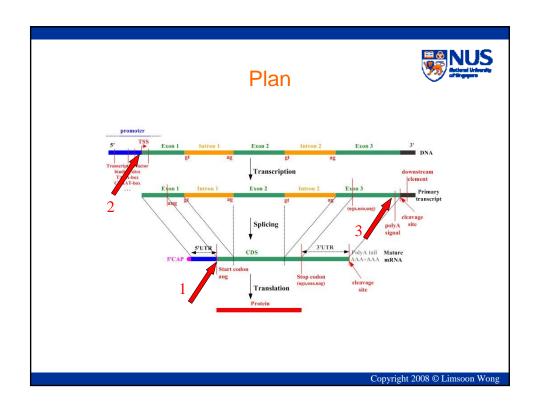
For written notes on this lecture, please read Chapters 4 and 7 of *The Practical Bioinformatician*, and Koh & Wong, "Recognition of Polyadenylation Sites from Arabidopsis Genomic Sequences", *Proc GIW* 2007, pages 73--82

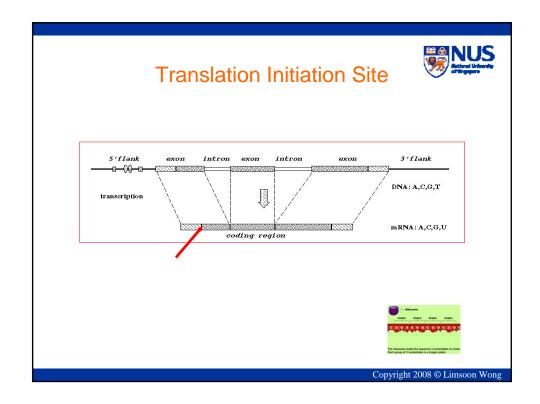
CS2220: Introduction to Computational Biology Lecture 4: Gene Feature Recognition

Limsoon Wong 15 February 2008



Recognition of Translation Initiation Sites

An introduction to the World's simplest TIS recognition system



A Sample cDNA

299 HSU27655.1 CAT U27655 Homo sapiens	
$\tt CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCC{\color{red}\underline{ATG}} GCTGAACACTGACTCCCAGCTGTG$	80
$\tt CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGC{\color{red} \underline{ATG}} GCTTTTGGCTGTCAGGGCAGCTGTA$	160
GGAGGCAG <u>ATG</u> AGAAGAGGGAG <u>ATG</u> GCCTTGGAGGAAGGGAAGGGCCTGGTGCCGAGGA	240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT	
	80
ieeeeeeeeeeeeeee	160
EEEEEEEEEEEEEEEEEEEEEEEE	240
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	

What makes the second ATG the TIS?

Copyright 2008 © Limsoon Wong

Approach

- Training data gathering
- Signal generation
 - k-grams, distance, domain know-how, ...
- Signal selection
 - Entropy, χ2, CFS, t-test, domain know-how...
- Signal integration
 - SVM, ANN, PCL, CART, C4.5, kNN, ...

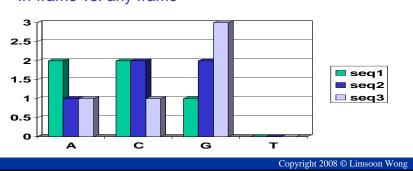
Training & Testing Data

- Vertebrate dataset of Pedersen & Nielsen [ISMB'97]
- 3312 sequences
- 13503 ATG sites
- 3312 (24.5%) are TIS
- 10191 (75.5%) are non-TIS
- Use for 3-fold x-validation expts

Copyright 2008 © Limsoon Wong

Signal Generation

- K-grams (ie., k consecutive letters)
 - -K = 1, 2, 3, 4, 5, ...
 - Window size vs. fixed position
 - Up-stream, downstream vs. any where in window
 - In-frame vs. any frame



Signal Generation: An Example

299 HSU27655.1 CAT U27655 Homo sapiens

 $\textbf{CGTGTGCAGC} \underline{\textbf{AGCCTGCA}} \underline{\textbf{GCCCCAAGCCATGGCTGAACACTGACTCCCAGCTGTG}}$ 80 CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA 160 $\underline{\tt GGAGGCAGATGAGAAGAGGGAGGATGGCCTTGGAGGAAGGGAAGGGGCCTGGTGCC} \\ \textbf{GAGGA}$ 240 CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT

- Window = ± 100 bases
- In-frame, downstream

· Any-frame, downstream

$$- GCT = 3$$
, $TTT = 2$, $ATG = 2$...

