP_036895.1 protein tyrosine phosphatase, r611e-176qi 2098414 pdb 1YF0 AChain A, Receptor Protein Tyrosine Ph61e-174qi 32313 emb CAA38662.1 protein-tyrosine phosphatase [Homo61e-174qi 450583 qb AAB04150.1 protein tyrosine phosphatase >gi 4605e-172	<u>qi 18450369 ref NP_543030.1 </u> protein tyrosine phosphatase,	, <u>621<mark>L</mark> e-170</u>	6
qi 6981446 ref NP_036895.1 protein tyrosine phosphatase, r61:1e-176qi 2098414 pdb 1YFO AChain A, Receptor Protein Tyrosine Ph61e-174qi 32313 emb CAA38662.1 protein-tyrosine phosphatase [Homo61e-174qi 450583 qb AAB04150.1 protein tyrosine phosphatase >gi 4605e-172	gi 32067 emb CAA37447.1 tyrosine phosphatase precursor [H	Io <u>61:</u> e-17(6
gi 2098414 pdb 1YFO AChain A, Receptor Protein Tyrosine Ph61e-174gi 32313 emb CAA38662.1 protein-tyrosine phosphatase [Homo61e-174gi 450583 gb AAB04150.1 protein tyrosine phosphatase >gi 4605e-172	<pre>qi 285113 pir JC1285 protein-tyrosine-phosphatase (EC 3.)</pre>	l <u>619</u> e-170	5
gi 32313 emb CAA38662.1 protein-tyrosine phosphatase [Homo 61 - e-174 gi 450583 gb AAB04150.1 protein tyrosine phosphatase >gi 4 605 e-172	<u>qi 6981446 ref NP_036895.1 </u> protein tyrosine phosphatase,	r <u>61:</u> e-170	6
gi 450583 gb AAB04150.1 protein tyrosine phosphatase >gi 4 605 e-172	<u>qi 2098414 pdb 1YFO A</u> Chain A, Receptor Protein Tyrosine H	?h <u>61</u> ≦ e−174	4
	qi 32313 emb CAA38662.1 protein-tyrosine phosphatase [Hom	no <u>61 -</u> e-174	4
α il66795571refINP 033006.11 protein tyrosine phosphatase, r 60^{\square} e-172	<pre>qi 450583 qb AAB04150.1 protein tyrosine phosphatase >gi </pre>	4 <u>605</u> e-172	2
<u></u>	<u>qi 6679557 ref NP 033006.1 </u> protein tyrosine phosphatase,	r <u>60 </u> e-172	2
<u>qi 483922 qb AAA17990.1 </u> protein tyrosine phosphatase alpha <u>599</u> e-170	qi 483922 qb AAA17990.1 protein tyrosine phosphatase alph	1a <u>599</u> e-17(C

• Thus our example sequence could be a protein tyrosine phosphatase α (PTP α)

Example Alignment with $PTP\alpha$

Score = 632 bits (1629), Expect = e-180Identities = 294/302 (97%), Positives = 294/302 (97%)

- Sbjct: 202 SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR 261
- Query: 61 YVNILPYDHSRVHLTPVEGVFDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE 120 YVNILPYDHSRVHLTPVEGVFDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE
- Shjet: 2.62. YVNILPYDHSRVHLTPVEGVEDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE 32.1
- Query: 121 QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD 180 QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD
- Sbjet: 322 QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD 381
- Query: 181 VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG 240 VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG
- Sbjet: 382 VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG 441
- Query: 241 TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE 300 TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE
- Sbjct: 442 TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE 501

Guilt-by-Association: Caveats

- Ensure that the effect of database size has been accounted for
- Ensure that the function of the homology is not derived via invalid "transitive assignment"
- Ensure that the target sequence has all the key features associated with the function, e.g., active site and/or domain

Law of Large Numbers

- Suppose you are in a room with 365 other people
- Q: What is the prob that a specific person in the room has the same birthday as you?
- A: 1/365 = 0.3%

- Q: What is the prob that there is a person in the room having the same birthday as you?
- A: $1 (364/365)^{365} = 63\%$
- Q: What is the prob that there are two persons in the room having the same birthday?
- A: 100%

Interpretation of P-value

- Seq. comparison progs, e.g. BLAST, often associate a P-value to each hit
- P-value is interpreted as prob that a random seq has an equally good alignment

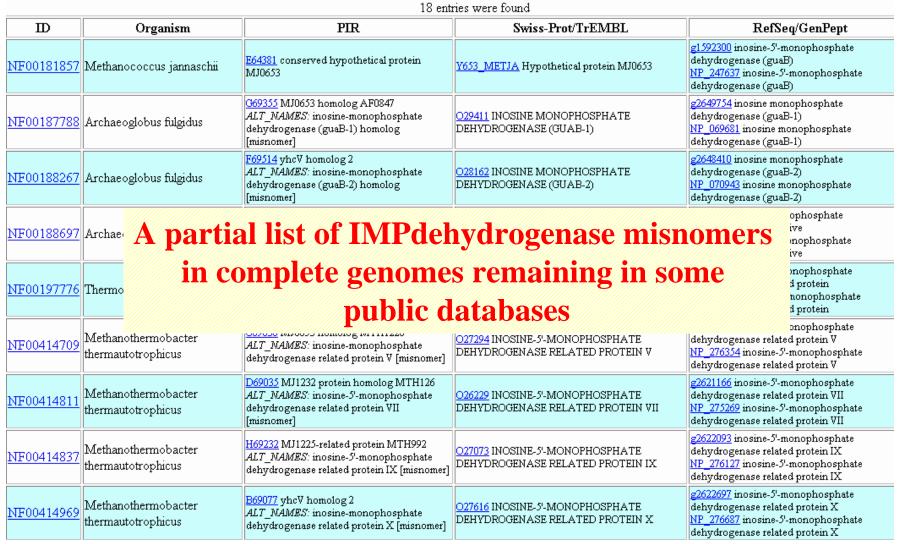
- Suppose the P-value of an alignment is 10⁻⁶
- If database has 10⁷ seqs, then you expect 10⁷ * 10⁻⁶ = 10 seqs in it that give an equally good alignment
- ⇒ Need to correct for database size if your seq comparison prog does not do that!

