CS2220: Introduction to Computational Biology
Lecture 3: Gene Feature Recognition
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Some Relevant Biology

_E;MS Central Dogma

Replication

Transcription Translation

DNA s RN A sy Pr0t2IN

;3: f:hi

- - . AAUGGUACCGAUGACCUGGAGC . . .
. .AATGGTACCGATGACCTG. . . - - - TRLRPLLALLALWP. . .
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Players in
Protein
Synthesis

Protein synthesis
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INUS
) i

Transcription

e Synthesize mRNA from e Additional “steps” for

one strand of DNA Eukaryotes

— An enzyme RNA — Transcription produces
polymerase temporarily pre-mRNA that contains
separates double- both introns & exons
stranded DNA — 5 cap & poly-A tail are

— It begins transcription at added to pre-mRNA
transcription start site — RNA splicing removes

- A>A C>C, GG, & introns & MRNA is made
T>U — mRNA are transported

— Once RNA polymerase out of nucleus

reaches transcription
stop site, transcription
stops
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S FINUS
mmmmmmmmmm ) Translation —

e Synthesize protein from e 43=64 diff codons

MRNA = Codons are not 1-to-1 corr

to 20 amino acids
¢ Each amino acid is

encoded by consecutive )
seq of 3 nucleotides, e All organisms use the same

called a codon decoding table (except some
mitochrondrial genes)

e The decoding table from
codon to amino acid is ¢« Amino acids can be
called genetic code classified into 4 groups. A
single-base change in a
codon is usu insufficient to
cause a codon to code for an
amino acid in diff group
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Genetic Code

e Start codon

v [ e [ s [ s

ATG (COde fOf M) TTT Phe [F] | TCT Ser[S] | TAT Tyr [Y] | TGT Cys [C] | T

7 TTC Phe [F] | TOC Ser [S] | TAC Tyr [Y] | TGC Cys [C] | €

TTA Len[L] | TCA Ser[S] | TAA Ter [end] | TG Ter [end] | A
F TTGLen[L] | TOG Ser[8] | TAG Ter [end] | TOG Trp [W] | G | T
e Stop codon i\ — h
r CTT Len[L] | CCT Pro[P] | CAT His [H] | CGT Arg[E] | T |i
_ T A A S|, | CTCLen[L] CCCPro[P] | CACH:[H] |CGCAmg[R] |C F
g CTALen[L] | CCAPro[P] | CAAGI[Q] | CGAALrg[R] |a |9
T A G p | CTGLew[l] |CCGPro[P] | CAGGW[Q] |CGGA([R] |G |p
o ATT Te [I] | ACT Thr(T] | AAT &sn[N] | AGT Ser[8] |T |
_ TGA f 4 ATC I [I] | ACCThe[T] | AACAsa[W] | AGC Ser([S] | C j
t ATA Tle [T] |ACATh[T] |A&AIys[K] | AGAArg[R] | A [¢
i ATGMet [M] | ACGThr [T] | AAG Lys [K] | AGG Arg[E] |G |
:. GTT Vel [V] | GCT Ala[A] | GAT Asp [D] | GGT Gly[G] | T :

@ GTC Val [V] | GCC Ala[A] | GAC &sp [D] | GGC Gy [G] | C

GTA Val[V] | GCA Ala[4] | GAA G [E] |GGAGW[G] |A

GTGVal[V] | GOG Ala[4] | GAG G [E] |GGG G[G] |G

Copyright 2009 © Limsoon Wong



Example

Example of computational translation - notice the indication of (alternative) start-codons:

VIRTUAL RIBOSCME

Translation table: Standard 3GCO

>3eql
Reading frame: 1

M v L 5 A A DKGHNTVEKZSERESAETWWSG XV 66 # A ARETYGHREHSRTL
5' ATGETECIETCIGCCECCERCAAGEECARTETCARGECCECCTBEEECARGET IEECEECCRCECTECAGAGTATEECECAGRGECCCTE 20
FSS N S 1))

E R M F L 35 F P TTEKTY F P HFDIL S35 HG 3 A Q V KEGH G

5' GAGAGGATGTTCCTEAGCTICCCCACCACCARGACCTACITCCCCCACTTCEACCTGAGCCACEECTCCECECAGETCARGEECCACEEE 180
...... B T T T ..
A KV A A ALTXAVYVEEHTLTDTDTILTPGA ATLSEL S5 DLEHATH