• In-frame, upstream

$$-GCT = 2$$
, $TTT = 0$, $ATG = 0$, ...

Exercise: Find the in-frame downstream ATG

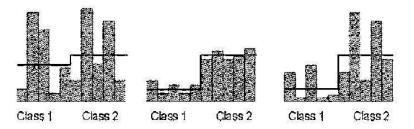
Exercise: What are the possible k-grams (k=3) in this sequence?

Copyright 2008 © Limsoon Wong

Too Many Signals

- For each value of k, there are 4^k * 3 * 2 k-grams
- If we use k = 1, 2, 3, 4, 5, we have 24 + 96 + 384 +1536 + 6144 = 8184 features!
- This is too many for most machine learning algorithms

- Choose a signal w/ low intra-class distance
- · Choose a signal w/ high inter-class distance



Signal Selection (e.g., t-statistics)

tics)

The t-state of a signal is defined as

$$t = \frac{|\mu_1 - \mu_2|}{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}}$$

where σ_i^2 is the variance of that signal in class i, μ_i is the mean of that signal in class i, and n_i is the size of class i.

Signal Selection (e.g., MIT-correlation)

The MIT-correlation value of a signal is defined as

$$MIT = \frac{|\mu_1 - \mu_2|}{\sigma_1 + \sigma_2}$$

where σ_i is the standard deviation of that signal in class i and μ_i is the mean of that signal in class i.

Copyright 2008 © Limsoon Wong

Signal Selection (e.g., χ 2)

The \mathcal{X}^2 value of a signal is defined as:

$$\mathcal{X}^2 = \sum_{i=1}^{\infty} \sum_{j=1}^{k} \frac{(A_{ij} - E_{ij})^2}{E_{ij}},$$

where m is the number of intervals, k the number of classes, A_{ij} the number of samples in the *i*th interval, *j*th class, R_i the number of samples in the *i*th interval, C_j the number of samples in the *j*th class, N the total number of samples, and E_{ij} the expected frequency of A_{ij} ($E_{ij} = R_i * C_j/N$).

Example

 Suppose you have a sample of 50 men and 50 women and the following weight distribution is observed:

	obs	ехр	(obs – exp) ² /exp
НМ	40	60*50/100=30	3.3
HW	20	60*50/100=30	3.3
LM	10	40*50/100=20	5.0
LW	30	40*50/100=20	5.0

 $\chi 2{=}16.6$ P = 0.00004, df = 1 So weight and sex are not indep

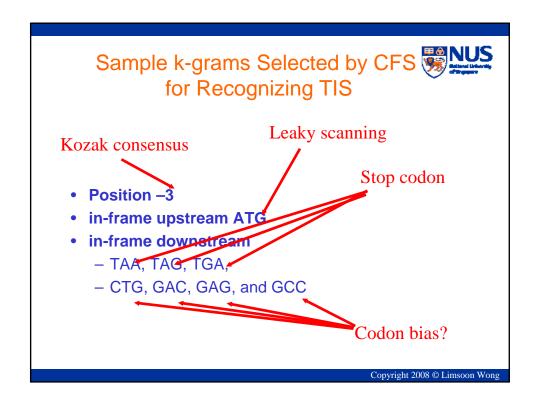
 Is weight a good attribute for distinguishing men from women?

Copyright 2008 © Limsoon Wong

Signal Selection (e.g., CFS)

- Instead of scoring individual signals, how about scoring a group of signals as a whole?
- CFS
 - Correlation-based Feature Selection
 - A good group contains signals that are highly correlated with the class, and yet uncorrelated with each other

Exercise: What is the main challenge in implementing CFS?