Exercise: Name a commonly used method for correcting p-value for a situation like this

Lightning Does Strike Twice!

- Roy Sullivan, a former park ranger from Virgina, was struck by lightning 7 times
 - 1942 (lost big-toe nail)
 - 1969 (lost eyebrows)
 - 1970 (left shoulder seared)
 - 1972 (hair set on fire)
 - 1973 (hair set on fire & legs seared)
 - 1976 (ankle injured)
 - 1977 (chest & stomach burned)
- September 1983, he committed suicide

Cartoon: Ron Hipschman Data: David Hand


Effect of Seq Compositional Bias

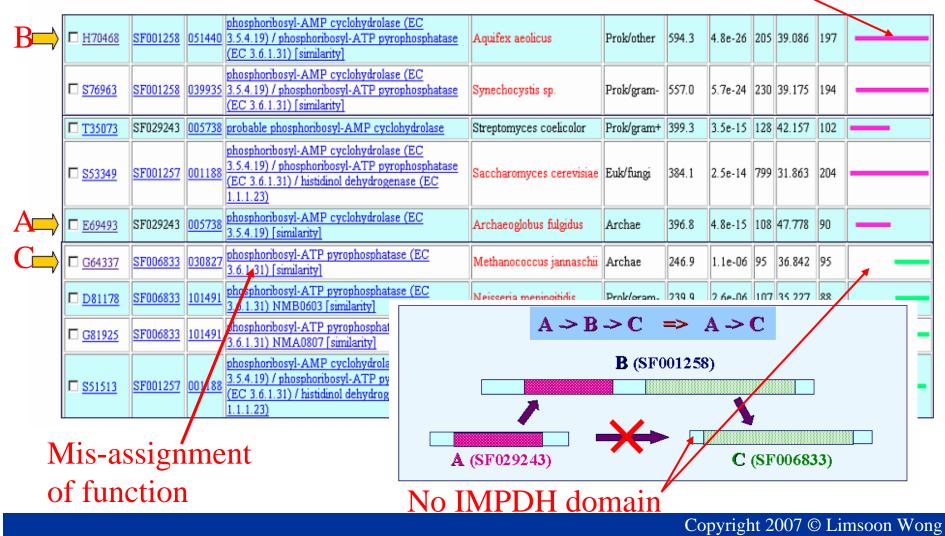
- One fourth of all residues in protein seqs occur in regions with biased amino acid composition
- Alignments of two such regions achieves high score purely due to segment composition
- ⇒While it is worth noting that two proteins contain similar low complexity regions, they are best excluded when constructing alignments
- E.g., by default, BLAST employs the SEG algo to filter low complexity regions from proteins before executing a search

Source: NCBI

Examples of Invalid Function Assignment: The IMP Dehydrogenases (IMPDF

National University of Singapore

IMPDH Domain Structure


	Image: PCM00487: PD0C00391,IMP dehydrogenase / GMP reductase signature Image: PF00478: IMP dehydrogenase / GMP reductase C terminus Image: PF00571: CBS domain Image: PF01381: Helix-turn-helix Image: PF01574: IMP dehydrogenase / GMP reductase N terminus Image: PF01574: IMP dehydrogenase / GMP reductase N terminus Image: PF02195: ParB-like nuclease domain
A31997 (SF000130)	
E70218 (SF000131)	404
E64381 (SF004696)	194 IMPDH Misnomer in Methanococcus jannaschii
G69355 (SF004696)	
F69514 (SF004694)	••••••••••••••••••••••••••••••••••••
B69407 (SF004699)	259

- Typical IMPDHs have 2 IMPDH domains that form the catalytic core and 2 CBS domains.
- A less common but functional IMPDH (E70218) lacks the CBS domains.
- Misnomers show similarity to the CBS domains

Invalid Transitive Assignment

Root of invalid transitive assignment.

Emerging Pattern

Τ	ypica	ypical IMPDH Functional IMPDH w/o CBS		
	444	PCM00487: PDOC00391,IMP dehydrogen <i>ase / Gy</i> /P reductase signature		
	-	PF00478: IMP dehydrogenase / GMP reductase C terminus		
		PF00571: CBS domain		
	00-00	PF01381: Helix-turn-helix		
	e fan fan fan fan fan	PF01574: IMP-dehydrogenase / GMP-reductase N-terminus		
	of and any fairly of a start of a	PF02195: ParB-like nuclease domain		
A31997 (SF000130)	an a			
E70218 (SF000131)	***	404		
E64381 (SF004696)	0\$=\$0\$=\$0\$	194 IMPDH Misnomer in Methanococcus jannaschii		
G69355 (SF004696)	tojojojojoj			
F69514 (SF004694)	0000000	IMPDH Misnomers in Archaeoglobus fulgidus		
869407 (SF004699)		259 259		

- Most IMPDHs have 2 IMPDH and 2 CBS domains
- Some IMPDH (E70218) lacks CBS domains
- \Rightarrow IMPDH domain is the emerging pattern

Application of Sequence Comparison: Active Site/Domain Discovery

Discover Active Site and/or Domain

- How to discover the active site and/or domain of a function in the first place?
 - Multiple alignment of homologous seqs
 - Determine conserved positions
 - \Rightarrow Emerging patterns relative to background
 - \Rightarrow Candidate active sites and/or domains
- Easier if sequences of distance homologs are used

Exercise: Why?

