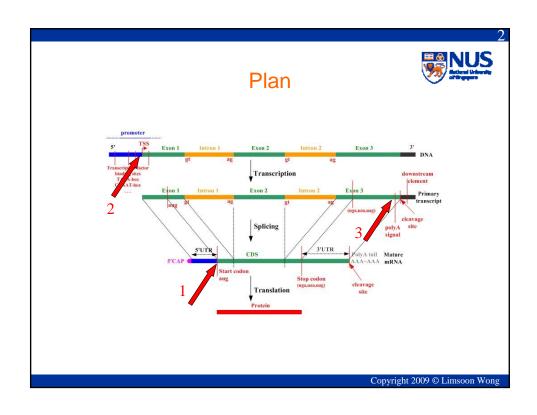
For written notes on this lecture, please read Chapters 4 and 7 of *The Practical Bioinformatician*, and Koh & Wong, "Recognition of Polyadenylation Sites from Arabidopsis Genomic Sequences", *Proc GIW* 2007, pages 73--82

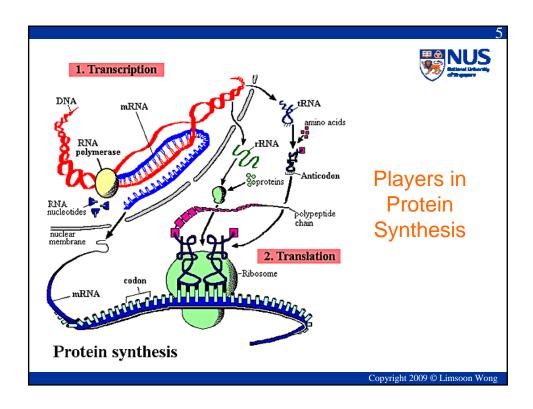
CS2220: Introduction to Computational Biology Lecture 3: Gene Feature Recognition

Limsoon Wong 30 January 2009



Some Relevant Biology





Transcription

- Synthesize mRNA from one strand of DNA
 - An enzyme RNA polymerase temporarily separates doublestranded DNA
 - It begins transcription at transcription start site
 - $-A \rightarrow A, C \rightarrow C, G \rightarrow G, \& T \rightarrow U$
 - Once RNA polymerase reaches transcription stop site, transcription stops

- Additional "steps" for Eukaryotes
 - Transcription produces pre-mRNA that contains both introns & exons
 - 5' cap & poly-A tail are added to pre-mRNA
 - RNA splicing removes introns & mRNA is made
 - mRNA are transported out of nucleus

Translation

- Synthesize protein from mRNA
- Each amino acid is encoded by consecutive seq of 3 nucleotides, called a codon
- The decoding table from codon to amino acid is called genetic code

- 43=64 diff codons
- ⇒ Codons are not 1-to-1 corr to 20 amino acids
- All organisms use the same decoding table (except some mitochrondrial genes)
- Amino acids can be classified into 4 groups. A single-base change in a codon is usu insufficient to cause a codon to code for an amino acid in diff group

Copyright 2009 © Limsoon Wong

Genetic Code

- Start codon
 - ATG (code for M)
- Stop codon
 - TAA
 - TAG
 - TGA

			Second Pos	sition of Codon			
		T	С	A	G		
		TTT Phe [F]	TCT Ser [S]	TAT Tyr [Y]	TGT Cys [C]	T	
	т	TTC Phe [F]	TCC Ser [S]	TAC Tyr [Y]	TGC Cys [C]	C	
	1	TTA Leu [L]	TCA Ser [S]	TAA Ter [end]	TGA Ter [end]	A	
F		TTG Leu [L]	TCG Ser [S]	TAG Ter [end]	TGG Trp [W]	G	1
r	П	CTT Leu [L]	CCT Pro [P]	CAT His [H]	CGT Arg [R]	T	i
s	С	CTC Leu [L]	CCC Pro [P]	CAC His [H]	CGC Arg [R]	C	1
t	·	CTA Leu [L]	CCA Pro [P]	CAA Gln [Q]	CGA Arg [R]	A	C
P		CTG Leu [L]	CCG Pro [P]	CAG Gln [Q]	CGG Arg [R]	G	E
0	П	ATT lle [I]	ACT Thr [T]	AAT Asn [N]	AGT Ser [S]	T	6
s i	A	ATC He [I]	ACC Thr [T]	AAC Asn [N]	AGC Ser [S]	C	S
t	A	ATA Ile [I]	ACA Thr [T]	AAA Lys [K]	AGA Arg [R]	A	t
i		ATG Met [M]	ACG Thr [T]	AAG Lys [K]	AGG Arg [R]	G	i
o n	П	GTT Val [V]	GCT Ala [A]	GAT Asp [D]	GGT Gly [G]	T	r
	G	GTC Val [V]	GCC Ala [A]	GAC Asp [D]	GGC Gly [G]	С	
	u	GTA Val [V]	GCA Ala [A]	GAA Glu [E]	GGA Gly [G]	A	
		GTG Val [V]	GCG Ala [A]	GAG Glu [E]	GGG Gly [G]	G	