5' GCEAAGGTGECCGCCECECTGACCARAGCEETGEARCACCTGEACGACCTGCCCGETECCCTGTICTGAACTGAGTGACCTGCACGCTCAC 270
.................. TR e o O S T B S T B T
X L R VvV DP V NTFIE EKTLTLSHSLLVTTLA AZSZHTLTESTDTFET P

5' ARGCTGCETETGGACCCEETCAACTTCAAGCTTCTGAGCCACTCCCTGCTGETGACCCTEECCTCCCACCTCCCCAGTGATTTCACCCEE 360

FE T P IR MININ ) eeee s D0 ) et et et e

2 vV #H A 5 L DEKFLAZNTYSTIVLTSEKTYR *
5' GCGGTCCACGCCTCCCTEGEACRAGTTCITGECCAACGTGAGCACCETGCTIGACCTCCARRTACCGITAR 429
............... )R D RS B'S NP § § IR 4

Annotation key:
>>> : STRRT codon (strict)

}))} @ START codon (alternative)
R IS TV EL

Recognition of
Translation Initiation Sites




ERINUS
Translation Initiation Site ""‘""‘"‘"’

5’ flank exon intron exon intron exon 3 rfiank
(Y RERSSS St S IS N
. \ | I s //
i o } 7 S DNAIACGT
transcription i R | b /
4 o | - K
Y Y y /
& p L #
. & } : 7 ’
L : s
G i T E O E E = mRNA: A,C,G,U
coding region

/

A § e 34 o e
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INUS
A Sample cDNA &=

299 HSU27655.1 CAT U27655 Homo sapiens

CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCATGGCTGAACACTGACTCCCAGCTGTG 80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA 160
GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA 240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT

............................................................ 80
................................ iEEEEEEEEEEEEEEEEEEEEEEEEEEE 160
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 240

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

e What makes the second ATG the TIS?
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EINUS
Approach G

Training data gathering

Signal generation

— k-grams, distance, domain know-how, ...
Signal selection

— Entropy, %2, CFS, t-test, domain know-how...
Signal integration

— SVM, ANN, PCL, CART, C4.5, kNN, ...

Copyright 2009 © Limsoon Wong

NUS
Training & Testing Data ——

* Vertebrate dataset of Pedersen & Nielsen [isvws'97]
» 3312 sequences

* 13503 ATG sites

e 3312 (24.5%) are TIS

e 10191 (75.5%) are non-TIS

» Use for 3-fold x-validation expts

Copyright 2009 © Limsoon Wong



3 NUS
Signal Generation e

» K-grams (ie., k consecutive letters)
-K=1,23,4,5, ...
— Window size vs. fixed position
— Up-stream, downstream vs. any where in window
— In-frame vs. any frame

3

2.5+
2,

1.5 H seqgql
) B seq?2
14 O seqgq3

0.5+
074

A C G T
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E& Nlé

Signal Generation: An Example ==

299 HSU27655.1 CAT U27655 Homo sapiens

CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCATGGCTGAACACTGACTCCCAGCTGTG 80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCAT% GCiTTTGﬁ CTﬁ TCAGGGCA& TA 160
GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA 240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT

 Window = +100 bases
e In-frame, downstream
—-GCT=1,TTT=1, ATG=1...
* Any-frame, downstream
—GCT=3.TIT=2 ATG=2 Exercise: What are the
' ' """ possible k-grams (k=3) in
° |n-fl’ame, UpStI’eam this Sequence?
—-GCT=2,TTT=0,ATG =0, ...

Exercise: Find the in-frame
downstream ATG
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. FNUs
Feature Generation - Summary <~ =

Raw Data

206 BBCALCB.1 CAT X71666 Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
CCGTCAGAGE G CEAM AC TC T T TG TGS ARC A i Cia A GEC A MG A b S AT GG b0 TE A AT EATCCT

TEETTCTTTGAGTGTEEAAGAGT T ATGTCTCTACCTGAGT TACAL
........................................................ 1EEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

-

An ATG segment — positive sample

» 206 +1_Index(56)

