For written notes on this lecture, please read chapter 10 of *The Practical Bioinformatician*

CS2220: Introduction to Computational Biology Lecture 6: Essence of Sequence Comparison

Limsoon Wong 6 March 2009

Plan

- Dynamic Programming
- String Comparison
- Sequence Alignment
 - Pairwise Alignment
 - Needleman-Wunsch global alignment algorithm
 - Smith-Waterman local alignment algorithm
 - Multiple Alignment
- Popular tools
 - FASTA, BLAST, Pattern Hunter

What is Dynamic Programming

The Knapsack Problem

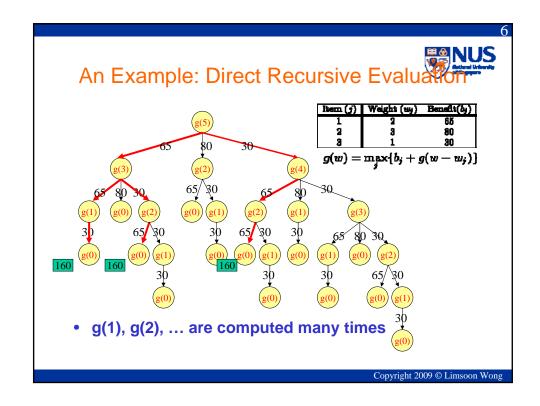
- Each item that can go into the knapsack has a size and a benefit
- The knapsack has a certain capacity
- What should go into the knapsack so as to maximize the total benefit?

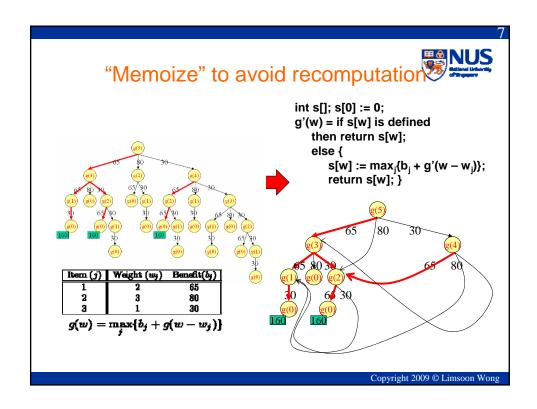
Formulation of a Solution Source: http://mat.gsia.cmu.edu/classes/dynamic/node6.html

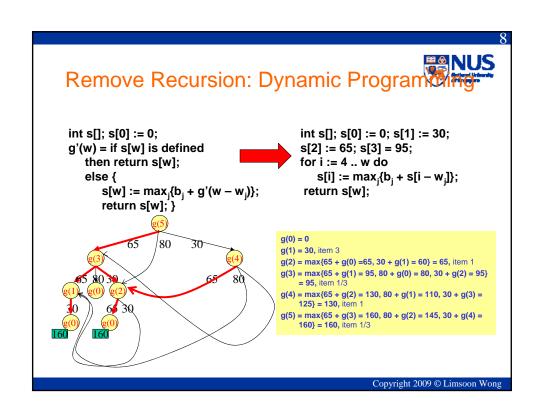
• Intuitively, to fill a w pound knapsack, we must end off by adding some item. If we add item j, we end up with a knapsack k' of size $w - w_j$ to fill ...

Why is
$$g(w)$$
 optimal? $g(w) = \max_{j} \{b_j + g(w - w_j)\}$

- Where
 - $-w_i$ and b_i be weight and benefit for item j
 - -g(w) be max benefit that can be gained from a wpound knapsack







- Problem can be divided into stages with a Exercise: What is a stage decision required at each stage Each stage has a # of states associated in the Knapsack problem?
- Decision at one stage transforms one state into a Exercise: What is a state state in the next stage in the Knapsack problem?
- Given current state, the optimal decision for each remaining states does not depend on next states or decisions E.g., g(2) doesnt states or decisions depends on g(3)
- There is a recursive relationship that identifies the optimal decision for stage j+1, given stage jhas already been solved
- The initial stages must be solvable by E.g., g(0) = 0themselves Copyright 2009 © Limsoon Wong

Sequence Alignment

Motivations for Sequence Comparison

- DNA is blue print for living organisms
- ⇒ Evolution is related to changes in DNA
- ⇒ By comparing DNA seqs we can infer evolutionary relationships betw seqs w/o knowledge of the evolutionary events themselves
- Foundation for inferring function, active site, and key mutations

Copyright 2009 © Limsoon Wong

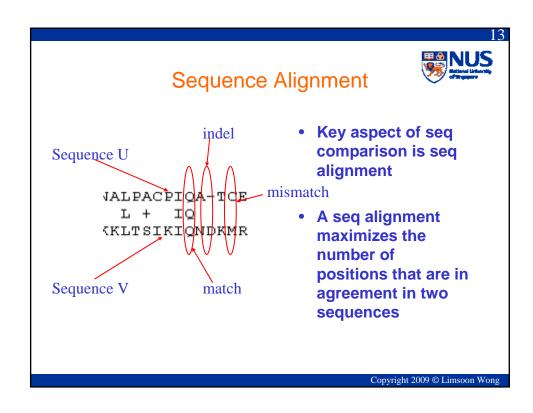
NUS Internal University of Structure

Earliest Research in Seq Comparis

Source: Ken Sung

 Doolittle et al. (Science, July 1983) searched for platelet-derived growth factor (PDGF) in his own DB. He found that PDGF is similar to v-sis oncogene

PDGF-2 1 SLGSLTIAEPAMIAECKTREEVFCICRRL?DR?? 34 p28sis 61 LARGKRSLGSLSVAEPAMIAECKTRTEVFEISRRLIDRTN 100



Sequence Alignment: Poor Example

- Poor seq alignment shows few matched positions
- ⇒ The two proteins are not likely to be homologous