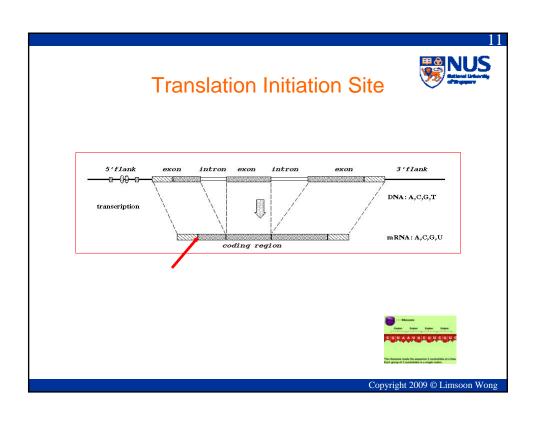
Example

Example of computational translation - notice the indication of (alternative) start-codons:

Copyright 2009 © Limsoon Wong

Recognition of Translation Initiation Sites

An introduction to the World's simplest TIS recognition system



A Sample cDNA 299 HSU27655.1 CAT U27655 Homo sapiens $\tt CGTGTGTGCAGCCTGCAGCTGCCCCAAGCC{\color{blue}ATG}GCTGAACACTGACTCCCAGCTGTG$ 80 $\tt CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA$ 160 $\tt GGAGGCAG{\color{red}\underline{ATG}}AGAAGAGGGAG{\color{red}\underline{ATG}}GCCTTGGAGGAAGGGAAGGGCCTGGTGCCGAGGA$ 240 $\tt CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT$ 80 160ieeeeeeeeeeeeeeee EEEEEEEEEEEEEEEEEEEEEEEEE 240 EEEEEEEEEEEEEEEEEEEEEEEEE What makes the second ATG the TIS?

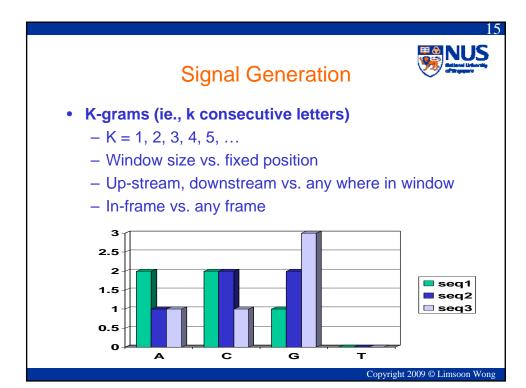
Approach

- Training data gathering
- Signal generation
 - k-grams, distance, domain know-how, ...
- Signal selection
 - Entropy, χ2, CFS, t-test, domain know-how...
- Signal integration
 - SVM, ANN, PCL, CART, C4.5, kNN, ...

Copyright 2009 © Limsoon Wong

Training & Testing Data

- Vertebrate dataset of Pedersen & Nielsen [ISMB'97]
- 3312 sequences
- 13503 ATG sites
- 3312 (24.5%) are TIS
- 10191 (75.5%) are non-TIS
- Use for 3-fold x-validation expts



Signal Generation: An Example 299 HSU27655.1 CAT U27655 Homo sapiens $\textbf{CGTGTGCAGC} \underline{\textbf{AGCCTGCA}} \underline{\textbf{GCT}} \underline{\textbf{GCCCCAAGCCAT}} \underline{\textbf{GGCTGAACACTGACTCCCAGCTGTG}}$ CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTTGGCTGTCAGGGCAGCTGTA 160 GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA 240 CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT • Window = ± 100 bases • In-frame, downstream Exercise: Find the in-frame - GCT = 1, TTT = 1, ATG = 1... downstream ATG • Any-frame, downstream Exercise: What are the -GCT = 3, TTT = 2, ATG = 2... possible k-grams (k=3) in • In-frame, upstream this sequence? -GCT = 2, TTT = 0, ATG = 0, ... Copyright 2009 © Limsoon Wong

Raw Data

An ATG segment – positive sample

> 206 +1_Index(56)

