CS2220: Introduction to Computational Biology Course Briefing, 16/1/09

Limsoon Wong

Recommended "Pre-requisites"

- CS1102: Data Structures and Algorithms
- LSM1102: Molecular Genetics

Objectives

- Develop flexible and logical problem solving skill
- Understand bioinformatics problems
- Appreciate techniques and approaches to bioinformatics

To achieve the goals above, we expose students to a series of case studies spanning gene feature recognition, gene expression and proteomic analysis, gene finding, sequence homology interpretation, phylogeny analysis, etc.

Copyright 2009 © Limsoon Wong

4

What to Expect

- Time Table
- Course Syllabus
- Course Homepage
- Teaching Style
- Project, Assignments, Exams
- Readings
- Assessment
- Quick Overview of Themes and Applications of Bioinformatics

Time Table

- Lecture
 - □ Friday 2:00pm 4:00pm, COM1-212
- Tutorial
 - Monday 2:00pm 3:00pm, COM1-207
- Consultation
 - □ Any time, just drop by my office ☺
- Office
 - COM1, Level 3, Room 34
- Email
 - wongls@comp.nus.edu.sg

Copyright 2009 © Limsoon Wong

Course Syllabus

- **Essence of Bioinformatics**
 - molecular biology
 - tools and instruments for molecular biology themes and applications of bioinformatics
- Essence of Knowledge **Discovery**
 - classification performance measures
 - feature selection techniques
- machine learning techniques
- Gene Feature Recognition from Genomic DNA
 - feature generation, selection, & integration
 - translation initiation site (TIS) recognition Transcription start site (TSS) recognition
- Gene Expression and **Proteome Analysis**
 - Microarray and mass-spec basics
 - classification of gene expression profiles
 - classification of proteomic profiles clustering of gene expression profiles
 - molecular network reconstruction

- Essence of Seq Comparison
 - Dynamic programming basics
 - Sequence comparison and alignment basics
 - Needleman-Wunsh global alignment algorithm
 - Smith-Waterman local alignment algorithm
- Seq Homology Interpretation
 - protein function prediction by sequence alignment
 - protein function prediction by phylogenetic profiling active site and domain prediction
 - key mutation sites prediction
- Gene Finding
 - Overview of gene finding
 - GRAII
 - Handling of frame shifts and in-dels
- Phylogenetic Trees
 - Phylogeny reconstruction method basics origin of Polynesians & Europeans
 - Large-scale sequencing basics
- · Some hot current topics like PPI, miRNA, etc.

Course Homepage

- IVLE
 - http://ivle.nus.edu.sg/lms/website/search/listCours e.aspx?code=cs2220
- Lecture Slides & etc
 - http://www.comp.nus.edu.sg/~wongls/courses/cs2 220/2009

Copyright 2009 © Limsoon Won

Teaching Style

- Bioinformatics is a broad area
- Need to learn a lot of material by yourself
 - Reading books
 - Reading papers
 - Practice on the web
- Don't expect to be told everything

Assignments, Project, & Exam

- Assignments
 - Probably 3-4 assignments
 - Some are simple programming assignments
- Project
 - Based on a case study in the class
 - 8-10 pages of report expected
- Exam
 - 1 final open-book exam

Be Honest

- Exam
 - Absence w/o good cause results in ZERO mark
 - Cheating results in ZERO mark
- Discussion on assignments is allowed
- Blatant plagiarism is not allowed
 - Offender gets ZERO mark for assignment or exam
 - Penalty applies to those who copied AND those who allowed their assignments to be copied

Background Readings

- Limsoon Wong, The Practical Bioinformatician, WSPC, 2004
- Marketa Zvelebil and Jeremy Baum, *Understanding Bioinformatics*, Garland, 2007
- Peter Clote and Rolf Backofen, Computational Molecular Biology: An Introduction, John Wiley, 2000
- Pierre Baldi and Soren Brunak, Bioinformatics: the Machine Learning Approach, MIT Press, 1998
- Pavel Pevner, Computational Molecular Biology: An Algorithmic Approach, MIT Press, 2000
- Malcolm Campbell and Laurie Heyer, Genomics, Proteomics, and Bioinformatics, Pearson, 2007