CCGTCAGAGCGCCGACACTCTTCTCTGTGCGAGCGAG
T T TTATCCTTTGGAAATGTGCTCACACTTTGATGCAGATGARATTA
T 17T TCGATTTGGACAAT

—

1,,8,08,1,9,8,8,1,2,0,0,90,0,0,8,0,6,0,0,1,0,2,0,2,1,0,8,0,1,0,0,4,0,8,8,8,8,2,0,
a,e,8,0,8,1,1,0,8,0,0,0,9,8,0,1,0,8,9,0,0,1,6,0,1,80,3,2,0,0,0,0,1,0,1,1,8,8,1,1,
a,1,8,0,8,0,8,1,8,0,0,08,1,1,0,8,2,1,1,3,2,0,0,9,2,9,0,0,0,0,0,0,6,0,8,1,1,0,8,0,
@,1,0,0,06,8,2,2,pos
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NS
Too Many Signals =

e For each value of k, there are 4k * 3 * 2 k-grams

e [fweusek=1,2,3,4,5, we have 24 + 96 + 384 +
1536 + 6144 = 8184 features!

e This is too many for most machine learning
algorithms

Copyright 2009 © Limsoon Wong



FINUS
Signal Selection (Basic Idea) e

 Choose a signal w/ low intra-class distance
e Choose a signal w/ high inter-class distance

%]
el

5] =
Clags 2

Cilass | Clags ? Clags 1

0

Class 1 Clags?2
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ZINUS
Signal Selection (e.g., t-statistics)~ =

The t-etata of a signal is defined as

bo o B pal
{(et/m) + (03/n9)
where o7 is the variance of that signal

in class ¢, u; i3 the mean of that signal
in class ¢, and n; is the size of class 4.

Copyright 2009 © Limsoon Wong
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TINUS
Signal Selection (e.g., MIT-correlatit#)

The MIT-correlation value of a signal

ig defined as
AMIT < 81— 2|
a1+ g9
where ¢; is the standard deviation of
that signal in class 4 and p; is the mean

of that signal in clags 1.
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NS
Signal Selection (e.g., ¥2) ——
The A% value of e signel is dafined es:
2
2_ (Aij = Eig')
* ‘II?I jgl B4 4

where m i the number of intervals, §
the pumber of clemes, Ay the number
of semples in the {th intarvel, $th class,
R; the number of ssmples in the fth in-
tarvel, C; the number of samples in the
Fth clase, N the total number of sam-
ples, and Ey; the expected frequency of
Ayj (B = By Gy/N)

Copyright 2009 © Limsoon Wong
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EINUS
Example G

e Suppose you have a sample of 50 men and 50
women and the following weight distribution is

observed:
obs exp (obs — exp)?/exp )

HM 40 |60*50/100=30 3.3 12=16.6
P =0.00004,

HW 20 | 60*50/100=30 3.3 df=1

LM 10 | 40*50/100=20 5.0 So weight and
sex are not indep

LW 30 |40*50/100=20 5.0 )

* Is weight a good attribute for distinguishing men
from women?

Copyright 2009 © Limsoon Wong

TINUS

Optfres] Wbyl

Signal Selection (e.g., CFS) ——

* Instead of scoring individual signals, how about
scoring a group of signals as awhole?

e CFS
— Correlation-based Feature Selection

— A good group contains signals that are highly
correlated with the class, and yet uncorrelated
with each other

Exercise: What is the main challenge in implementing CFS?

Copyright 2009 © Limsoon Wong
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EINUS
Distributions of Two Example 3-Gra¥s

Mame: INFRAME_UPSTREAM_ATG Type: Numeric Mame: INFRAME_LUPSTREAM_CTT Type: Numeric
Missing: 0 (0%) Distinct: 11 Unigue: 1 (0%) Missing: O (0%) Distinct: 7 Unique: 1 (0%}
Statistic Value Statistic Yalue

Minimum o Minimurn o
Mazimum 10 Maxirnurn ]
Mean 0,585 Mean 0.419
StdDev 0.574 StdDew 0,635

Class: Class (Marm) i |[ Visualize All ] |Class: Class (Nom) v| Visualize Al

%2 = 1672.97447 %2=0

e Which is the better one?

Copyright 2009 © Limsoon Wong

Sample k-grams Selected by CFS E...._';é

for Recognizing TIS

Leaky scannin
Kozak consensus y g

Stop codon
» Position -3

* in-frame upstream AT
* in-frame do
— TAK T TGA;
— CTG, GAC, GAG, and GCC

\

Codon bias?

Copyright 2009 © Limsoon Wong
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EINUS
Signal Integration G

* kNN

— Given a test sample, find the k training samples
that are most similar to it. Let the majority class
win

« SVM

— Given a group of training samples from two
classes, determine a separating plane that
maximises the margin of error

* Naive Bayes, ANN, C4.5, ...