A feature vector --- upstream/downstream inframe 3 grams

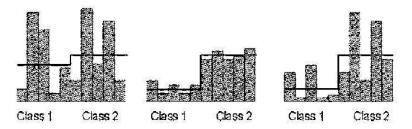
Copyright 2009 © Limsoon Wong

18

Too Many Signals

- For each value of k, there are $4^k * 3 * 2$ k-grams
- If we use k = 1, 2, 3, 4, 5, we have 24 + 96 + 384 + 1536 + 6144 = 8184 features!
- This is too many for most machine learning algorithms

- Choose a signal w/ low intra-class distance
- · Choose a signal w/ high inter-class distance



Copyright 2009 © Limsoon Wong

Signal Selection (e.g., t-statistics

The t-state of a signal is defined as

$$t = \frac{|\mu_1 - \mu_2|}{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}}$$

where σ_i^2 is the variance of that signal in class i, μ_i is the mean of that signal in class i, and n_i is the size of class i.

The MIT-correlation value of a signal is defined as

$$MIT = \frac{|\mu_1 - \mu_2|}{\sigma_1 + \sigma_2}$$

where σ_i is the standard deviation of that signal in class i and μ_i is the mean of that signal in class i.

Copyright 2009 © Limsoon Wong

22

Signal Selection (e.g., χ 2)

The \mathcal{X}^2 value of a signal is defined as:

$$\mathcal{X}^2 = \sum_{i=1}^{n} \sum_{j=1}^{k} \frac{(A_{ij} - E_{ij})^2}{E_{ij}},$$

where m is the number of intervals, k the number of classes, A_{ij} the number of samples in the *i*th interval, *j*th class, R_i the number of samples in the *i*th interval, C_j the number of samples in the *j*th class, N the total number of samples, and E_{ij} the expected frequency of A_{ij} ($E_{ij} = R_i * C_j/N$).

Example

 Suppose you have a sample of 50 men and 50 women and the following weight distribution is observed:

	obs	ехр	(obs – exp) ² /exp
НМ	40	60*50/100=30	3.3
HW	20	60*50/100=30	3.3
LM	10	40*50/100=20	5.0
LW	30	40*50/100=20	5.0

 $\chi 2{=}16.6$ P = 0.00004, df = 1 So weight and sex are not indep

 Is weight a good attribute for distinguishing men from women?

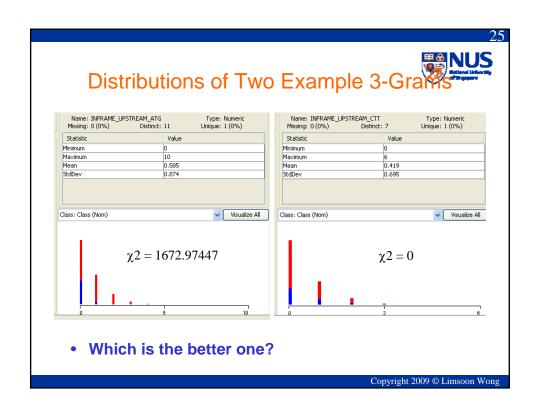
Copyright 2009 © Limsoon Wong

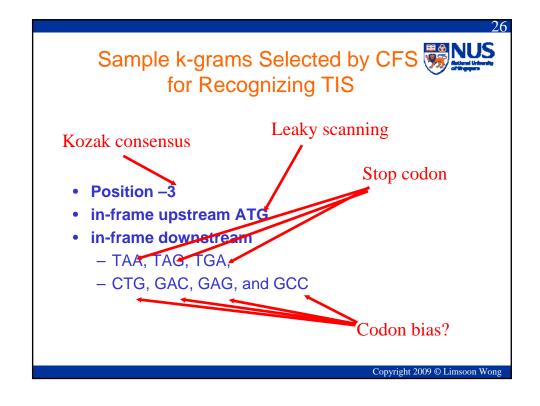
24

Signal Selection (e.g., CFS)

- Instead of scoring individual signals, how about scoring a group of signals as a whole?
- CFS
 - Correlation-based Feature Selection
 - A good group contains signals that are highly correlated with the class, and yet uncorrelated with each other

Exercise: What is the main challenge in implementing CFS?





Signal Integration

kNN

 Given a test sample, find the k training samples that are most similar to it. Let the majority class win

SVM

- Given a group of training samples from two classes, determine a separating plane that maximises the margin of error
- Naïve Bayes, ANN, C4.5, ...

Copyright 2009 © Limsoon Wong

Results (3-fold x-validation)

	predicted as positive	predicted as negative
positive	TP	FN
negative	FP	TN

Exercise: What is TP/(TP+FP)?