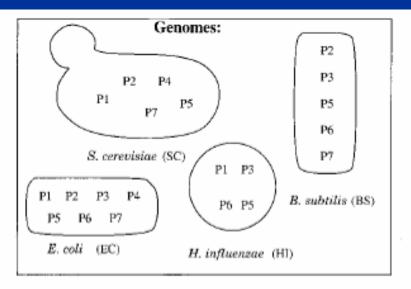
Multiple Alignment of PTPs

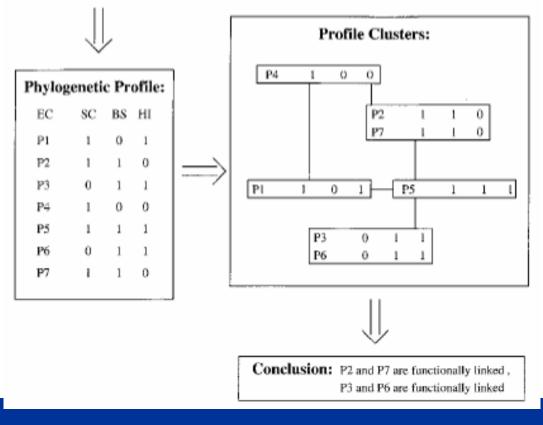
gi 126467 ci 2400752	
gi 2499753 gi 462550	
gi 2499751 gi 1709906	
gi 126471	
gi 548626 gi 131570	
gi 2144715	

FHFTSWPDFGVPFTPIGMLKFLKKVKACNP--QYAGAIVVHCSAGVGRTGTFVVIDAMLD FHFTGWPDHGVPYHATGLLSFIRRVKLSNP--PSAGPIVVHCSAGVGRTGCYIVIDIMLD YHYTQWPDMGVPEYALPVLTFVRRSSAARM--PETGPVLVHCSAGVGRTGTFIAIDRLIY FHFTSWPDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGCFIVIDAMLE LHFTSWPDHGVPEHPTPFLAFLRRVKTCNP--PDAGPMVVHCSAGVGRTGCFIVIDAMLE LHFTSWPDFGVPFTPIGMLKFLKKVKTLNP--VHAGPIVVHCSAGVGRTGCFIVIDAMLA FHFTGWPDHGVPYHATGLLSFIRRVKLSNP--PSAGPIVVHCSAGAGRTGCYIVIDIMLD FHFTGWPDHGVPYHATGLLGFVRQVKSKSP--PNAGPLVVHCSAGAGRTGCFIVIDIMLD FHFTSWPDHGVPYHATGLLGFVRQVKSKSP--PNAGPLVVHCSAGVGRTGTFIAIDRLIY

- Notice the PTPs agree with each other on some positions more than other positions
- These positions are more impt wrt PTPs
- Else they wouldn't be conserved by evolution
- \Rightarrow They are candidate active sites

Guilt-by-Association: What if no homolog of known function is found?


genome phylogenetic profiles protfun's feature profiles Similarity of dissimilarities



Phylogenetic Profiling Pellegrini et al., PNAS, 96:4285--4288, 1999

- Gene (and hence proteins) with identical patterns of occurrence across phyla tend to function together
- ⇒ Even if no homolog with known function is available, it is still possible to infer function of a protein

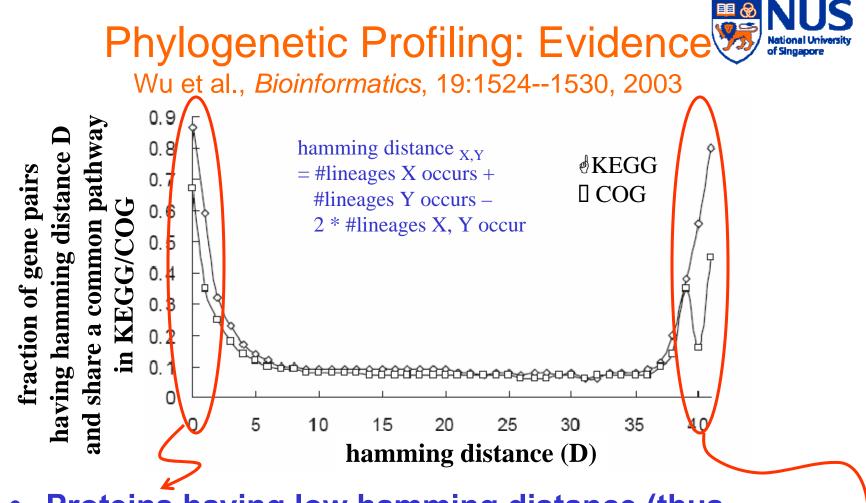
Phylogenetic Profiling: How it Works

Copyright 2007 © Limsoon Wong

Phylogenetic Profiling: P-value

The probability of observing by chance z occurrences of genes X and Y in a set of N lineages, given that X occurs in x lineages and Y in y lineages is

$$P(z|N, x, y) = \frac{w_z * \overline{w_z}}{W}$$

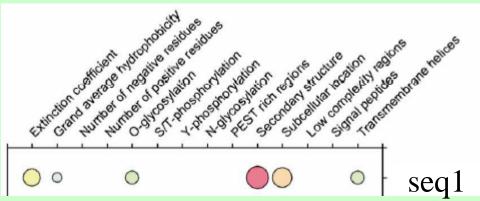

where

No. of ways to distribute z
co-occurrences over N
lineage's
No. of ways to distribute
the remaining
$$x - z$$
 and $y - z$
occurrences over the remaining
 $N - z$ lineage's
 $W_{z} = \binom{N}{z} * \binom{N}{y} \cdot \binom{N-z}{y-z}$
No. of ways of
distributing X and Y
over N lineage's
without restriction