Copyright 2009 © Limsoon Wong

Assessment

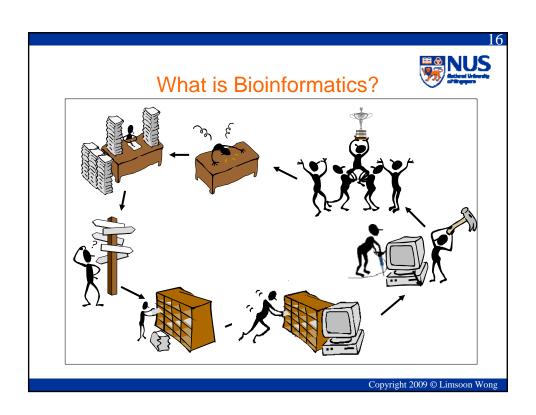
- Continuous Assessment: 50%
- Final Exam: 50%

What comes after CS2220

- CS2220 Introduction to Computational Biology
 - Understand bioinformatics problems; interpretational skills
- CS3225 Combinatorial Methods in Bioinformatics
- CS4220 Knowledge Discovery Methods in Bioinformatics
 - Clustering; classification; association rules; SVM; HMM; Mining of seq, trees, & graphs

- CS5238 Advanced Combinatorial Methods in Bioinformatics
 - Seq alignment, whole-genome alignment, suffix tree, seq indexing, motif finding, RNA sec struct prediction, phylogeny reconstruction
- CS6280 Computational Systems Biology
 - Dynamics of biochemical and signaling networks; modeling, simulating, & analyzing them
- Etc ...

Copyright 2009 © Limsoon Wong


Any questions?

I hope you will enjoy this class ©

Themes and Applications of Bioinformatics

Themes of Bioinformatics

Bioinformatics =

Data Mgmt +

Knowledge Discovery +

Sequence Analysis +

Physical Modeling +

Knowledge Discovery =

Statistics + Algorithms + Databases

Copyright 2009 © Limsoon Wong

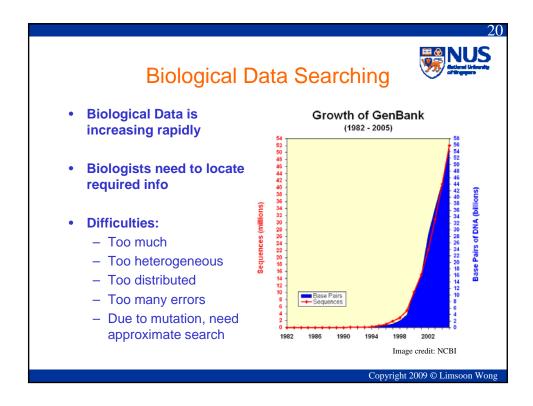
Benefits of Bioinformatics

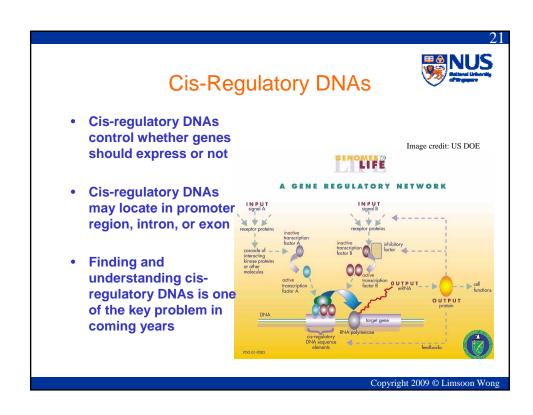
To the patient:

Better drug, better treatment

To the pharma:

Save time, save cost, make more \$


To the scientist:


Better science

Some Bioinformatics Problems

- Biological Data Searching
- Gene/Promoter finding
- Cis-regulatory DNA
- Gene/Protein Network
- Protein/RNA Structure Prediction
- Evolutionary Tree reconstruction
- Infer Protein Function
- Disease Diagnosis
- Disease Prognosis
- Disease Treatment Optimization, ...