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
Naïve Bayes	84.3%	86.1%	66.3%	85.7%
SVM	73.9%	93.2%	77.9%	88.5%
Neural Network	77.6%	93.2%	78.8%	89.4%
Decision Tree	74.0%	94.4%	81.1%	89.4%

Improvement by Voting

 Apply any 3 of Naïve Bayes, SVM, Neural Network, & Decision Tree. Decide by majority

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB+SVM+NN	79.2%	92.1%	76.5%	88.9%
NB+SVM+Tree	78.8%	92.0%	76.2%	88.8%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+NN+Tree	75.9%	94.3%	81.2%	89.8%
Best of 4	84.3%	94.4%	81.1%	89.4%
Worst of 4	73.9%	86.1%	66.3%	85.7%

Copyright 2009 © Limsoon Wong

Improvement by Scanning

- Apply Naïve Bayes or SVM left-to-right until first ATG predicted as positive. That's the TIS
- Naïve Bayes & SVM models were trained using TIS vs. Up-stream ATG

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB	84.3%	86.1%	66.3%	85.7%
SVM	73.9%	93.2%	77.9%	88.5%
NB+Scanning	87.3%	96.1%	87.9%	93.9%
SVM+Scanning	88.5%	96.3%	88.6%	94.4%

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB	84.3%	86.1%	66.3%	85.7%
Decision Tree	74.0%	94.4%	81.1%	89.4%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+Scanning	88.5%	96.3%	88.6%	94.4%*
Pedersen&Nielsen	78%	87%	-	85%
Zien	69.9%	94.1%	-	88.1%
Hatzigeorgiou	-	-	-	94%*

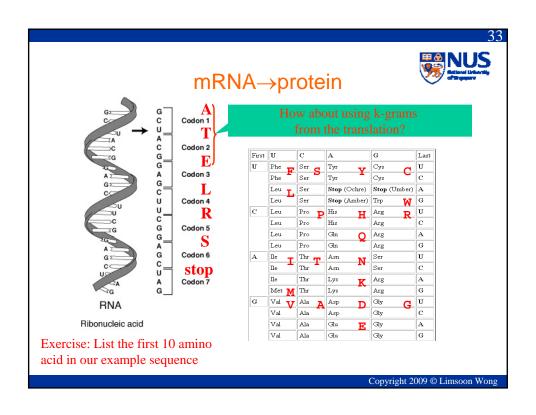
^{*} result not directly comparable

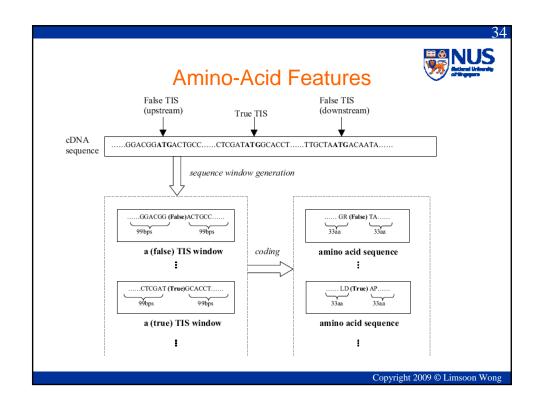
Copyright 2009 © Limsoon Wong

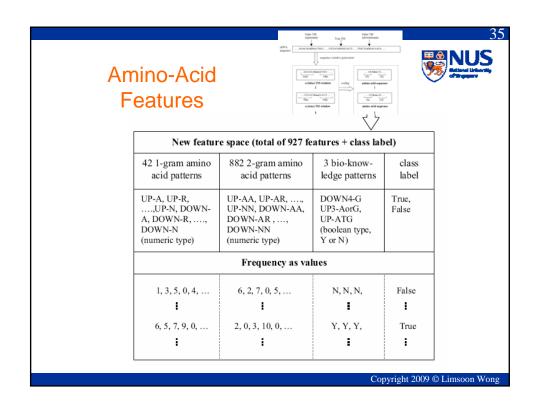
Technique Comparisons

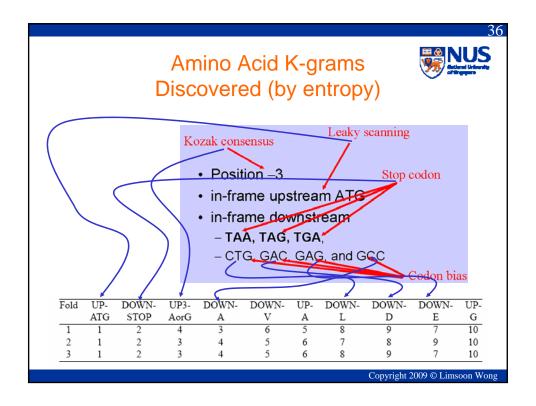
- Pedersen&Nielsen [ISMB'97]
 - Neural network
 - No explicit features
- Zien [Bioinformatics'00]
 - SVM+kernel engineering
 - No explicit features
- Hatzigeorgiou [Bioinformatics'02]
 - Multiple neural networks
 - Scanning rule
 - No explicit features