Phylogenetic Profiles: Evidence

Keyword	No. of non- homologous proteins in group	No. neighbors in keyword group	No. neighbors ia random group
Ribosome	60	197	27
Transcription	36	17	10
tRNA synthase and ligase	26	11	5
Membrane proteins*	25	89	5
Flagellar	21	89	3
Iron, ferric, and ferritin	19	31	2
Galactose metabolism	18	31	2
Molybdoterin and Molybdenum,			
and molybdoterin	12	6	1
Hypothetical	1,084	108,226	8,440

• E. coli proteins grouped based on similar keywords in SWISS-PROT have similar phylogenetic profiles

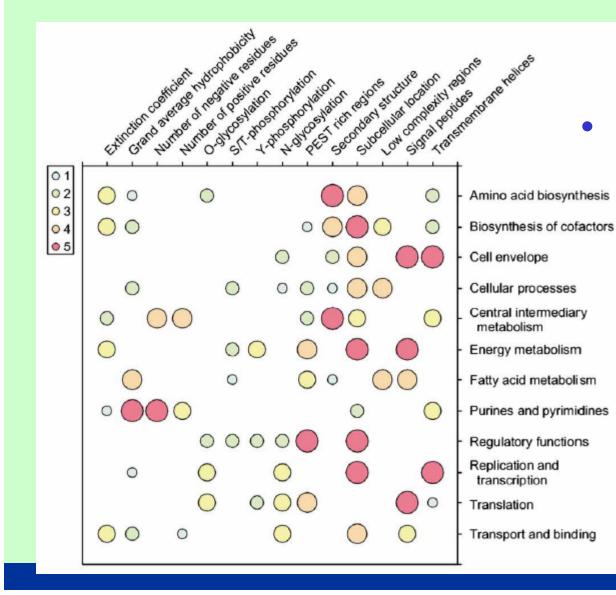

 Proteins having low hamming distance (thus highly similar phylogenetic profiles) tend to share common pathways Exercise: Why do proteins having high

hamming distance also have this behaviour?

The ProtFun Approach Jensen, *JMB*, 319:1257--1265, 2002

- A protein is not alone when performing its biological function
- It operates using the same cellular machinery for modification and sorting as all other proteins do, such as glycosylation, phospharylation, signal peptide cleavage, ...
- These have associated consensus motifs, patterns, etc.

- Proteins performing similar functions should share some such "features"
- ⇒ Perhaps we can predict protein function by comparing its "feature" profile with other proteins?

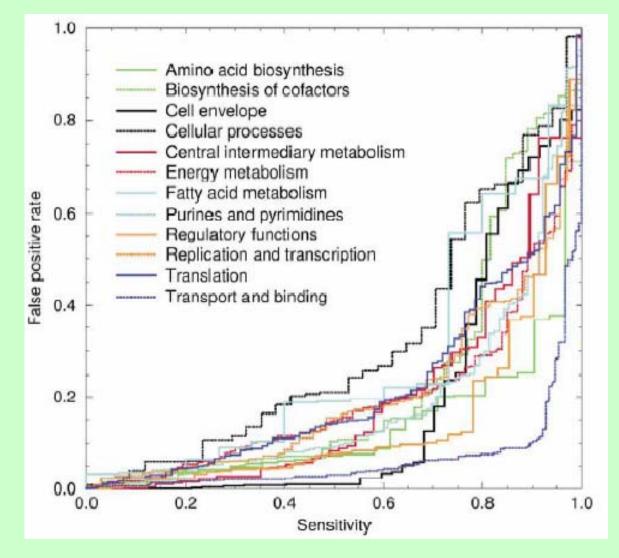

ProtFun: How it Works

Abbriviation	Encoding	Description	
ec	single value	Extinction coefficient predicted by ExPASy ProtParam	
gravy	single value	Hydrophobicity predicted by ExPASy ProtParam	
nneg	single value	Number of negatively charged residues counted by ExPASy ProtPa	<u>ıram</u>
npos	single value	Number of positively charged residues counted by ExPASy ProtPar	<u>ram</u>
nglyc	potential in 5 bins	N-glycosylation sites predicted by NetNGlyc	
oglyc	potential-threshold in 10 bins	GaINAc O-glycosylations predicted by NetOGlyc	
pest	fraction in 10 bins	PEST rich regions identified by PESTfind	
phosST	potential in 10 bins	Serine and threonine phosporylations predicted by NetPhos	
phosY	potential in 10 bins	Tyrosine phosporylations predicted by <u>NetPhos</u> Extr	ract feature
psipred	helix, sheet, coil in 5 bins	Predicted secondary structure from PSI-Pred prof	ile of protein
psort	20 probabilities	Subcellular location predtions by PSORT	g various
seg	fraction in 10 bins	Low-complexity regions identified by SEG	
signalp	meanS, maxY, log(cleavage pos)	Signal peptide predictions made by <u>SignalP</u>	liction methods
tmhmm	inside, outside, membrane in 5 bins	Transmembrane helix predictions made by <u>TMHMM</u>	

Category	Hidden units	Input features	
Amino acid biosynthesis	30	ec psipred psort tmhmm	
	30	ec psipred tmhmm	
A vore so the output of	30	ec netoglyc psipred psort	
Average the output of	30	gravy psipred psort	
the 5 component ANN	S 30	oglyc psipred psort	