Copyright 2009 © Limsoon Wong

NUS
Results (3-fold x-validation) ——
predicted |predicted
as positive [as negative
positive | TP FN )
negative P TN Exercise:

What is TP/(TP+FP)?

TPITP+FN)  TN/(TN+FP) TP/(TP+FP)  Accuracy

Naive Bayes 84.3% 86.1% 66.3% 85.7%
SVM 73.9% 93.2% 77.9% 88.5%
Neural Network  77.6% 93.2% 78.8% 89.4%
Decision Tree 74.0% 94.4% 81.1% 89.4%

Copyright 2009 © Limsoon Wong



INUS
Improvement by Voting -

 Apply any 3 of Naive Bayes, SVM, Neural
Network, & Decision Tree. Decide by majority

TPITP+FN) TN/(TN+FP) TP/TP+FP) Accuracy

NB+SVM+NN 79.2% 92.1% 76.5% 88.9%
NB+SVM+Tree 78.8% 92.0% 76.2% 88.8%
NB+NN+Tree 77.6% 94.5% 82.1% 90.4%
SVM+NN+Tree 75.9% 94.3% 81.2% 89.8%
Best of 4 84.3% 94.4% 81.1% 89.4%
Worst of 4 73.9% 86.1% 66.3% 85.7%

Copyright 2009 © Limsoon Wong

NUS
Improvement by Scanning =

* Apply Naive Bayes or SVM left-to-right until first
ATG predicted as positive. That's the TIS

* Naive Bayes & SVM models were trained using
TIS vs. Up-stream ATG

TP/(TP +FN) TN/(TN+FP) TP/(TP+FP)  Accuracy

NB 84.3% 86.1% 66.3% 85.7%
SVM 73.9% 93.2% 77.9% 88.5%
NB+Scanning 87.3% 96.1% 87.9% 93.9%
SVM+Scanning  88.5% 96.3% 88.6% 94.4%

Copyright 2009 © Limsoon Wong
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EEAINUS
Performance Comparisons ""‘""‘"‘"’

TPITP+FN) TN/(TN+FP) TP/(TP+FP)  Accuracy

NB 84.3% 86.1% 66.3% 85.7%
Decision Tree 74.0% 94.4% 81.1% 89.4%
NB+NN+Tree 77.6% 94.5% 82.1% 90.4%
SVM+Scanning 88.5% 96.3% 88.6% 94.4%*
Pedersen&Nielsen  78% 87% - 85%
Zien 69.9% 94.1% - 88.1%
Hatzigeorgiou - - - 94%*

* result not directly comparable

Copyright 2009 © Limsoon Wong

INUS
. . Optiores] Uiy
Technigue Comparisons =
e Pedersen&Nielsen [iIsmB'97]  Our approach
— Neural network — Explicit feature
— No explicit features generation
— Explicit feature selection
e Zien [Bioinformatics’00] — Use any machine

learning method w/o any
form of complicated
tuning

— Scanning rule is optional

— SVM+kernel engineering
— No explicit features

e Hatzigeorgiou
[Bioinformatics’02]

— Multiple neural networks
— Scanning rule
— No explicit features

Copyright 2009 © Limsoon Wong




MRNA—protein

6
c
u_|
A
c
G_| E [Frst [U c A G Last
G [u [pre lser @ [Tor v [cws clv
A Codon 3 ! e T
& Phe Ser Tyr Cys c
= L Lea | |[ser Stop (Ochre) |Stop (Umber) |A
u Codon 4 Leu Ser Stop (Amber) |Trp W G
g_ R ¢ |Leuw Pro P|His H [are R |
b P Leu Pro His Arg &
on
G Leu Pro Gin 0 [# A
AT S Leu Pro Gln Arg G
G Codon 6 A [me Thr Asn Ser U
e | o [ pime g N :
0= Stop e Asn Ser [«
A | CodonT le Lys K | A
G_ | Met |\ | Thr Lys Arg G
G [va \f[ala Alas D lev G lv
Val Ala Asp Gly c
Ribonucleic acid Val Ala Glu E |ow A
Val Ala Glu Gly &)

Exercise: List the first 10 amino
acid in our example sequence

Copyright 2009 © Limsoon Wong
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4