- Our approach
 - Explicit feature generation
 - Explicit feature selection
 - Use any machine learning method w/o any form of complicated tuning
 - Scanning rule is optional









Independent Validation Sets

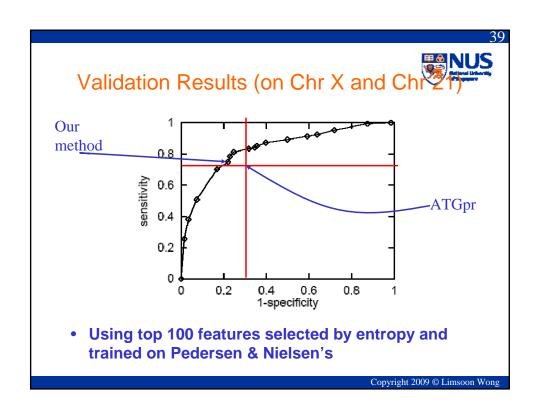
- A. Hatzigeorgiou:
 - 480 fully sequenced human cDNAs
 - 188 left after eliminating sequences similar to training set (Pedersen & Nielsen's)
 - 3.42% of ATGs are TIS
- Our own:
 - well characterized human gene sequences from chromosome X (565 TIS) and chromosome 21 (180 TIS)

Copyright 2009 © Limsoon Wong

Validation Results (on Hatzigeorgioù

C13 T3 & C1' \				
SVMs(linear)	96.28%	89.15%	25.31%	89.42%
SVMs(quad)	94.14%	90.13%	26.70%	90.28%
Ensemble Trees	92.02%	92.71%	32.52%	92.68%

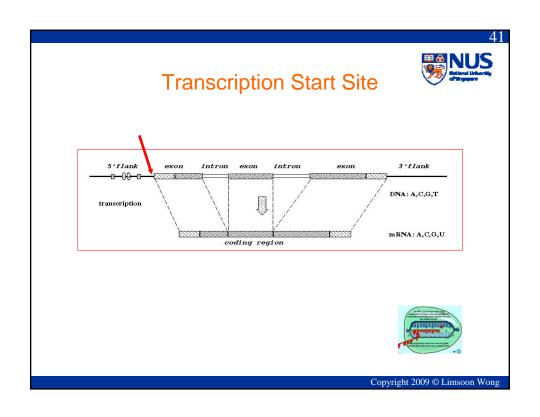
 Using top 100 features selected by entropy and trained on Pedersen & Nielsen's dataset

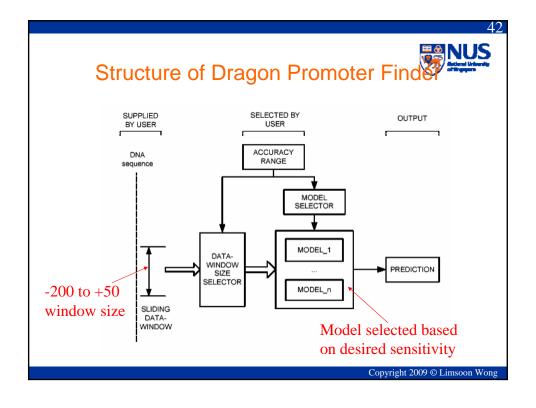


Recognition of Transcription Start Sites

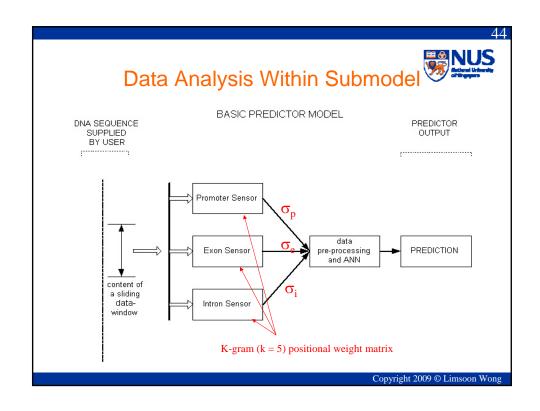
An introduction to the World's best TSS recognition system:

A heavy tuning approach









Promoter, Exon, Intron Sensors

- These sensors are positional weight matrices of k-grams, k = 5 (aka pentamers)
- They are calculated as below using promoter, exon, intron data respectively

