CS2220: Introduction to Computational Biology
Lecture 4. Gene Feature Recognition
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Recognition of
Translation Initiation Sites
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e
EINUS
A Sample cDNA G

299 HSU27655.1 CAT U27655 Homo sapiens

CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCATGGCTGAACACTGACTCCCAGCTGTG 80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA 160
GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA 240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT

............................................................ 80
................................ iEEEEEEEEEEEEEEEEEEEEEEEEEEE 160
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 240

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

* What makes the second ATG the TIS?
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|
INUS
Approach &=

« Training data gathering

Signal generation

— k-grams, distance, domain know-how, ...
Signal selection

— Entropy, %2, CFS, t-test, domain know-how...
Signal integration

— SVM, ANN, PCL, CART, C4.5, kNN, ...
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TINUS
Training & Testing Data ""‘"":'“

» Vertebrate dataset of Pedersen & Nielsen [isms'97]
* 3312 sequences

» 13503 ATG sites

o 3312 (24.5%) are TIS

e 10191 (75.5%) are non-TIS

» Use for 3-fold x-validation expts
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|
INUS
Signal Generation &=

« K-grams (ie., k consecutive letters)
-K=1,273,4,5, ...
— Window size vs. fixed position
— Up-stream, downstream vs. any where in window
— In-frame vs. any frame

3,
2.5+
2,
H seqgql
1.5+ a
Hl seqg?2
14 COOseqg3
0.5+
O,‘

A C G T
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EINUS
Signal Generation: An Example ""‘""‘"‘"’

299 HSU27655.1 CAT U27655 Homo sapiens

CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCATGGCTGAACACTGACTCCCAGCTGTG 80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCAT§ GCiTTTGg CTﬁ TCAGGGCAE TA 160
GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA 240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT

 Window =£100 bases
e In-frame, downstream
-GCT=1,TIT=1,ATG=1...
* Any-frame, downstream
_ GCT - 3 TTT = 2 ATG = 2 Exercise: What are the
' ' """ possible k-grams (k=3) in
e In-frame, upstream this sequence?
-GCT=2,TTT=0,ATG =0, ...
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Exercise: Find the in-frame
downstream ATG

e
NS
Too Many Signals =

e For each value of k, there are 4k * 3 * 2 k-grams

e [fweusek=1,2,3,4,5, we have 24 + 96 + 384 +
1536 + 6144 = 8184 features!

e This is too many for most machine learning
algorithms
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FINUS
Signal Selection (Basic Idea) e

 Choose a signal w/ low intra-class distance
e Choose a signal w/ high inter-class distance

%]
el

5] =
Clags 2

Cilass | Clags ? Clags 1

0

Class 1 Clags?2
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ZINUS
Signal Selection (e.g., t-statistics)~ =

The t-etata of a signal is defined as

bo o B pal
{(et/m) + (03/n9)
where o7 is the variance of that signal

in class ¢, u; i3 the mean of that signal
in class ¢, and n; is the size of class 4.
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SINUS
Signal Selection (e.g., MIT-correlatit#)

The MIT-correlation value of a signal

ig defined as
AMIT < 81— 2|
a1+ g9
where ¢; is the standard deviation of
that signal in class 4 and p; is the mean

of that signal in clags 1.
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NS
Signal Selection (e.g., ¥2) ——
The A% value of e signel is dafined es:
2
2_ (Aij = Eig')
* ‘II?I jgl B4 4

where m i the number of intervals, §
the pumber of clemes, Ay the number
of semples in the ith interwel, 7th class,
R; the number of ssmples in the fth in-
tarvel, C; the number of samples in the
Fth clase, N the total number of sam-
ples, and Ey; the expected frequency of

Ay (Byy = By » CifN).
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e
EINUS
Example G

e Suppose you have a sample of 50 men and 50
women and the following weight distribution is

observed:
obs exp (obs — exp)?/exp )

HM 40 |60*50/100=30 3.3 12=16.6
P =0.00004,

HW 20 | 60*50/100=30 3.3 df=1

LM 10 | 40*50/100=20 5.0 So weight and
sex are not indep

LW 30 |40*50/100=20 5.0 )