Z
C
v

. . Britzr Uitz
Amino-Acid Features —

False TIS False TIS

(upstream) True TIS (downstream)

v v

LLOGGACGGATGACTGOC.. CTCGATATGGCACCT..... TTGCTAATGACAATA...... ‘

cDNA
sequence

sequence window generation

...... GGACGG (False) ACTGCC...... <.ooo. GR (False) TA......
[’ [
H9bps H9bps 33aa 3laa
a (false) TIS window coding amino acid sequence
<o CTCGAT (TruelGCACCT...... oo LD (True) AP......
S —
s S9bps 33aa 33aa
a (true) TIS window amino acid sequence
H H
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e s ERNUS
Amino-Acid =] == &=

Features - ==

New feature space (total of 927 features + class label)

42 1-gram amino 882 2-gram amino 3 bio-know- class
acid patterns acid patterns ledge patterns label
UP-A, UP-R, UP-AA, UP-AR, ..., DOWN4-G True,
L LUP-N, DOWN- UP-NN, DOWN-AA, UP3-Aor(, False
A, DOWN-R, ..., DOWN-AR, ..., UP-ATG
DOWN-N DOWN-NN (boolean type,
(numeric type) (numeric type) Y orN)

Frequency as values

1,3504,.. 6,2,7,0,5,... N,N,N, False

6,57,9,0,.. 2,0,3,10,0,... Y. Y. Y, True

Copyright 2009 © Limsoon Wong
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Amino Acid K-grams .N..lé
Discovered (by entropy)

Leaky scanning
Kozak consensus

+ Position -3 {/ Stop codon
* in-frame upstream

—CT AC. GAG, and GGC

o

n bias

Fold UP- DOWN- UP3- DOWN- DOWN- UP- DOWN- DOWN- DOWN- UP-

ATG  STOP  AorG A \' A L D E G
1 1 2 4 3 6 5 8 9 7 10
2 1 2 3 - 5 6 7 8 9 10
3 1 2 3 4 5 6 g 9 7 10
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EINUS
Independent Validation Sets ""‘""‘"‘"’

» A. Hatzigeorgiou:
— 480 fully sequenced human cDNAs
— 188 left after eliminating sequences similar to
training set (Pedersen & Nielsen’s)
— 3.42% of ATGs are TIS
e Our own:

— well characterized human gene sequences from

chromosome X (565 TIS) and chromosome 21
(180 TIS)

Copyright 2009 © Limsoon Wong
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Validation Results (on HatzigeorgiotrE =~

Algorithm Semsitivity  Specificity  Precision  Accuracy
SVMs(linear) 96.28%  80.15%  2531%  89.42%
SVMs(quad) — 9404%  0.3%  2670%  90.28%
Ensemble Trees  92.02%  92.71%  32.52%  92.68%

B

BT ERE -~ e o o

— Using top 100 features selected by entropy and
trained on Pedersen & Nielsen’s dataset

Copyright 2009 © Limsoon Wong
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Our
method

sensitivity

| ___—ATGpr

0 3 1 1 1 1
V] 0.2 c4 06 0.8
1-specificity

trained on Pedersen & Nielsen’s

Copyright 2009 © Limsoon Wong

Recognition of
Transcription Start Sites

» Using top 100 features selected by entropy and

20



EINUS
Transcription Start Site ""‘""‘"‘"’

\

5’ flank exon intron exon intron exon 3 rfiank
(i RERSSS St S IS N
. \ | I s //
i o } 7 S DNAIACGT
transcription i R | b /
4 o | - K
Y Y y /
& p L #
\ \\} b ,
MMM E T T T mRNA: A,C,G,U
coding region
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EINUS
Structure of Dragon Promoter Findg¥ =~

SUPPLIED SELECTED BY OuUTPUT
BY USER USER
| H i 4 1
DNA ACCURACY
sequence RANGE
MODEL
SELECTOR
) 4 +
MODEL_1
jk DATA- L

| =) Ve :D - #»] PREDICTION
SELECTOR
2200 t0 G [eoee ]

window size |stone

WINDOW Model selected based
on desired sensitivity

Copyright 2009 © Limsoon Wong




43

Each model has two submodeIsNUS
e based on GC content outpuT

1 1

DNA GC-rich submodel

sequence

X
SUBMODEL_A

(O——m{ PREDICTION

SLIDING
DATA-
WINDOW SUBMODEL_B (©+0) #C + #G
B b I e
Exercise: Why are the Window Size

submodels based on ~ GC-poor submodel
GC content?