Signal Integration

- kNN
 - Given a test sample, find the k training samples that are most similar to it. Let the majority class win
- SVM
 - Given a group of training samples from two classes, determine a separating plane that maximises the margin of error
- Naïve Bayes, ANN, C4.5, ...

Results (3-fold x-validation)

	predicted as positive	predicted as negative
positive	TP.	FN
negative	FP	TN

Exercise: What is TP/(TP+FP)?

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
Naïve Bayes	84.3%	86.1%	66.3%	85.7%
SVM	73.9%	93.2%	77.9%	88.5%
Neural Network	77.6%	93.2%	78.8%	89.4%
Decision Tree	74.0%	94.4%	81.1%	89.4%

Copyright 2008 © Limsoon Wong

Improvement by Voting

 Apply any 3 of Naïve Bayes, SVM, Neural Network, & Decision Tree. Decide by majority

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB+SVM+NN	79.2%	92.1%	76.5%	88.9%
NB+SVM+Tree	78.8%	92.0%	76.2%	88.8%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+NN+Tree	75.9%	94.3%	81.2%	89.8%
Best of 4	84.3%	94.4%	81.1%	89.4%
Worst of 4	73.9%	86.1%	66.3%	85.7%

Improvement by Scanning

- Apply Naïve Bayes or SVM left-to-right until first ATG predicted as positive. That's the TIS
- Naïve Bayes & SVM models were trained using TIS vs. Up-stream ATG

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB	84.3%	86.1%	66.3%	85.7%
SVM	73.9%	93.2%	77.9%	88.5%
NB+Scanning	87.3%	96.1%	87.9%	93.9%
SVM+Scanning	88.5%	96.3%	88.6%	94.4%

Copyright 2008 © Limsoon Wong

Performance Comparisons

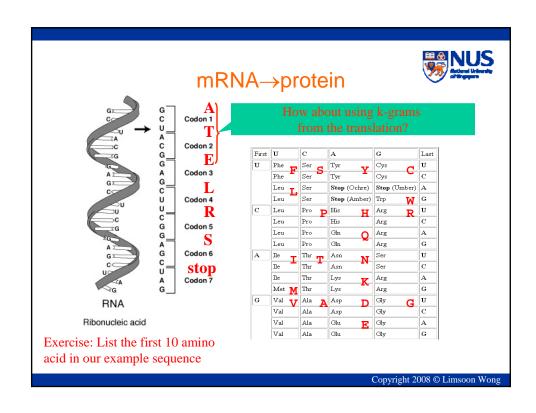
	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB	84.3%	86.1%	66.3%	85.7%
Decision Tree	74.0%	94.4%	81.1%	89.4%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+Scanning	88.5%	96.3%	88.6%	94.4%*
Pedersen&Nielsen	78%	87%	-	85%
Zien	69.9%	94.1%	-	88.1%
Hatzigeorgiou	-	-	-	94%*