* Is weight a good attribute for distinguishing men
from women?
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e
TINUS

Optfres] Wbyl

Signal Selection (e.g., CFS) ——

* Instead of scoring individual signals, how about
scoring a group of signals as awhole?

e CFS
— Correlation-based Feature Selection

— A good group contains signals that are highly
correlated with the class, and yet uncorrelated
with each other

Exercise: What is the main challenge in implementing CFS?
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Sample k-grams Selected by CFS 8 NUS

for Recognizing TIS

Leaky scannin
Kozak consensus y g

Stop codon
» Position -3

e in-frame upstream AT
e in-frame do

- CTG GAC GAG and GCC

\

Codon bias?
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|
INUS
Signal Integration &=

* kNN

— Given a test sample, find the k training samples
that are most similar to it. Let the majority class
win

« SVM

— Given a group of training samples from two
classes, determine a separating plane that
maximises the margin of error

* Nailve Bayes, ANN, C4.5, ...
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o ENus
Results (3-fold x-validation) e

predicted |predicted
as positive |as negative
positive | TP FN

- Exercise:
negative | FP ™ What is TP/(TP+FP)?

TP/(TP+FN) TN/(TN+FP)  TP/(TP + FP) Accuracy

Naive Bayes 84.3% 86.1% 66.3% 85.7%
SVM 73.9% 93.2% 77.9% 88.5%
Neural Network  77.6% 93.2% 78.8% 89.4%
Decision Tree 74.0% 94.4% 81.1% 89.4%

Copyright 2008 © Limsoon Wong

e
FINUS
Improvement by Voting ——

* Apply any 3 of Naive Bayes, SVM, Neural
Network, & Decision Tree. Decide by majority

TP/(TP+FN) TN/(TN+FP) TP/(TP+FP)  Accuracy

NB+SVM+NN  79.2% 92.1% 76.5% 88.9%
NB+SVM+Tree 78.8% 92.0% 76.2% 88.8%
NB+NN+Tree 77.6% 94.5% 82.1% 90.4%
SVM+NN+Tree 75.9% 94.3% 81.2% 89.8%
Best of 4 84.3% 94.4% 81.1% 89.4%
Worst of 4 73.9% 86.1% 66.3% 85.7%
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EBANUS
-i-nn--u

e EnT

Improvement by Scanning

 Apply Naive Bayes or SVM left-to-right until first
ATG predicted as positive. That's the TIS

* Naive Bayes & SVM models were trained using
TIS vs. Up-stream ATG

TP/(TP+FN) TN/(TN+FP) TP/(TP+FP) Accuracy

NB 84.3% 86.1% 66.3% 85.7%
SVM 73.9% 93.2% 77.9% 88.5%
NB+Scanning 87.3% 96.1% 87.9% 93.9%
SVM+Scanning 88.5% 96.3% 88.6% 94.4%

Copyright 2008 © Limsoon Wong

e
| o NUS
Performance Comparisons =

TP/(TP+FN) TN/(TN+FP) TP/(TP+FP)  Accuracy

NB 84.3% 86.1% 66.3% 85.7%
Decision Tree 74.0% 94.4% 81.1% 89.4%
NB+NN+Tree 77.6% 94.5% 82.1% 90.4%
SVM+Scanning 88.5% 96.3% 88.6% 94.4%*
Pedersen&Nielsen  78% 87% - 85%
Zien 69.9% 94.1% - 88.1%
Hatzigeorgiou - - - 94%*

* result not directly comparable
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EINUS
Technique Comparisons ==
e Pedersen&Nielsen [iIsmB’97]  Our approach
— Neural network — Explicit feature
— No explicit features generation
— Explicit feature selection
e Zien [Bioinformatics’00] — Use any machine

learning method w/o any
form of complicated
tuning

— Scanning rule is optional

— SVM-+kernel engineering
— No explicit features

* Hatzigeorgiou
[Bioinformatics’02]