ProtFun: Evidence

 Combinations of "features" seem to characterize some functional categories


ProtFun: Example Output

	Prion	A4	TTHY
Amino acid biosynthesis	0.011	0.011	0.011
Biosynthesis of cofactors	0.041	0.161	0.034
Cell envelope	0.146	0.804	0.698
Cellular processes	0.027	0.027	0.051
Central intermediary metabolism	0.047	0.139	0.059
Energy metabolism	0.029	0.023	0.046
Fatty acid metabolism	0.017	0.017	0.023
Purines and pyrimidines	0.528	0.417	0.153
Regulatory functions	0.013	0.014	0.014
Replication and transcription	0.020	0.029	0.040
Translation	0.035	0.027	0.032
Transport and binding	0.831	0.827	0.812
Enzyme	0.233	0.367	0.227
Non-enzyme	0.767	0.633	0.773
Oxidoreductase (EC 1)	0.070	0.024	0.055
Transferase (EC 2.–.–.–)	0.031	0.208	0.037
Hydrolase (EC 3.–.–.)	0.101	0.090	0.208
Isomerase (EC 4)	0.020	0.020	0.020
Ligase (EC 5)	0.010	0.010	0.010
Lyase (EC 6)	0.017	0.078	0.017

- At the seq level, Prion, A4, & TTHY are dissimilar
- ProtFun predicts them to be cell envelope-related, tranport & binding
- This is in agreement w/ known functionality of these proteins

ProtFun: Performance

Copyright 2007 © Limsoon Wong

Similarity of Dissimilarities

	orange ₁	banana ₁	
apple ₁	Color = red vs orange Skin = smooth vs rough Size = small vs small Shape = round vs round	Color = red vs yellow Skin = smooth vs smooth Size = small vs small Shape = round vs oblong	
apple ₂	Color = red vs orange Skin = smooth vs rough Size = small vs small Shape = round vs round	Color = red vs yellow Skin = smooth vs smooth Size = small vs small Shape = round vs oblong	
orange ₂	Color = orange vs orange Skin = rough vs rough Size = small vs small Shape = round vs round	Color = orange vs yellow Skin = rough vs smooth Size = small vs small Shape = round vs oblong	

SVM-Pairwise Framework

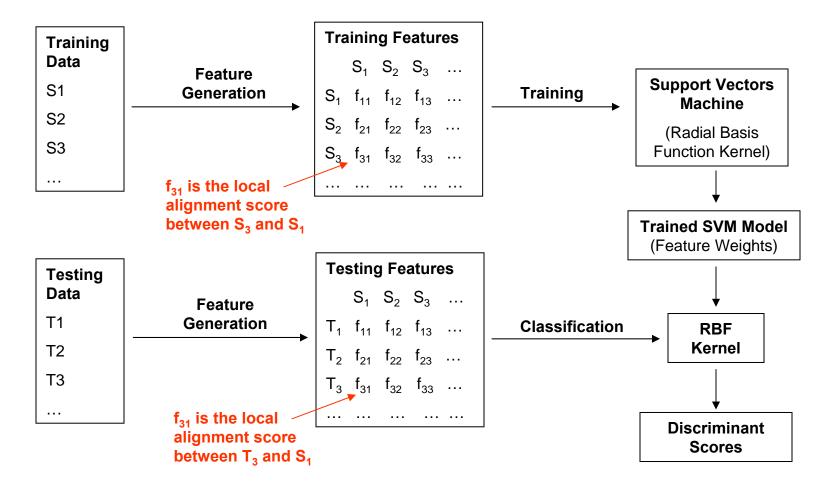
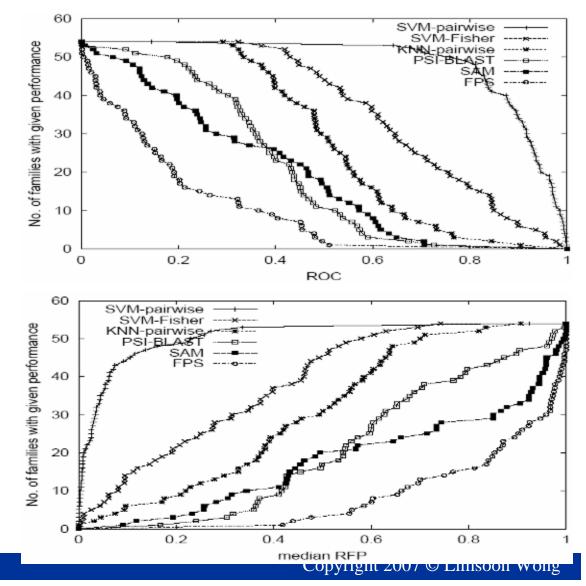
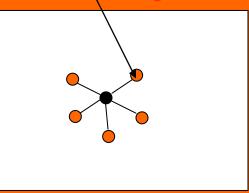
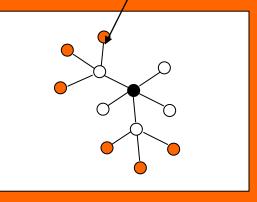



Image credit: Kenny Chua


Performance of SVM-Pairwise

- Receiver Operating
 Characteristic (ROC)
 - The area under the curve derived from plotting true positives as a function of false positives for various thresholds.
- Rate of median False
 Positives (RFP)
 - The fraction of negative test examples with a score better or equals to the median of the scores of positive test examples.