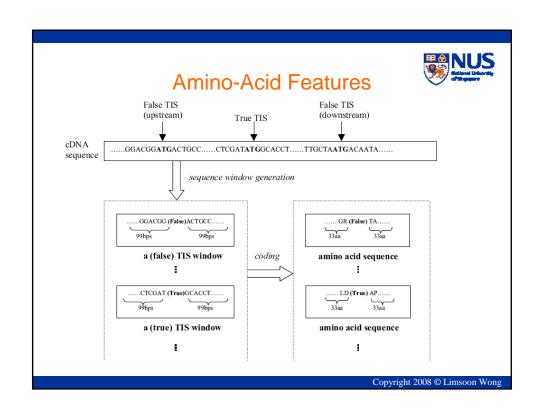
^{*} result not directly comparable

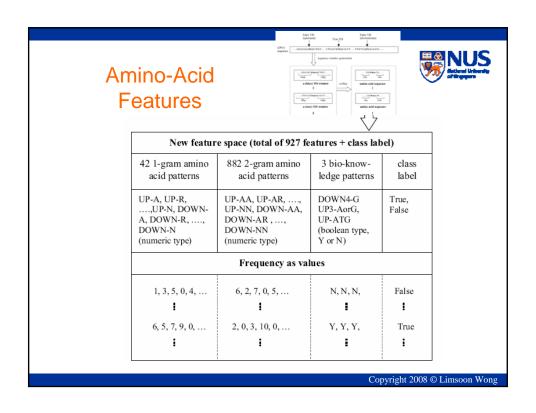
Technique Comparisons

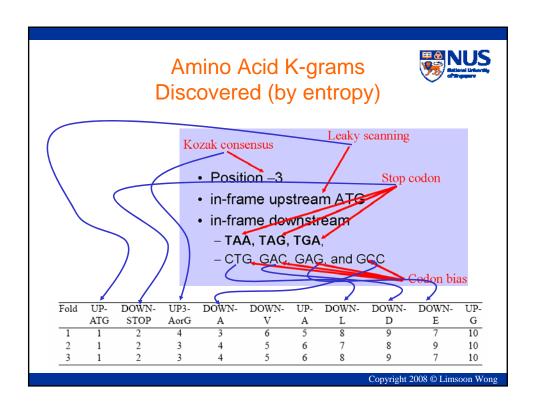
- Pedersen&Nielsen [ISMB'97]
 - Neural network
 - No explicit features
- Zien [Bioinformatics'00]
 - SVM+kernel engineering
 - No explicit features
- Hatzigeorgiou [Bioinformatics'02]
 - Multiple neural networks
 - Scanning rule
 - No explicit features

- Our approach
 - Explicit feature generation
 - Explicit feature selection
 - Use any machine learning method w/o any form of complicated tuning
 - Scanning rule is optional









Independent Validation Sets

• A. Hatzigeorgiou:

- 480 fully sequenced human cDNAs
- 188 left after eliminating sequences similar to training set (Pedersen & Nielsen's)
- 3.42% of ATGs are TIS

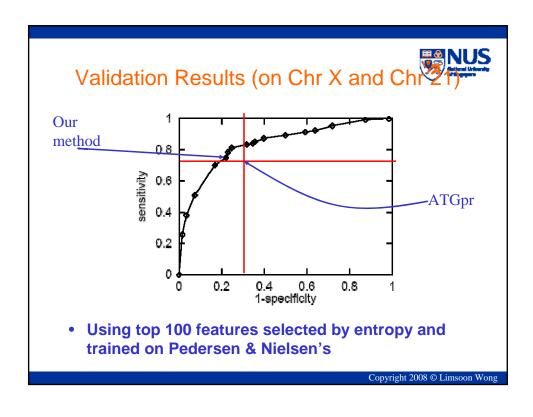
• Our own:

 well characterized human gene sequences from chromosome X (565 TIS) and chromosome 21 (180 TIS)

Validation Results (on Hatzigeorgiou

Algorithm	Sensitivity	Specificity	Precision	Accuracy
SVMs(linear)	96.28%	89.15%	25.31%	89.42%
SVMs(quad)	94.14%	90.13%	26.70%	90.28%
Ensemble Trees	92.02%	92.71%	32.52%	92.68%
COTTO E (1)	0.5.0104	00.710/	21 6004	00.000/

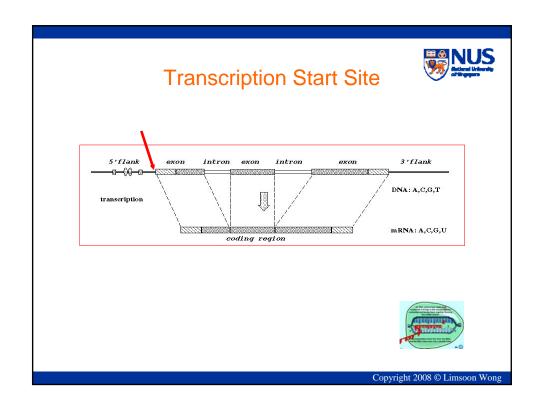
 Using top 100 features selected by entropy and trained on Pedersen & Nielsen's dataset