— Multiple neural networks
— Scanning rule
— No explicit features

Copyright 2008 © Limsoon Wong
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EBINUS
. Brttores Urfty
MRNA—protein S
a—
c
LI=
A
Cc
G_| E [Faret [U c A G Last
G| [u [ene (s o [T v |Css clv
e Codon 3 Phe © ||Ser Tyr Cys c
o= L Lew | [ger Stop (Ochre) |Stop (Umber) [A
u Codon 4 Tew | Ser Stop (Amber) |Trp W le
g_ R ¢ |Lem Pre P|His H |&re R U
b Codsis Tew  |Pro His Arg c
a Leu Pro Gin 0 lar A
AT S Leu Pro Gin T g G
G Codon 6 [a [me Thr Aan Ser U
1 T |
ﬁ= Stop Tie The = |Asm T [ser [
A Codon7 e Thr Lys K| #2 A
G_ | et M Thr Lys Arg G
RNA G [va \/laa Alas D o Glv
Val Ala Asp Gly I
Ribonucleic acid Val Ala Gl E [av A
i A i i Val Ala Giu Gly G
Exercise: List the first 10 amino
acid in our example sequence
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ZINUS
Amino-Acid Features ——

False TIS False TIS
(upstream) True TIS (downstream)

cDNA
sequence

SGGACGGATGACTGOC ... .CTCGATATGGCACCT ... TTGCTAATGACAATA ...

sequence window generation

,,,,,, GGACGG (False) ACTGOC... ~..... GR (False) TA_....
Gabps G9bps 33aa 33aa
a (false) TIS window coding amino acid sequence

<o CTCGAT (Trug)GCACCT...... oo LD (True) AP.....
- —— L s
9Gbps G9bps 33aa 33aa
a (true) TIS window amino acid sequence
. .
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1 i

Amino-Acid == = =
Features == ==

New feature space (total of 927 features + class label)

42 1-gram amino 882 2-gram amino 3 bio-know- class
acid patterns acid patterns ledge patterns label

UP-A, UP-R, UP-AA, UP-AR, ..., DOWN4-G I'rue,

..... UP-N, DOWN- UP-NN, DOWN-AA, UP3-Aor(, False

A, DOWN-R,...., DOWN-AR, ..., UP-ATG

DOWN-N DOWN-NN (boolean type,

(numeric type) (numeric type) Y or N)

Frequency as values

1,3,50,4, .. 6,2,7,0,5,... N,N,N, False
6,5,7,90.. 2,0,3,10,0,... Y. Y. Y, True
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Amino Acid K-grams ,'E'.._'“_E
Discovered (by entropy)

Leaky scanning

Kozak consensus
+ Position =3 // Stop codon
* in-frame upstream

- TAA, TAG, TGA;
—CT AC. GAG, and GGC

~odqn bias

DOWN- DOWN- UP- DOWN- DOWN- DOWN- UP-

Fold UP- DOWN- UP3-
ATG  STOP  AorG A v A L D E G
1 1 2 4 3 6 5 8 9 7 10
2 1 2 3 - 5 6 7 8 9 10
3 1 2 3 4 5 6 8 9 7 10
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NS

Independent Validation Sets

» A. Hatzigeorgiou:
— 480 fully sequenced human cDNAs
— 188 left after eliminating sequences similar to
training set (Pedersen & Nielsen’s)
— 3.42% of ATGs are TIS
e Our own:

— well characterized human gene sequences from
chromosome X (565 TIS) and chromosome 21

(180 TIS)
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!NUS
Validation Results (on Hatzigeorgiot=

Algorithm Semsitivity ~ Spectfieity  Precision  Accuracy
SVMs(linear) 96.28%  89.15%  2531%  89.42%
SVMs(quad)  94.14%  90.I3%  2670%  90.28%
Ensemble Trees 92, (?12“ 92.71%  3252%  92.68%

- = o4

— Using top 100 features selected by entropy and
trained on Pedersen & Nielsen’s dataset

Copyright 2008 © Limsoon Wong

=2 NUS
Validation Results (on Chr X and Ch

Our 1
method

-]
0

2
»

sensitivity

ATGpr
0.4 —1oP

0. & 1 1 1 1
0 0.2 04 0.6 0.8 1
1-speclicity

» Using top 100 features selected by entropy and
trained on Pedersen & Nielsen’s
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Recognition of
Transcription Start Sites