Protein Function Prediction from Protein Interactions

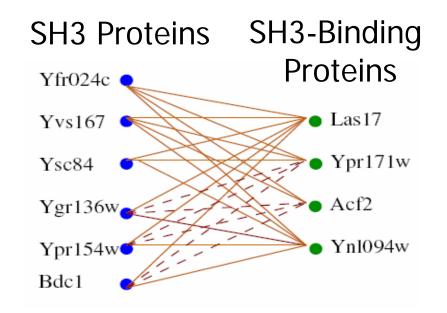
Level-1 neighbour

Level-2 neighbour

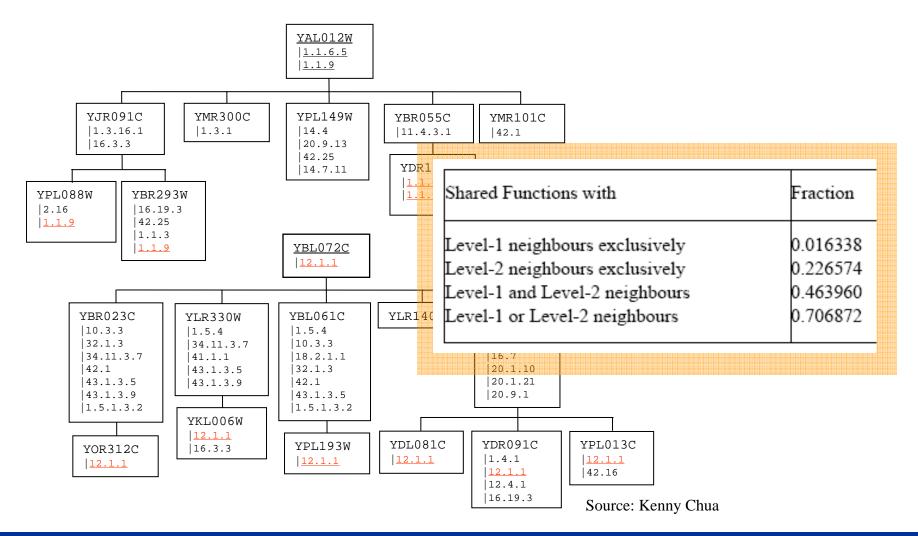

Functional Association Thru Interactions


• Direct functional association:

- Interaction partners of a protein are likely to share functions w/ it
- Proteins from the same pathways are likely to interact


Indirect functional association

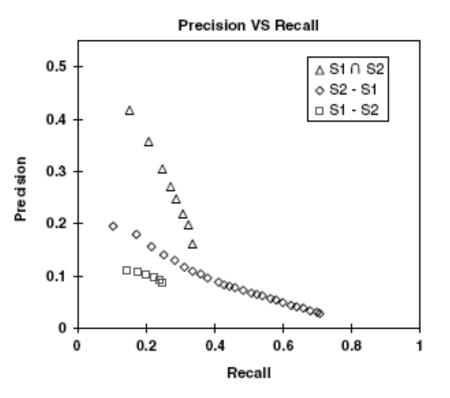
- Proteins that share interaction partners with a protein may also likely to share functions w/ it
- Proteins that have common biochemical, physical properties and/or subcellular localization are likely to bind to the same proteins


An illustrative Case of Indirect Functional Association?

- Is *indirect functional association* plausible?
- Is it found often in real interaction data?
- Can it be used to improve protein function prediction from protein interaction data?

of Singapore

Freq of Indirect Functional Association


NUS National University of Singapore

Prediction Power By Majority Voting

- Remove overlaps in level-1 and level-2 neighbours to study predictive power of "level-1 only" and "level-2 only" neighbours
- Sensitivity vs Precision analysis

$$PR = \frac{\sum_{i}^{K} k_{i}}{\sum_{i}^{K} m_{i}} \quad SN = \frac{\sum_{i}^{K} k_{i}}{\sum_{i}^{K} n_{i}}$$

- n_i is no. of fn of protein i
- m_i is no. of fn predicted for protein i
- k_i is no. of fn predicted correctly for protein i

- ⇒ "level-2 only" neighbours performs better
- ⇒ L1 ∩ L2 neighbours has greatest prediction power

Functional Similarity Estimate: Czekanowski-Dice Distance

• Functional distance between two proteins (Brun et al, 2003)

$$D(u,v) = \frac{|N_u \Delta N_v|}{|N_u \cup N_v| + |N_u \cap N_v|}$$

• N_k is the set of interacting partners of k

- X \triangle Y is symmetric diff betw two sets X and Y
- Greater weight given to similarity

 \Rightarrow Similarity can be defined as

Y Is this a good measure if u and v have very diff number of neighbours?

 $\Delta \tau z$

$$S(u,v) = 1 - D(u,v) = \frac{2X}{2X + (Y+Z)}$$

Functional Similarity Estimate: FS-Weighted Measure

• FS-weighted measure

$$S(u,v) = \frac{2|N_u \cap N_v|}{|N_u - N_v| + 2|N_u \cap N_v|} \times \frac{2|N_u \cap N_v|}{|N_v - N_u| + 2|N_u \cap N_v|}$$

- N_k is the set of interacting partners of k
- Greater weight given to similarity

 \Rightarrow Rewriting this as

$$S(u,v) = \frac{2X}{2X+Y} \times \frac{2X}{2X+Z}$$

Correlation w/ Functional Similarity

• Correlation betw functional similarity & estimates

Neighbours	CD-Distance	FS-Weight
$egin{array}{c} S_1 \ S_2 \ S_1 \cup S_2 \end{array}$	0.471810 0.224705 0.224581	0.498745 0.298843 0.29629

• Equiv measure slightly better in correlation w/ similarity for L1 & L2 neighbours

Reliability of Expt Sources

- Diff Expt Sources have diff reliabilities
 - Assign reliability to an interaction based on its
 expt sources (Nabieva et al, 2004)
- Reliability betw u and v computed by:

$$r_{u,v} = 1 - \prod_{i \in E_{u,v}} (1 - r_i)$$

- r_i is reliability of expt source i,
- E_{u,v} is the set of expt sources in which interaction betw u and v is observed

Source	Reliability
Affinity Chromatography	0.823077
Affinity Precipitation	0.455904
Biochemical Assay	0.666667
Dosage Lethality	0.5
Purified Complex	0.891473
Reconstituted Complex	0.5
Synthetic Lethality	0.37386
Synthetic Rescue	1
Two Hybrid	0.265407