Copyright 2009 © Limsoon Wong
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= NUS
Data Analysis Within Submodel

EASIZ PREDICTOR MODEL

DMA SEQUENCE PREDICTOR
SUPPLIED QUTPUT
By USER

g Promaoter Sensaor
- \
— ={ Exmn Sensor\ 1

.
content of

a sliding
data- —"1 Intron Sensor

windowe ’_‘/

n.._|

data
pre-processing  —mml  PREDICTION
and AN

K-gram (k = 5) positional weight matrix

Copyright 2009 © Limsoon Wong
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ERINUS
Promoter, Exon, Intron Sensors’*"“"‘"’

 These sensors are positional weight matrices of
k-grams, k =5 (aka pentamers)

 They are calculated as below using promoter,

exon, intron data respectively Pentamer at i
Window size 4 ‘ position in input
i . o :

pr@f}JJ finit pr=p

_ \i=l i .

= ~ P ®f= B

{Zm%f} J 0,if p; = p'

i=l '

jth pentamer at
it" position in
training window

Frequency of jth
pentamer at ith position
in training window

Copyright 2009 © Limsoon Wong
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NS

Just to make sure you know what | meansZ. =

« Give me 3 DNA seq of length 10:
— Seq, = ACCGAGTTCT
— Seq, = AGTGTACCTG
— Seq, = AGTTCGTATG

 Then
1-mer posl pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10
A 3/3 |0/3 |0/3
C 0/3 |13 |1/3 Exergise: Fil| in the yest of {he tablg
G 0/3 |2/3 |0/3
T 0/3 |0/3 |2/3

Copyright 2009 © Limsoon Wong

23



EBANUS
-i-nn--u

Just to make sure you know what | mean~Z.=

* Give me 3 DNA seq of length 10:
— Seq, = ACCGAGTTCT
— Seq, = AGTGTACCTG

— Seq; = AGTTCGTATG  Exercise: How many rows should
« Then this 2-mer table have? How many
rows should the pentamer table have?

2-mer posl pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9

AA |0/3 |0/3 |0/3
AC [1/3 |0/3 |0/3 Exercise: Fill |n the rgst of the table

TT |0/3 |0/3 |1/3 1/3

Copyright 2009 © Limsoon Wong
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TINUS

Uty

Data Preprocessing & ANN B===

Tuning parameters Simple feedforward ANN

rained by the Bayesian
regularisation method

Tuned
threshold

‘S‘Ef = Sﬁ‘f(ae - gj‘ 2 aﬁ! " 5&? ),
where the function saf s defined by

a,if x>a
sat(x,a,hy=4x, if h<x=a.

eX — e-X
5, ff‘ f} > X tanh(X) = eX + eX
net=2Xs;*w;

Copyright 2009 © Limsoon Wong
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_ ZINUS
Accuracy Comparisons -

Accuracy of Dragon Promoter Finder Ver. 1.2 & 1.3
T T T T T T T

100 T
L — DPFwi2
0 i | — DPFv13
S| @ NNPPR2A (0.99)
.| @ NNPP2A(0.8)
_ s Py bssrcer]
= B Promoter2.0
| ' T T
& Tl :
E @
o
= &
=
o
=)
B 7
#
=T : - :
= ! Viesser : i
= : : :
3 =
0 : : fass Tr j
10 : : e 5 :
: without C+G submodels :
o i i i i i ; i i i
1] 10 20 30 a0 a0 B0 i) &0 S50 100

Positive predictive value ppy in % = 100 « TRATP+FP)

Copyright 2009 © Limsoon Wong

e Contain both positive and
negative sequences

e Sufficient diversity,
resembling different
transcription start
mechanisms

» Sufficient diversity,
resembling different non-
promoters

¢ Sanitized as much as
possible

Copyright 2009 © Limsoon Wong
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EINUS

Training Data Criteria & Preparatiot =+

TSS taken from

— 793 vertebrate promoters
from EPD

— -200 to +50 bp of TSS

non-TSS taken from
— GenBank,

— 800 exons

— 4000 introns,

— 250 bp,

— non-overlapping,
— <50% identities

0

25



=INUS
Tuning Data Preparation ==
e To tune adjustable system e« TSS taken from
parameters in Dragon, we — 20 full-length gene seqs
need a separate tuning with known TSS
data set — -200 to +50 bp of TSS

— no overlap with EPD

¢ Non-TSS taken from
— 1600 human 3'UTR segs
500 human exons
500 human introns
250 bp
no overlap