Gene Networks Inside a cell is a complex system Expression of one gene depends on expression of another gene Such interactions can be represented using gene network Understanding such networks helps identify association betw genes & diseases Copyright 2009 © Limsoon Wong

- Structure of Protein/RNA is essential to its functionality
- Important to have some ways to predict the structure of a protein/RNA given its sequence
- This problem is important & it is always considered as a "grand challenge" problem in bioinformatics

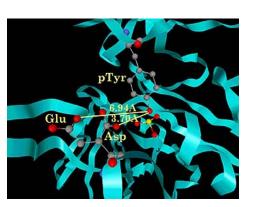
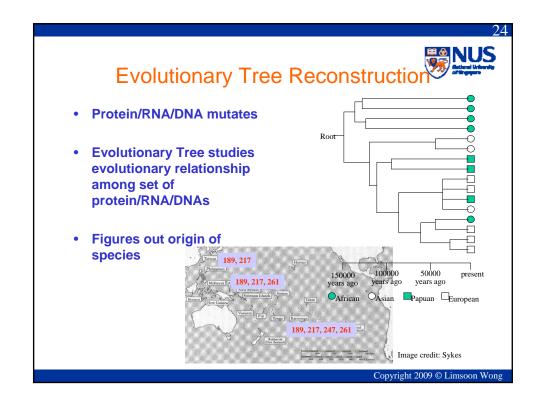
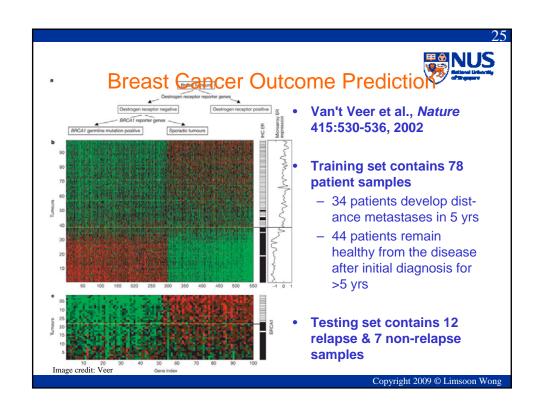




Image credit: Kolatkar

Commonly Used Data Sources

Type of Biological Databases

- Micro Level
 - Contain info on the composition of DNA, RNA, Protein Sequences
- Metadata
 - Ontology
 - Literature

- Macro Level
 - Contain info on interactions
 - Gene Expression
 - Metabolites
 - Protein-Protein Interaction
 - Biological Network

Exercise: Name a protein seq db and a DNA seq db

Copyright 2009 © Limsoon Wong

Transcriptome Database

- Complete collection of all possible mRNAs (including splice variants) of an organism
- Regions of an organism's genome that get transcribed into messenger RNA
- Transcriptome can be extended to include all transcribed elements, including non-coding RNAs used for structural and regulatory purposes

Exercise: Name a transcriptome database

Gene Expression Databases

- Detect what genes are being expressed or found in a cell of a tissue sample
- Single-gene analysis
 - Northern Blot
 - In Situ Hybridization
 - RT-PCR
- Many Genes: High Throughput Arrays
 - cDNA Microarray
 - Affymetrix GeneChip® Microarray

Exercise: Name a gene expression database

Copyright 2009 © Limsoon Wong

Metabolites Database

- A metabolite is an organic compound that is a starting material in, an intermediate in, or an end product of metabolism
- Metabolites dataset are also generated from mass spectrometry which measure the mass the these simple molecules, thus allowing us to estimate what are the metabolites in a tissue
- Starting metabolites:
 - Small, of simple structure, absorbed by the organism as food
 - E.g., vitamins and amino acids
- Intermediary metabolites:
 - The most common metabolites
 - May be synthesized from other metabolites, or broken down into simpler compounds, often with the release of chemical energy
 - E.g., glucose
- End products of metabolism
 - Final result of the breakdown of other metabolites
 - Excreted from the organism without further change
 - E.g., urea, carbon dioxide

- Proteins are true workhorses
 - Lots of the cell's activities are performed thru PPI including message passing, gene regulation, etc.
- Function of a protein also depends on proteins it interact with

- Methods for generating PPI database include:
 - biochemical purifications, yeast-two hydrid, synthetic lethals, in silico predictions, mRNA-coexpression
- Contain many false positives & false negatives

Exercise: Name a PPI database

Copyright 2009 © Limsoon Wong

Any Question?

Acknowledgements

- Most of the slides used in this lecture are based on original slides created by
 - Ken Sung
 - Anthony Tung
- Inaccuracies and errors are mine

Copyright 2009 © Limsoon Wong

References

- S.K.Ng, "Molecular Biology for the Practical Bioinformatician", *The Practical Bioinformatician*, Chapter 1, pages 1—30, WSPC, 2004
- DOE HGP Primer, http://www.ornl.gov/sci/techresources/Human_Ge nome/publicat/primer/index.shtml
- Lots of useful videos, http://www.as.wvu.edu/~dray/Bio_219.html