Transcription Start Site

5’ flank
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TINUS
Structure of Dragon Promoter Find&f ==

SUPPLIED SELECTED BY

OUTPUT
BY USER USER
DNA ACCURACY
sequence RANGE
MODEL
SELECTOR
Y +
MODEL_1
jk DATA- L

Ll =) Veae" :D » PREDICTION
SELECTOR
-200t0 +50 |¥__ .

window Size | suoiG

DATA-
WINDOW

Model selected based
on desired sensitivity

Copyright 2008 © Limsoon Wong

Each model has two submodelsﬂl&

i based on GC content ouTRUT

| — ——
DNA GC-rich submodel

sequence

y
SUBMODEL_A

(O PREDICTION

SLIDING

DATA-

WINDOW SUBMODEL_B _ HCH#G
P (C+G) = ~Window Size

Exercise: Why are the
submodels based on ~ GC-poor submodel
GC content?

Copyright 2008 © Limsoon Wong
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=BINUS
Data Analysis Within Submodel"“‘"—"“"

BASIC PREDICTOR MODEL

DMA SEQUENCE PREDICTOR
SUPPLIED OUTPUT

—1 Promater Sensar
: \
— =3 Exon Sensor\ 1

.
content of

a sliding
data- ——"  Intron Sensor

window

n...|

data
pre-processing  —mel  PREDICTION
and ANM

K-gram (k = 5) positional weight matrix

Copyright 2008 © Limsoon Wong

NS
Promoter, Exon, Intron Sensors =

* These sensors are positional weight matrices of
k-grams, k =5 (aka pentamers)

 They are calculated as below using promoter,

exon, intron data respectively Pentamer at i
Window size 4 position in input
i @ g el
Zf?; @ fi f_},-_,-, it p; = P
i=] i —
L—4 N ANTE R
Zmaxf}_g 0,if p; = p’;
=l | j'" pentamer at
Frequency of jth 1P

it position in

pentamer at ith position training window

in training window
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EBANUS
-i-nn--u

Just to make sure you know what | meansZ. =

* Give me 3 DNA seq of length 10:
— Seq, = ACCGAGTTCT
— Seq, = AGTGTACCTG
— Seq; = AGTTCGTATG

 Then
1-mer posl pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10
A 3/3 |0/3 |0/3
C 0/3 |1/3 |1/3 Exergise: Fill in the fest of the tabld
G 0/3 |2/3 |0/3
T 0/3 |0/3 |2/3

Copyright 2008 © Limsoon Wong

NS

Just to make sure you know what | meansZ. =

« Give me 3 DNA seq of length 10:
— Seq, = ACCGAGTTCT
— Seq, = AGTGTACCTG

— Seq; = AGTTCGTATG  Exercise: How many rows should
« Then this 2-mer table have? How many
rows should the pentamer table have?

2-mer posl pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9

AA |0/3 |0/3 |0/3
AC |1/3 |0/3 |0/3 Exercise: Fill n the rgst of the table

TT |0/3 |0/3 |1/3 1/3

Copyright 2008 © Limsoon Wong
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EBANUS

atiarel Linferesily

Data Preprocessing & ANN N

Tuning parameters

Simple feedforward ANN

rained by the Bayesian
@‘Iarisation method

Tuned
threshold

SE‘I = SQ’{(G‘E - G‘fﬂaﬁjﬂéﬁi ):

where the function saf is defined by

a, if x>a S,
sat(x,a,by=<x, if h<x=<a. X _ g
b, if b>x tanh(X) = ex 4 ex
net=xs;*w,