 Pentamer at ith

Window size $\sigma = \underbrace{\left(\sum_{i=1}^{L-4} p_j^i \otimes f_{j,i}\right)}_{i=1}, \qquad p_j^i \otimes f_{j,i} = \begin{cases} f_{j,i}, \text{ if } p_i = p_j^i \\ \\ 0, \text{ if } p_i \neq p_j^i \end{cases}, \\ 0, \text{ if } p_i \neq p_j^i \end{cases}$

Copyright 2009 © Limsoon Wong

46

Just to make sure you know what I mean

- Give me 3 DNA seq of length 10:
 - $Seq_1 = ACCGAGTTCT$
 - Seq₂ = AGTGTACCTG
 - Seq₃ = AGTTCGTATG
- Then

1-mer	pos1	pos2	pos3	pos4	pos5	pos6	pos7	pos8	pos9	pos10
Α	3/3	0/3	0/3							
С	0/3	1/3	1/3		Exerc	ise: Fil	l in the	rest of t	he table	.
G	0/3	2/3	0/3							
Т	0/3	0/3	2/3							

- Seq₁ = ACCGAGTTCT

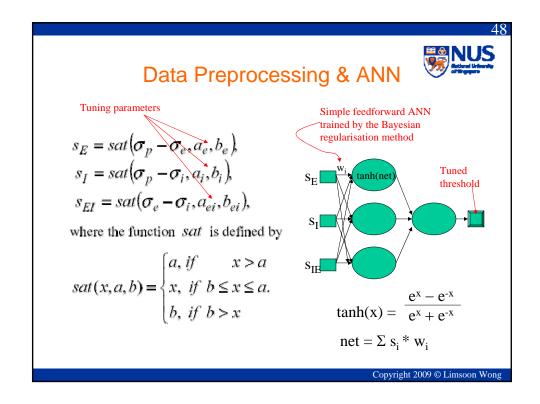
- Seq₂ = AGTGTACCTG

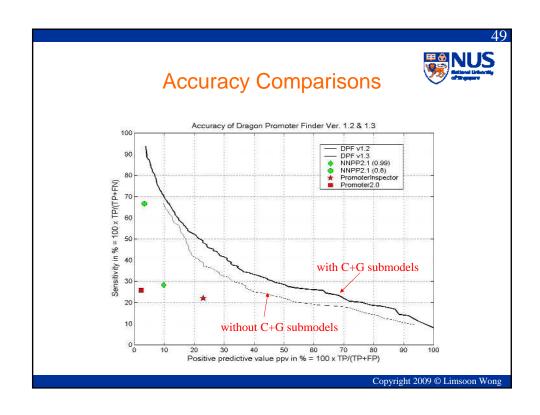
 $- Seq_3 = AGTTCGTATG$

Then

Exercise: How many rows should this 2-mer table have? How many rows should the pentamer table have?

2-mer	pos1	pos2	pos3	pos4	pos5	pos6	pos7	pos8	pos9
AA	0/3	0/3	0/3						
AC	1/3	0/3	0/3		Exerci	se: Fill	in the re	st of th	e table
TT	0/3	0/3	1/3				1/3		





Training Data Criteria & Preparation

- Contain both positive and negative sequences
- Sufficient diversity, resembling different transcription start mechanisms
- Sufficient diversity, resembling different nonpromoters
- Sanitized as much as possible

- TSS taken from
 - 793 vertebrate promoters from EPD
 - -200 to +50 bp of TSS
- non-TSS taken from
 - GenBank,
 - 800 exons
 - 4000 introns,
 - 250 bp,
 - non-overlapping,
 - <50% identities

Tuning Data Preparation

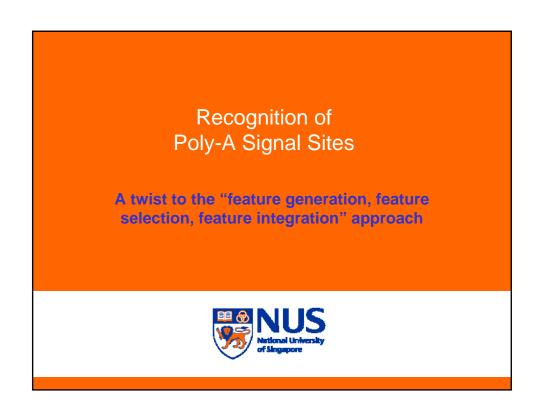
- To tune adjustable system parameters in Dragon, we need a separate tuning data set
- TSS taken from
 - 20 full-length gene seqs with known TSS
 - -200 to +50 bp of TSS
 - no overlap with EPD
- Non-TSS taken from
 - 1600 human 3'UTR segs
 - 500 human exons
 - 500 human introns
 - 250 bp
 - no overlap