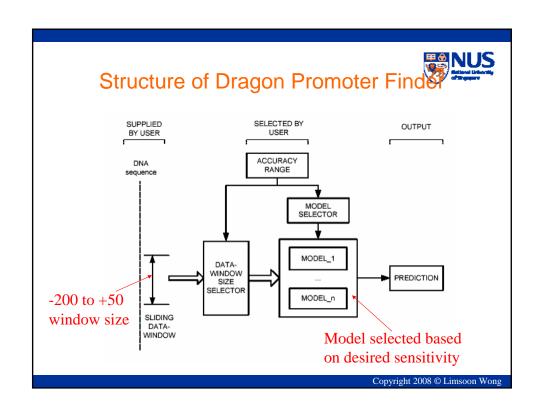


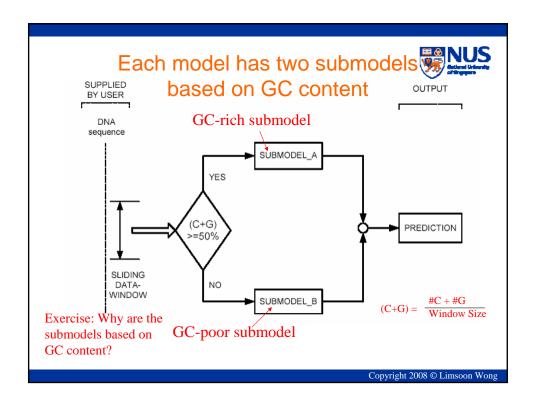
Recognition of Transcription Start Sites

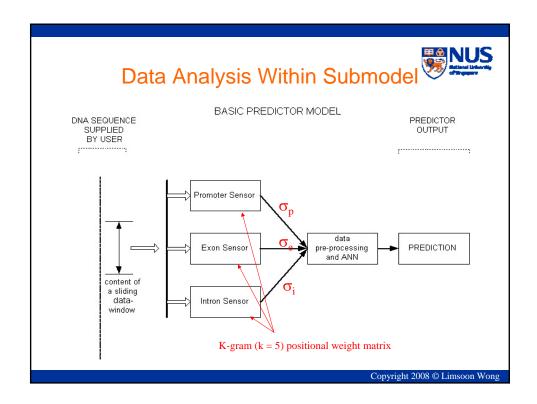
An introduction to the World's best TSS recognition system:

A heavy tuning approach









Promoter, Exon, Intron Sensors

- These sensors are positional weight matrices of k-grams, k = 5 (aka pentamers)
- They are calculated as below using promoter, exon, intron data respectively

 Pentamer at ith

Window size
$$\sigma = \underbrace{\sum_{i=1}^{L-4} p_j^i \otimes f_{j,i}}_{i=1}, \quad p_j^i \otimes f_{j,i} = \begin{cases} f_{j,i}, \text{ if } p_i = p_j^i \\ f_{j,i}, \text{ if } p_i = p_j^i \end{cases} }_{\text{Frequency of jth pentamer at ith position in training window}}, \quad p_j^i \otimes f_{j,i} = \begin{cases} f_{j,i}, \text{ if } p_i = p_j^i \\ f_{j,i}, \text{ if } p_i = p_j^i \end{cases}$$

- Give me 3 DNA seq of length 10:
 - $Seq_1 = ACCGAGTTCT$
 - Seq₂ = AGTGTACCTG
 - $-Seq_3 = AGTTCGTATG$
- Then

1-mer	pos1	pos2	pos3	pos4	pos5	pos6	pos7	pos8	pos9	pos10
Α	3/3	0/3	0/3							
С	0/3	1/3	1/3		Exerc	ise: Fil	l in the	rest of t	he table	
G	0/3	2/3	0/3							
Т	0/3	0/3	2/3							