Copyright 2008 © Limsoon Wong

EBNUS
. Brttoesl Urtoy
Accuracy Comparisons ——
Accuracy of Dragon Promoter Finder Ver. 1.2 & 1.3
100 - : : : : - : : :
| [— DPFW2
20 i | — pPFvia
" | & NNPP2A(0.89)
@ NNPPZ.1(0.8)
_sor  Promcttimmedor b
E = F-‘romoterz_.cl
& 7ol 1
E ®
o
Uil - 1
=
8
Woser 7
F ] :
£ 4 Lo
z “with C+G submodels
B 30| : : ; : -
s |m
0
20 b
b without C+G. submodels
% 10 20 30 20 50 &0 70 &0 %0 100
Paositive predictive value ppy in % = 100 « TR/ATP+FF)
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FINUS
Training Data Criteria & Preparatiow’ =

e Contain both positive and e TSStaken from

negative sequences — 793 vertebrate promoters
from EPD
e Sufficient diversity, — -200 to +50 bp of TSS

resembling different
transcription start
mechanisms

non-TSS taken from
— GenBank,
— 800 exons

e Sufficient diversity, 4000 introns

resembling different non-

promoters — 250 bp,
— non-overlapping,
+ Sanitized as much as — <50% identities
possible

Copyright 2008 © Limsoon Wong

S NUS
Tuning Data Preparation ——
e To tune adjustable system < TSS taken from
parameters in Dragon, we — 20 full-length gene seqs
need a separate tuning with known TSS
data set — 200 to +50 bp of TSS

— no overlap with EPD

¢ Non-TSS taken from
— 1600 human 3'UTR segs
500 human exons
500 human introns
250 bp
no overlap

Copyright 2008 © Limsoon Wong
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e Seqs should be from the
training or evaluation of
other systems (no bias!)

e Segs should be disjoint
from training and tuning
data sets

e Segs should have TSS

e Seqs should be cleaned to
remove redundancy, <50%
identities

Testing Data Criteria & Preparatio '

159 TSS from 147 human
and human virus seqgs

cummulative length of
more than 1.15Mbp

Taken from GENESCAN,
Geneld, Genie, etc.

Copyright 2008 © Limsoon Wong

Recognition of
Poly-A Signal Sites

U
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pre-mRNA
5’UTR

Capping / splicing l\r intron

Cleavage

Polyadenylation i,/
mature mRNA @ |

Image credit: www.polya.org

=
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BE&

P0|y-A Sigﬂ&'S In Human (Gautheret et al., ZO_N.._‘_l‘é

Table 2. Most Significant Hexamers in 3" Fragments: Clustered Hexamers

rved 6 Position
Hexamer (expected)® sites pE average + SO Location®
-1
—a5 35 5515 ¢
500 F ]
uum 3286 (317) 58.2 o —16 = 4.7 a :_( _ =
150 | T T T 2 ]
AUUAAR B43 (112} 14.9 o —17 = 53 oL _A_j
30 F T T e
ACUAAD 156 (32) 2.7 & = 1057 —16 = 59 oL

TAUARMD 180 (53) 3.2 4 10-as —18 = 78 ag E : 1
CAUARR 76 (23) 1.3 1= 1000 —17 = 59 'g | ; !
GAUARAR 221 1.3 2 x10-'® —18 = 62 ‘g | o madh, )
ARAUTAUTRA 96 (33) 1.7 2 2 10-1° —18 + 69 ‘g II 1
ARMATACH 70 (15} 1.2 5 10-32 —-18 = 87 13 i andh .
ADLOTAGH 43 (14) 0.7 1o 0= —18 x 6.3 13 I:j:‘l

ARDRARAG 49 (113 0.8 5 = 10777 —18 = 89 o R

10 F ]
ACUARAR 26 (113 0.6 1k 10— —17 = 81 o M.

10 [ ]
ARACGARD &2 (104 1.1 9= 10— —19= 11 o _A__AAL

10 1
AA”ATUGAR 42 (103 oa 4 = 107 —20 = 10 ol -

101: 1
UUUARR 2z | 1= I pmEe —17 =1z o) I eV T\

10 F E
AARACA 20 (5) oS 8= 1012 —20 = 10 o o v

10 F ]
GSEGGCT 22 (@ 0.3 @ =107 —24 =13 [ PR N —
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Poly-A Signals in Arabidopsis PNy