Copyright 2009 © Limsoon Wong

INUS
Testing Data Criteria & Preparation” =

e Seqs should be from the e 159 TSS from 147 human
training or evaluation of and human virus seqs
other systems (no bias!)

e cummulative length of

e Seqs should be disjoint more than 1.15Mbp
from training and tuning
data sets * Taken from GENESCAN,

Geneld, Genie, etc.
e Seqs should have TSS

e Seqs should be cleaned to
remove redundancy, <50%
identities

Copyright 2009 © Limsoon Wong
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Recognition of
Poly-A Signal Sites

B &

NUS
95 i

54

.NH.%
Eukaryotic Pre-mRNA Processing~ =

exon exon
pre-mRNA e :
5’UTR

Capping / splicing l\b intron

Cleavage l\, —

Polyadenylation l,/

mature mRNA '@

Image credit: www.polya.org
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Poly-A Signals in Human (cautheret et al., 208
ol gy
Table 2. Most Significant Hexamers in 3 Fragments: Clustered Hexamers
‘Observed ) Position
Hexamer (expected)® sites e average = SO Location®
—a5 35 25715 5
500 F E|
ADTRARD 3286 (317) 58.2 o —1s = 4.7 of ‘ B
150 0 =
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Poly-A Signals in Arabidopsis  [§gNU2

Table 2. Most Significant Hexamers in 3" Fragments: Clustered Hexamers

rved 6 Position
Hexamer (expected)® sites pE average + SO Location®
-35_,_-15 _
500 F
M'Um 3286 (317) 58.2 o —1& = 4.7 a :___
150 |- ¢ T T T T 2T ]
AUUAAR 43112y 149 o —17 = 53 of _A_j
ACUAAR 156 (32 2.7 6 = 10-57 —16 = 59 o - ‘ - :i
30
UATAARD 180 (52 3z 4 o 10-s —18 = 78 o E : 1
1w
CAUUARDMD 76 (23) 1.2 1= 100 17 = 59 o : ,;
wlF o -

GAUAAR 7z - ) ) —malh, |
AAUAUA .« In contrast to human, PAS in Arabis _..JAs ]

ﬁgiz‘; » highly degenerate. E.g., only 10% of ﬁ
ARDRARAG 49 Arab PAS |S AAUAAAI R

[y e
ACUARAR 26 (113 0.6 1k 10— —17 = 81 13' ; el

10 [ ]
ARMGCGARAD &2 (10} 1.1 R L R —19 =11 1] _A;____Allu
ARUGAD 43 (10 [-X-3 4 101 —20 x 10 13 [ |
TUOUAARR 69 (20} 1.2 ER =17 =1z 13[ M
ARRACHE 20 (5) 0.5 & = 102 — 20 = 10 13 i o ——ta |
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Copyright 2009 © Limsoon Wong



EANUS

atiarel Linferesily
e EnT

Approach on Arab PAS Sites (1)

-I

oo v | retze |

[ vt [

every 10bp interval

Prediction scores &
¥

=51, s2, =3, s4, s5, =6, =7, =8, =s9=
L

|Cascade Classifier (SMO2) I

if hreshold :
(+ve) if score = thresho opemght 2009 © Limsoon Wong

NS
Approach on Arab PAS Sites (ll)~>*""

e Data collection e Feature generation
— #1 from Hao Han, 811 — 3-grams, compositional
+ve seq (-200/+200) features (4U/1N. G/U*7,
etc)
—  #2 from Hao Han, 9742 — Freq of features above in
—ve seq (-200/+200) 3 diff windows: (-110/+5),

(-35/+15), (-50/+30)

— #3 from Qingshun Li, .
« 6209 (+ve) seq (-300/+100) e Feature selection

1581 (-ve) intron (-300/+100) _ X2
1501 (-ve) coding (-
300/+100)
864 (-ve) 5'utr (-300/+100) « Feature integration &
Cascade
- SVM

Copyright 2009 © Limsoon Wong
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Validation Results
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INUS
) i

SMN_0 SMO 1 SMO 2 PASS 10
Control 2N &3P | Threshold | 3N & 3F | Threshold | 3N &3P | Threshold
Segquences
CDE 0% 0.26 04%%, 0.24 05% 37
JUTR 7% 0.42 25% 0.49 TE% 55
Intron B4% 0.59 T1% 0.67 63% 6.3