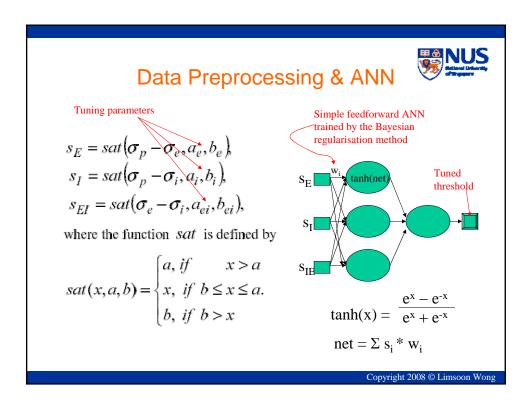
Just to make sure you know what I mean

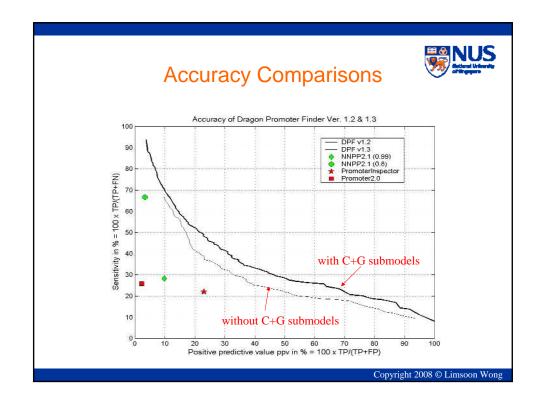
- Give me 3 DNA seq of length 10:
 - $Seq_1 = ACCGAGTTCT$
 - Seq₂ = AGTGTACCTG
 - Seq₃ = AGTTCGTATG Exercise: How many rows should

Exercise: How many rows should this 2-mer table have? How many rows should the pentamer table have?

Then

2-mer	pos1	pos2	pos3	pos4	pos5	pos6	pos7	pos8	pos9
AA	0/3	0/3	0/3						
AC	1/3	0/3	0/3		Exerci	se: Fill	in the re	st of th	e table
TT	0/3	0/3	1/3				1/3		





- Contain both positive and negative sequences
- Sufficient diversity, resembling different transcription start mechanisms
- Sufficient diversity, resembling different nonpromoters
- Sanitized as much as possible

- · TSS taken from
 - 793 vertebrate promoters from EPD
 - -200 to +50 bp of TSS
- · non-TSS taken from
 - GenBank,
 - 800 exons
 - 4000 introns.
 - -250 bp,
 - non-overlapping,
 - <50% identities

Tuning Data Preparation

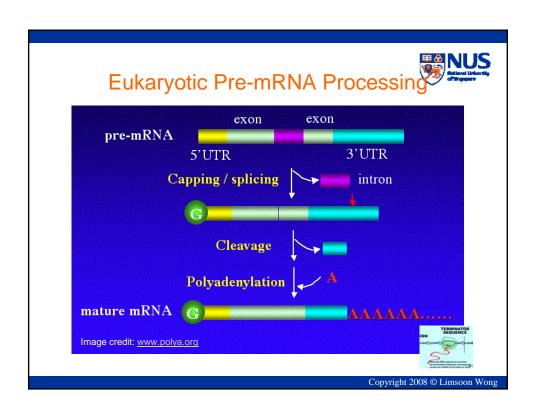
- To tune adjustable system parameters in Dragon, we need a separate tuning data set
- TSS taken from
 - 20 full-length gene seqs with known TSS
 - -200 to +50 bp of TSS
 - no overlap with EPD
- Non-TSS taken from
 - 1600 human 3'UTR segs
 - 500 human exons
 - 500 human introns
 - 250 bp
 - no overlap