Functional Similarity Estimate: FS-Weighted Measure with Reliability

• Take reliability into consideration when computing FS-weighted measure:

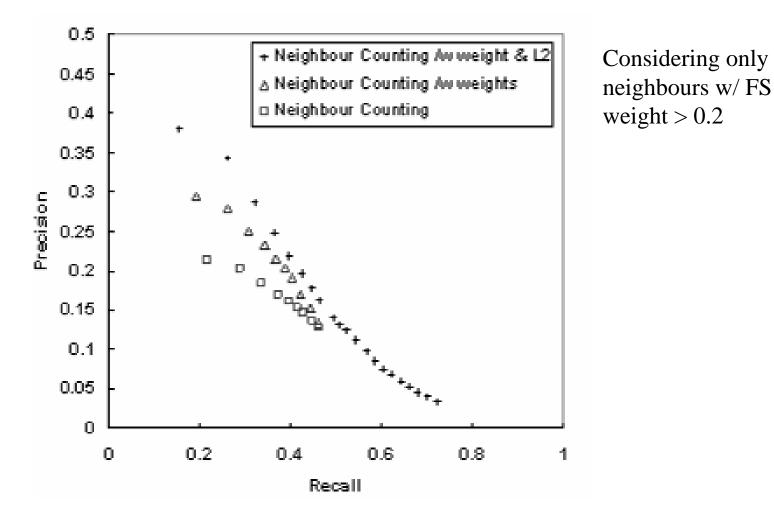
$$S_{R}(u,v) = \frac{2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}}{\left(\sum_{w \in N_{u}} r_{u,w} + \sum_{w \in (N_{u} \cap N_{v})} r_{u,w}(1-r_{v,w})\right) + 2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}} \times \frac{2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}}{\left(\sum_{w \in N_{v}} r_{v,w} + \sum_{w \in (N_{u} \cap N_{v})} r_{u,w}(1-r_{u,w})\right) + 2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}}}$$

N_k is the set of interacting partners of k

• $\mathbf{r}_{u,w}$ is reliability weight of interaction betw u and v

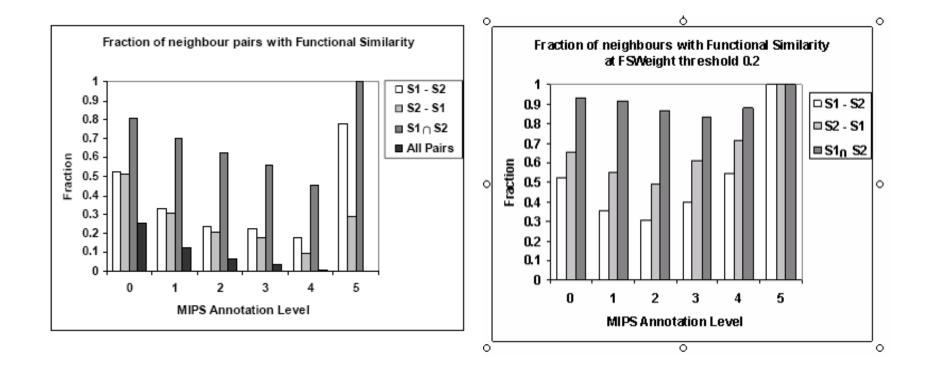
 \Rightarrow **Rewriting**

$$S(u,v) = \frac{2X}{2X+Y} \times \frac{2X}{2X+Z}$$



Integrating Reliability

• Equiv measure shows improved correlation w/ functional similarity when reliability of interactions is considered:


Neighbours	CD-Distance	FS-Weight	FS-Weight R
$egin{array}{c} \mathbf{S}_1 \ \mathbf{S}_2 \ \mathbf{S}_1 \cup \mathbf{S}_2 \end{array}$	0.471810	0.498745	0.532596
	0.224705	0.298843	0.375317
	0.224581	0.29629	0.363025

Improvement to **Prediction Power by Majority Voting**

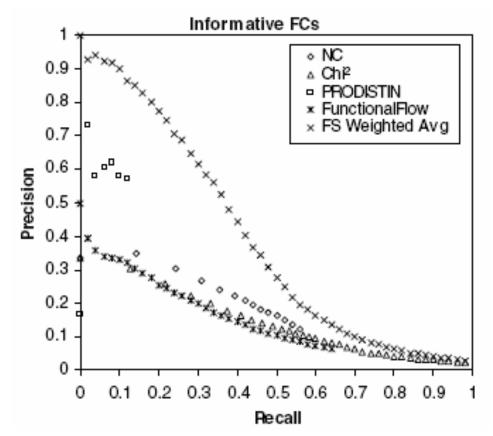
tional University of Singapore

Improvement to Over-Rep of Functions in Neighbours

Use L1 & L2 Neighbours for Prediction

• FS-weighted Average

$$f_x(u) = \frac{1}{Z} \left[\lambda r_{\text{int}} \pi_x + \sum_{v \in N_u} \left(S_{TR}(u, v) \delta(v, x) + \sum_{w \in N_v} S_{TR}(u, w) \delta(w, x) \right) \right]$$


- *r_{int}* is fraction of all interaction pairs sharing function
- λ is weight of contribution of background freq
- $\delta(\mathbf{k}, \mathbf{x}) = 1$ if k has function x, 0 otherwise
- N_k is the set of interacting partners of k
- π_x is freq of function x in the dataset
- Z is sum of all weights

$$Z = 1 + \sum_{v \in N_u} \left(S_{TR}(u, v) + \sum_{w \in N_v} S_{TR}(u, w) \right)$$