Table 2. Equal-error-rate points of 3MO1, BMOZ, and PABS 10 for 3N_10.
SN_10 SMO 1 SMO 2 PARS 1D
Contral 2M &3P | Threshold | 2N & 3P | Thteshold | 3N &3P | Threshold
Seguences
coa 4% 0.36 F6% 0.31 6t 4
SUTR 26% 0.53 20% 0.6 21% 57
Intron T73% 0.62 T 0.77 6T% ]

Table 3. Equal-error-rate points of 3MO1, BMOZ, and PASBS 10 for 3N_30
SMN_30 SMO 1 SMO 2 PASS 1D
Control 2N &3P | Threshold | 3N & 3F | Thteshold | 3N &3P | Thteshold
Sequences
coa 7% 0.44 7% 0.37 7% 43
FUTR 0% 0.62 02% 0.67 4% 6.2
Intron 7% 0.75 23% 0.81 T2% 6.8
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Concluding Remarks...

What have we learned?

» Gene feature recognition applications
- TIS, TSS, PAS

* General methodology

— “Feature generation, feature selection, feature
integration”

e Important tactics
— Multiple models to optimize overall performance
— Feature transformation (DNA - amino acid)
— Classifier cascades

Copyright 2009 © Limsoon Wong
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Any Question?

Acknowledgements

* The slides for PAS site prediction are adapted
from slides given to me by Koh Chuan Hock

Copyright 2009 © Limsoon Wong

32



BNUS
References (TIS Recognition) e

A. G. Pedersen, H. Nielsen, “Neural network prediction of
translation initiation sites in eukaryotes”, ISMB 5:226--233, 1997

e A Zien et al., “Engineering support vector machine kernels that
recognize translation initiation sites”, Bioinformatics 16:799--
807, 2000

e A. G. Hatzigeorgiou, “Translation initiation start prediction in
human cDNAs with high accuracy”, Bioinformatics 18:343--350,
2002

e J.Lietal., “Technigues for Recognition of Translation Initiation
Sites”, The Practical Bioinformatician, Chapter 4, pages 71—90,
2004

Copyright 2009 © Limsoon Wong

. 66|
NUS
References (TSS Recognition) ==

* V.B.Bajic et al., “Computer model for recognition of functional
transcription start sites in RNA polymerase Il promoters of
vertebrates”, J. Mol. Graph. & Mod. 21:323--332, 2003

* J.W.Fickett, A.G.Hatzigeorgiou, “Eukaryotic promoter
recognition”, Gen. Res. 7:861--878, 1997

e M.Scherf et al., “Highly specific localisation of promoter regions
in large genome sequences by Promoterinspector”, JIMB
297:599--606, 2000

e V. B. Bajic and A. Chong. “Tuning the Dragon Promoter Finder
System for Human Promoter Recognition”, The Practical
Bioinformatician, Chapter 7, pages 157—165, 2004

Copyright 2009 © Limsoon Wong



BNUS
References (PAS Recognition) ~ =

* Q. Lietal, " Compilation of mRNA polyadenylation signals in
Arabidopsis revealed a new signal element and potential
secondary structures”. Plant Physiology, 138:1457-1468, 2005

e J. E. Tabaska, M. Q. Zhang, “Detection of polyadenylation
signals in human DNA sequences”. Gene, 231:77-86, 1999

* M. Legendre, D. Gautheret, “Sequence determinants in human
polyadenylation site selection”. BMC Genomics, 4:7, 2003

e B. Tian et al., “Prediction of mMRNA polyadenylation sites by
support vector machine”. Bioinformatics, 22:2320-2325, 2006

e C. H. Koh, L. Wong. “Recognition of Polyadenylation Sites from
Arabidopsis Genomic Sequences”. Proc. GIW 2007, pages 73--
82

Copyright 2009 © Limsoon Wong

. 68]
E& Nlé

References (Feature Selection) >~

M. A. Hall, “Correlation-based feature selection machine
learning”, PhD thesis, Dept of Comp. Sci., Univ. of Waikato,
New Zealand, 1998

¢ U. M. Fayyad, K. B. Irani, “Multi-interval discretization of
continuous-valued attributes”, IJCAI 13:1022-1027, 1993

* H. Liu, R. Sentiono, “Chi2: Feature selection and discretization
of numeric attributes”, IEEE Intl. Conf. Tools with Artificial
Intelligence 7:338--391, 1995

Copyright 2009 © Limsoon Wong