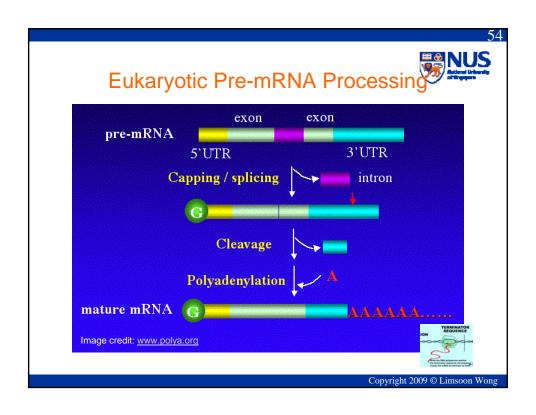
Copyright 2009 © Limsoon Wong

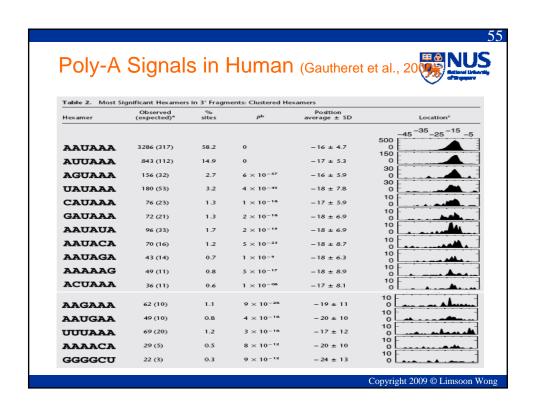
Testing Data Criteria & Preparation NUS

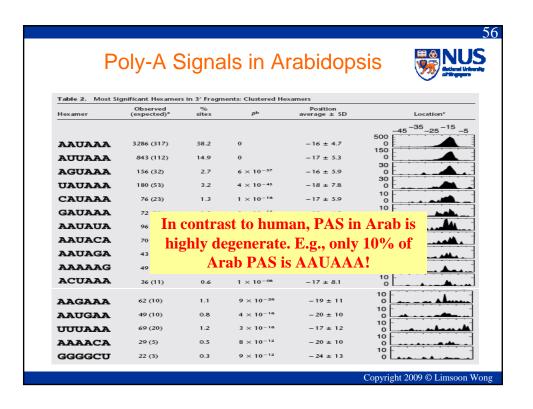
- Seqs should be from the training or evaluation of other systems (no bias!)
- Seqs should be disjoint from training and tuning data sets
- Seqs should have TSS
- Seqs should be cleaned to remove redundancy, <50% identities

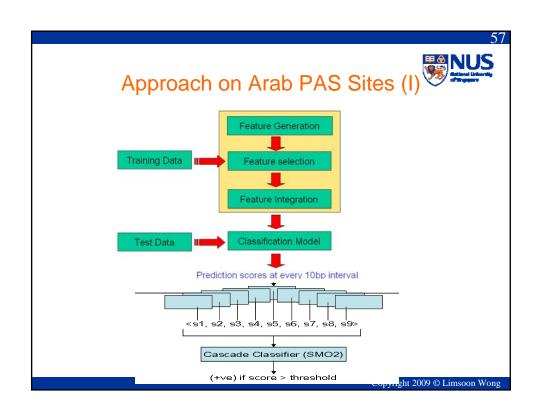
- 159 TSS from 147 human and human virus seqs
- cummulative length of more than 1.15Mbp
- Taken from GENESCAN, Geneld, Genie, etc.