1

Performance of FS-Weighted Averaging

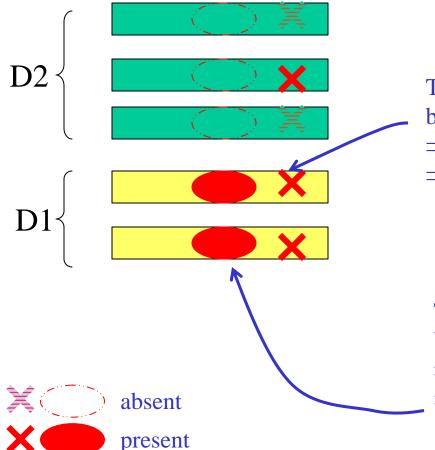
• LOOCV comparison with Neighbour Counting, Chi-Square, PRODISTIN

Application of Sequence Comparison: Key Mutation Site Discovery

Identifying Key Mutation Sites K.L.Lim et al., JBC, 273:28986--28993, 1998

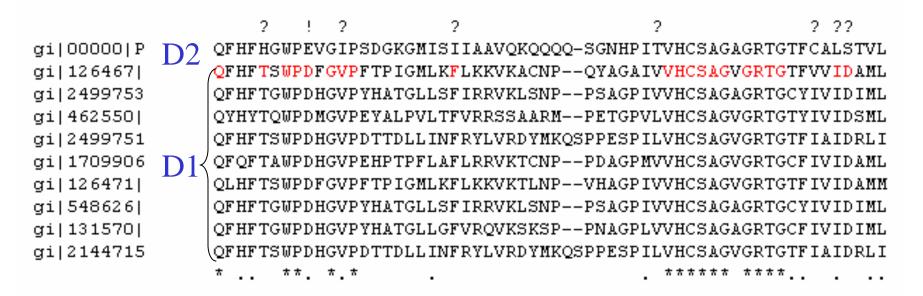
Sequence from a typical PTP domain D2

>g1|0C000|PTP1-D2 EEEFKRLTSIKIQNDKMRTGNLP1NEKKNRVLQIIPYEFNRVIIPVKRGEENTDYVN19F IDGYRQKDSYIASQGPLLHTIEDFWREIWEWKSCSIVELTELEERGQEKCAQYWPSDGIV SYGDITVELKKEEECESYTVRDLLVTNTRENKSRQIRQFHFHGWPEVGIPSDGKGHISII 1AVQKQQQQSGNHPITVHCS1G1GRTGTFCALSTVLERVKAEGILDVFQTVKSLRLQRFH HVQTLEQYEFCYKVVQEYID1FSDYANFK


- Some PTPs have 2 PTP domains
- PTP domain D1 is has much more activity than PTP domain D2
- Why? And how do you figure that out?

Emerging Patterns of PTP D1 vs D2

- Collect example PTP D1 sequences
- Collect example PTP D2 sequences
- Make multiple alignment A1 of PTP D1
- Make multiple alignment A2 of PTP D2
- Are there positions conserved in A1 that are violated in A2?
- These are candidate mutations that cause PTP activity to weaken
- Confirm by wet experiments



This site is consistently conserved in D1, but is not consistently missing in D2 \Rightarrow it is not an EP \Rightarrow not a likely cause of D2's loss of function

Exercise: Why?

This site is consistently conserved in D1, but is consistently missing in D2 ⇒ it is an EP ⇒ possible cause of D2's loss of function

- Positions marked by "!" and "?" are likely places responsible for reduced PTP activity
 - All PTP D1 agree on them
 - All PTP D2 disagree on them

 Positions marked by "!" are even more likely as 3D modeling predicts they induce large distortion to structure

- What wet experiments are needed to confirm the prediction?
 - Mutate E \rightarrow D in D2 and see if there is gain in PTP activity
 - Mutate D \rightarrow E in D1 and see if there is loss in PTP activity

Exercise: Why do you need this 2-way expt?

Any Questions?

Acknowledgements

• Some of the slides are based on slides given to me by Kenny Chua

- T.F.Smith & X.Zhang. "The challenges of genome sequence annotation or `The devil is in the details'", *Nature Biotech*, 15:1222--1223, 1997
- D. Devos & A.Valencia. "Intrinsic errors in genome annotation", *TIG*, 17:429--431, 2001
- K.L.Lim et al. "Interconversion of kinetic identities of the tandem catalytic domains of receptor-like protein tyrosine phosphatase PTP-alpha by two point mutations is synergist and substrate dependent", *JBC*, 273:28986--28993, 1998
- S.F.Altshcul et al. "Basic local alignment search tool", *JMB*, 215:403--410, 1990
- S.F.Altschul et al. "Gapped BLAST and PSI-BLAST: A new generation of protein database search programs", *NAR*, 25(17):3389--3402, 1997

- S.E.Brenner. "Errors in genome annotation", *TIG*, 15:132--133, 1999
- M. Pellegrini et al. "Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles", *PNAS*, 96:4285--4288, 1999
- J. Wu et al. "Identification of functional links between genes using phylogenetic profiles", *Bioinformatics*, 19:1524--1530, 2003
- L.J.Jensen et al. "Prediction of human protein function from post-translational modifications and localization features", *JMB*, 319:1257--1265, 2002
- C. Wu, W. Barker. "A Family Classification Approach to Functional Annotation of Proteins", *The Practical Bioinformatician*, Chapter 19, pages 401—416, WSPC, 2004

- H.N. Chua, W.-K. Sung. <u>A better gap penalty for</u> pairwise SVM. Proc. APBC05, pages 11-20
- Hon Nian Chua, Wing Kin Sung, Limsoon Wong. <u>Exploiting Indirect Neighbours and Topological</u> <u>Weight to Predict Protein Function from Protein-</u> <u>Protein Interactions</u>. *Bioinformatics*, 22:1623-1630, 2006.
- T. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for detecting remote homologies. *JCB*, 7(1-2):95—11, 2000