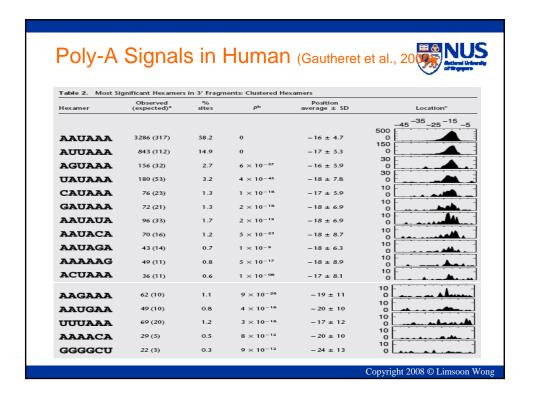
- Seqs should be from the training or evaluation of other systems (no bias!)
- Seqs should be disjoint from training and tuning data sets
- Seqs should have TSS
- Seqs should be cleaned to remove redundancy, <50% identities

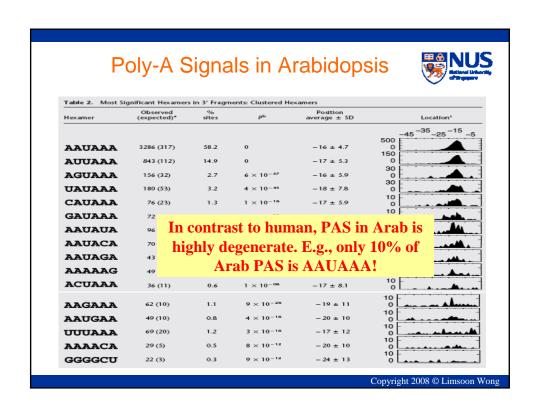
- 159 TSS from 147 human and human virus segs
- cummulative length of more than 1.15Mbp
- Taken from GENESCAN, Geneld, Genie, etc.

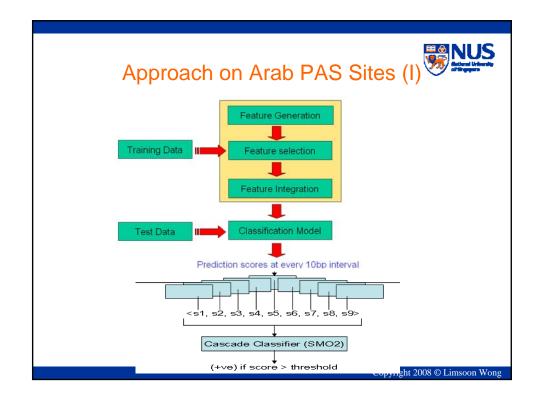
Recognition of Poly-A Signal Sites

A twist to the "feature generation, feature selection, feature integration" approach



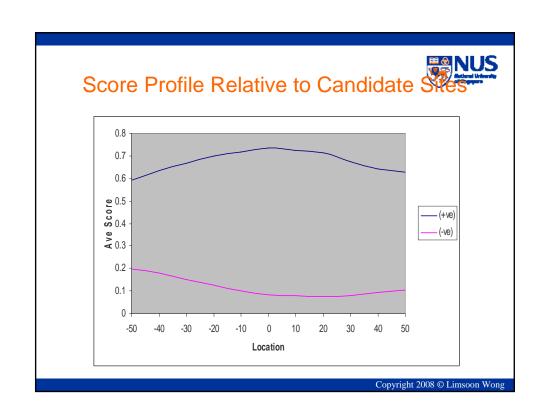






- Data collection
 - #1 from Hao Han, 811+ve seq (-200/+200)
 - #2 from Hao Han, 9742ve seq (-200/+200)
 - #3 from Qingshun Li,
 - 6209 (+ve) seq (-300/+100)
 - 1581 (-ve) intron (-300/+100)
 - 1501 (-ve) coding (-300/+100)
 - 864 (-ve) 5'utr (-300/+100)

- Feature generation
 - 3-grams, compositional features (4U/1N. G/U*7, etc)
 - Freq of features above in 3 diff windows: (-110/+5), (-35/+15), (-50/+30)
- Feature selection
 - $-\chi 2$
- Feature integration & Cascade
 - SVM



Validation Results

SN_0	SM	SMO 1		IO 2	PASS 1.0		
Control	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold	
Sequences							
CDS	90%	0.26	94%	0.24	95%	3.7	
5'UTR	79%	0.42	85%	0.49	78%	5.5	
Intron	64%	0.59	71%	0.67	63%	6.3	

Table 2. Equal-error-rate points of SMO1, SMO2, and PASS 1.0 for SN_10.