Table 2. Most Significant Hexamers in 3° Fragments: Clustered Hexamers

‘Observed ) Position
Hexamer (enpected)” sites P~ average = 5D Location®
—a5 35 25715 5
500 F E
ADTRARD 3286 (317) 58.2 o —16 = 4.7 of ‘ E
150 [ T T ]
AUUAAR 843 (1120 14.9 o —17 = 53 oF ‘ ]
P e
AGCGUARARAD 156 (32) 2.7 6 = 10 =7 —18 = 5.9 o . ‘ . El
30 T
TATAAR 180 (53) 32 4 = 10-43 —18=7a oL ; 3
1w - ]
CAUARADR 7E (23} 1.2 1 10— —17 = 59 o - |‘
10 |
GAUARRD 72

= In contrast to human, PAS in Arabis _Aa ]

anuacr ™ highly degenerate. E.g., only 10% of éﬂh—ijj
AAAAAG 4 Arab PAS is AAUAAA! =

10 R
ACUARD 26 (11 0.6 1o 10— —17 = 81 OI . ;

:
:
¥

10 |
MM &2 (10} 1.1 9 = 103 —19 = 11 [s] — —.L‘-L‘

10 |
AATUCAD 42 (10% o8 4 = 10-" —20 = 10 ol i

10 -
UUUAAR 69 (20) 1.2 3= 1070 —17 =12 o{:._..__..j...uh

mE . . q
ARRAMCH 29 (5) 0.5 B > 1072 —20 %10 ] |

10 1
GEGGECT 2@ 0.3 o =102 —24 =13 a | :: : : ::
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NUS
Approach on Arab PAS Sites (I) <=

QEETAR

Prediction scores at everv 10bp interval
¥

=51, s2, 53, s4, s5H, s6, s7, =85, 9=

1

|Ca'scade Classifier (SMO2) I

(+ve) if score > threshold W, 2008 © Limsoon Wong




~ EENUS
Approach on Arab PAS Sites (II)~"=

e Data collection e Feature generation
— #1 from Hao Han, 811 — 3-grams, compositional
+ve seq (-200/+200) features (4U/1N. G/U*7,
etc)
—  #2 from Hao Han, 9742 — Freq of features above in
—ve seq (-200/+200) 3 diff windows: (-110/+5),

(-35/+15), (-50/+30)

— #3 from Qingshun Li, _
6209 (+ve) seq (-300/+100) e Feature selection

1581 (-ve) intron (-300/+100) _ XZ
1501 (-ve) coding (-
300/+100)
864 (-ve) 5'utr (-300/+100) « Feature integration &
Cascade
- SVM

Copyright 2008 © Limsoon Wong

INUS
Score Profile Relative to Candidate SHeS

Ave Score
o
SN

Location
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Validation Results

SN0 SMO 1 SMO 2 PASS 10
Control SN &SP | Threshold | SN & SF | Threshold | SN & 3P | Threshold
Seguences
CDE 0% 0.26 4% 0.24 5% 37
SUTR 79% 0.42 B5% 0.49 TE% 5.5
Intron 64% 0.59 T1% 0.67 63% 6.3

Tahle 2. Equal-error-rate points of 3MO1, BMOZ, and PASE 10 for 3N_10.
SN_10 SMO 1 SMO 2 PASS10
Control SN &SP | Threshold | SN & SF | Threshold | SN & 3P | Threshold
Sequences
CDE 4% 0.36 D% 0.31 DE% 4
SUTE B6% 0.53 9% 0.6 1% 57
Intron 3% 0.68 TT% 0.77 6T% 6.6

Tahle 3. Equal-error-rate points of 3MO1, BMOZ, and PASE 10 for 3N_30.
SN_30 SMO 1 SMO 2 PASS 10
Control SN &SP | Threshold | SN & SF | Threshold | SN & 3P | Threshold
SBeguences
CD2 7% 0.44 7% 0.37 D7% 4.3
SUTR 0% 0.62 02% 0.67 B4% 6.2
Intron 7% 0.75 B3% 0.81 Ti% 6.8

Concluding Remarks

Copyright 2008 ©

) Limsoon Wong

26



What have we learned?

* Gene feature recognition applications
- TIS, TSS, PAS

* General methodology

— “Feature generation, feature selection, feature
integration”

* Important tactics
— Multiple models to optimize overall performance
— Feature transformation (DNA - amino acid)
— Classifier cascades

Copyright 2008 © Limsoon Wong

Any Question?
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