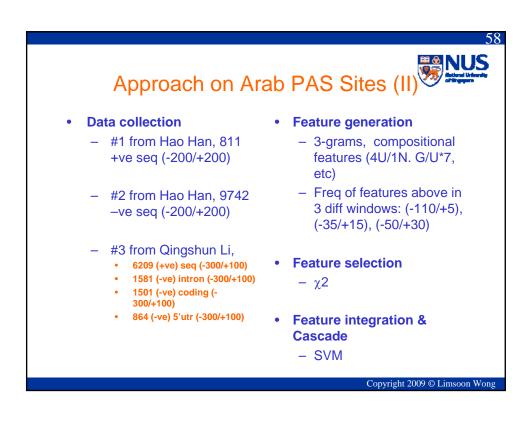


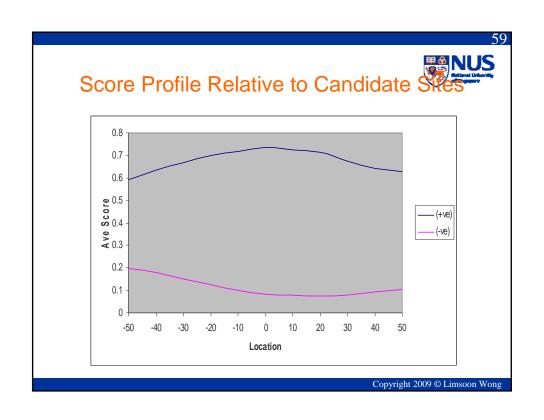












Validation Results

SN_0	SM	IO 1	SMO 2		PASS 1.0	
Control	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold
Sequences						
CDS	90%	0.26	94%	0.24	95%	3.7
5'UTR	79%	0.42	85%	0.49	78%	5.5
Intron	64%	0.59	71%	0.67	63%	6.3

Table 2, Equal-error-rate points of SMO1, SMO2, and PASS 1.0 for SN_10.

SN_10	SM	SMO 1		IO 2	PASS 1.0		
Control	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold	
Sequences							
CDS	94%	0.36	96%	0.31	96%	4	
5'UTR	86%	0.53	89%	0.6	81%	5.7	
Intron	73%	0.68	77%	0.77	67%	6.6	

Table 3, Equal-error-rate points of SMO1, SMO2, and PASS 1.0 for SN_30.

SN_30	SMO 1		SMO 2		PASS 1.0	
Control	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold
Sequences						
CDS	97%	0.44	97%	0.37	97%	4.3
5'UTR	90%	0.62	92%	0.67	84%	6.2
Intron	79%	0.75	83%	0.81	72%	6.8

Concluding Remarks...

What have we learned?

- Gene feature recognition applications
 - TIS, TSS, PAS
- General methodology
 - "Feature generation, feature selection, feature integration"
- Important tactics
 - Multiple models to optimize overall performance
 - Feature transformation (DNA → amino acid)
 - Classifier cascades

Any Question?

Acknowledgements

• The slides for PAS site prediction are adapted from slides given to me by Koh Chuan Hock

References (TIS Recognition)

- A. G. Pedersen, H. Nielsen, "Neural network prediction of translation initiation sites in eukaryotes", *ISMB* 5:226--233, 1997
- A. Zien et al., "Engineering support vector machine kernels that recognize translation initiation sites", *Bioinformatics* 16:799--807, 2000
- A. G. Hatzigeorgiou, "Translation initiation start prediction in human cDNAs with high accuracy", *Bioinformatics* 18:343--350, 2002
- J. Li et al., "Techniques for Recognition of Translation Initiation Sites", The Practical Bioinformatician, Chapter 4, pages 71—90, 2004

Copyright 2009 © Limsoon Wong

66

References (TSS Recognition)

- V.B.Bajic et al., "Computer model for recognition of functional transcription start sites in RNA polymerase II promoters of vertebrates", J. Mol. Graph. & Mod. 21:323--332, 2003
- J.W.Fickett, A.G.Hatzigeorgiou, "Eukaryotic promoter recognition", Gen. Res. 7:861--878, 1997
- M.Scherf et al., "Highly specific localisation of promoter regions in large genome sequences by PromoterInspector", JMB 297:599--606, 2000
- V. B. Bajic and A. Chong. "Tuning the Dragon Promoter Finder System for Human Promoter Recognition", *The Practical Bioinformatician*, Chapter 7, pages 157—165, 2004

References (PAS Recognition)

- Q. Li et al., "Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures". Plant Physiology, 138:1457-1468, 2005
- J. E. Tabaska, M. Q. Zhang, "Detection of polyadenylation signals in human DNA sequences". *Gene*, 231:77-86, 1999
- M. Legendre, D. Gautheret, "Sequence determinants in human polyadenylation site selection". *BMC Genomics*, 4:7, 2003
- B. Tian et al., "Prediction of mRNA polyadenylation sites by support vector machine". Bioinformatics, 22:2320-2325, 2006
- C. H. Koh, L. Wong. "Recognition of Polyadenylation Sites from Arabidopsis Genomic Sequences". Proc. GIW 2007, pages 73-82

Copyright 2009 © Limsoon Wong

68

References (Feature Selection)

- M. A. Hall, "Correlation-based feature selection machine learning", PhD thesis, Dept of Comp. Sci., Univ. of Waikato, New Zealand, 1998
- U. M. Fayyad, K. B. Irani, "Multi-interval discretization of continuous-valued attributes", *IJCAI* 13:1022-1027, 1993
- H. Liu, R. Sentiono, "Chi2: Feature selection and discretization of numeric attributes", *IEEE Intl. Conf. Tools with Artificial Intelligence* 7:338--391, 1995