SN_10	SMO 1		SM	IO 2	PASS 1.0	
Control	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold
Sequences						
CDS	94%	0.36	96%	0.31	96%	4
5'UTR	86%	0.53	89%	0.6	81%	5.7
Intron	73%	0.68	77%	0.77	67%	6.6

Table 3. Equal-error-rate points of SMO1, SMO2, and PASS 1.0 for SN_30.

SN_30	SMO 1	SMO 1		SMO 2		PASS 1.0	
Control	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold	
Sequences							
CDS	97%	0.44	97%	0.37	97%	4.3	
5'UTR	90%	0.62	92%	0.67	84%	6.2	
Intron	79%	0.75	83%	0.81	72%	6.8	

Copyright 2008 © Limsoon Wong

Concluding Remarks...

What have we learned?

- Gene feature recognition applications
 - TIS, TSS, PAS
- General methodology
 - "Feature generation, feature selection, feature integration"
- Important tactics
 - Multiple models to optimize overall performance
 - Feature transformation (DNA → amino acid)
 - Classifier cascades

Copyright 2008 © Limsoon Wong

Any Question?

Acknowledgements

 The slides for PAS site prediction are adapted from slides given to me by Koh Chuan Hock

Copyright 2008 © Limsoon Wong

References (TIS Recognition)

- A. G. Pedersen, H. Nielsen, "Neural network prediction of translation initiation sites in eukaryotes", ISMB 5:226--233, 1997
- A. Zien et al., "Engineering support vector machine kernels that recognize translation initiation sites", *Bioinformatics* 16:799--807, 2000
- A. G. Hatzigeorgiou, "Translation initiation start prediction in human cDNAs with high accuracy", *Bioinformatics* 18:343--350, 2002
- J. Li et al., "Techniques for Recognition of Translation Initiation Sites", *The Practical Bioinformatician*, Chapter 4, pages 71—90, 2004

- V.B.Bajic et al., "Computer model for recognition of functional transcription start sites in RNA polymerase II promoters of vertebrates", J. Mol. Graph. & Mod. 21:323--332, 2003
- J.W.Fickett, A.G.Hatzigeorgiou, "Eukaryotic promoter recognition", Gen. Res. 7:861--878, 1997
- M.Scherf et al., "Highly specific localisation of promoter regions in large genome sequences by PromoterInspector", JMB 297:599--606, 2000
- V. B. Bajic and A. Chong. "Tuning the Dragon Promoter Finder System for Human Promoter Recognition", *The Practical Bioinformatician*, Chapter 7, pages 157—165, 2004

References (PAS Recognition)

- Q. Li et al., "Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures". Plant Physiology, 138:1457-1468, 2005
- J. E. Tabaska, M. Q. Zhang, "Detection of polyadenylation signals in human DNA sequences". Gene, 231:77-86, 1999
- M. Legendre, D. Gautheret, "Sequence determinants in human polyadenylation site selection". *BMC Genomics*, 4:7, 2003
- B. Tian et al., "Prediction of mRNA polyadenylation sites by support vector machine". Bioinformatics, 22:2320-2325, 2006
- C. H. Koh, L. Wong. "Recognition of Polyadenylation Sites from Arabidopsis Genomic Sequences". Proc. GIW 2007, pages 73-82

References (Feature Selection)

- M. A. Hall, "Correlation-based feature selection machine learning", PhD thesis, Dept of Comp. Sci., Univ. of Waikato, New Zealand, 1998
- U. M. Fayyad, K. B. Irani, "Multi-interval discretization of continuous-valued attributes", IJCAI 13:1022-1027, 1993
- H. Liu, R. Sentiono, "Chi2: Feature selection and discretization of numeric attributes", IEEE Intl. Conf. Tools with Artificial Intelligence 7:338--391, 1995