Alignment by FASTA of the sequences of amicyanin and domain 1 of ascorbate oxidase

No obvious match between Amicyanin and Ascorbate Oxidase

Sequence Alignment: Good Examp

- Good alignment usually has clusters of extensive matched positions
- ⇒ The two proteins are likely to be homologous

```
Score = 105 bits (262), Expect = 1e-22
Identities = 61/106 (57%), Positives = 73/106 (68%), Gaps = 1/106 (0%)

Query: 1 MKPGRLASIALAIIFLPMAVPAHAATIEITMENLVISPTEVSAKVGDTIRWVNKDVFAHT 60
MK G L ++ MA PA AATIE+T++ LV SP V AKVGDTI WVN DV AHT
Sbjct: 1 MKAGALIRLSWLAALALMAAPAAAATIEVTIDKLVFSPATVEAKVGDTIEWVNNDVVAHT 60
good match between
```

Amicyanin and unknown M. loti protein

Copyright 2009 © Limsoon Wong

16

Alignment:

Simple-Minded Probability & Score

Let p, q, r be respectively the probability of a match, a mismatch, and an indel. Then the probability of an alignment A = (X, Y) is

$$prob(A) = p^m \cdot q^n \cdot r^h$$

where

$$\begin{array}{lll} m & = & |\{i \mid x_t' = y_t' \neq -\}| \\ n & = & |\{i \mid x_t' \neq y_t', x_t' \neq -, y_t' \neq -\}| \\ h & = & |\{i \mid x_t' = -, y_t' \neq -\} \cup \{i \mid x_t' \neq -, y_t' = -\}| \end{array}$$

Define score S(A) by simple log likelihood as

$$-S(A) = log(prob(A)) - [m log(s) + h log(s)], with log(p/s) = 1$$

• Then S(A) = #matches - μ #mismatches - δ #indels

Exercise: Derive μ and δ

Global Pairwise Alignment: **Problem Definition**

- Given sequences *U* and *V* of lengths *n* and *m*, then number of possible alignments is given by
 - f(n, m) = f(n-1,m) + f(n-1,m-1) + f(n,m-1)
 - $f(n,n) \sim (1 + \sqrt{2})^{2n+1} n^{-1/2}$ Exercise: Explain the recurrence above
- The problem of finding a global pairwise alignment is to find an alignment A so that S(A) is max among exponential number of possible alternatives

Global Pairwise Alignment:

Dynamic Programming Solution

$$-s(x,x)=2$$

$$-s(x,y) = -\mu$$
, if $x \neq y$

Then

Let U and V be two sequences of length n and m. Then their global pairwise alignment can be extracted from the dynamic programming computation of $S_{n,m}$, where

$$S_{i,j} = \max \left\{ \begin{array}{l} S_{i-1,j-1} + s(u'_i, v'_j) \\ S_{i-1,j} - \delta \\ S_{i,j-1} - \delta \end{array} \right\}$$

Exercise: What is the effect of a large δ ?

This is the basic idea of the Needleman-Wunsch algorithm

Needleman-Wunsch Algorithm (I

- Consider two strings S[1..n] and T[1..m]
- Let V(i, j) be score of opt alignment betw S[1..i] and T[1..j]
- Basis:

$$- V(0, 0) = 0$$

$$- V(0, j) = V(0, j-1) - \delta$$

• Insert j times

$$- V(i, 0) = V(i - 1, 0) - \delta$$

• Delete i times

Copyright 2009 © Limsoon Wong

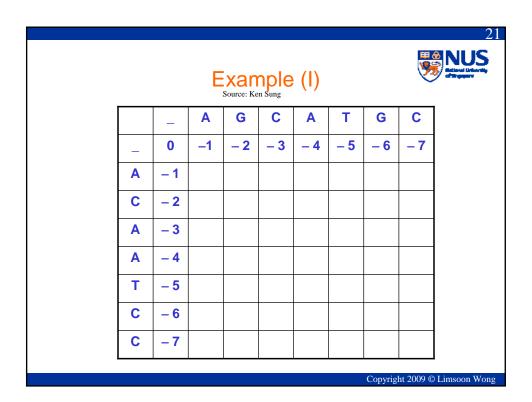
20

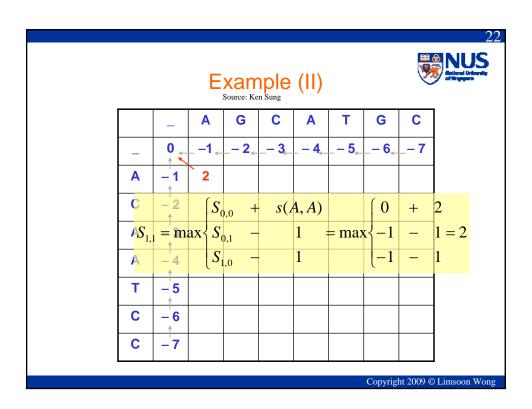
Needleman-Wunsch Algorithm (I

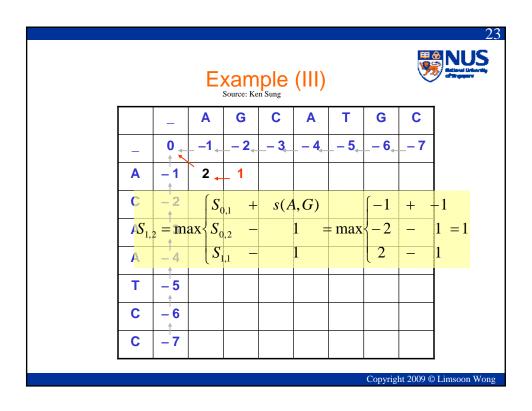
• Recurrence: For i>0, j>0

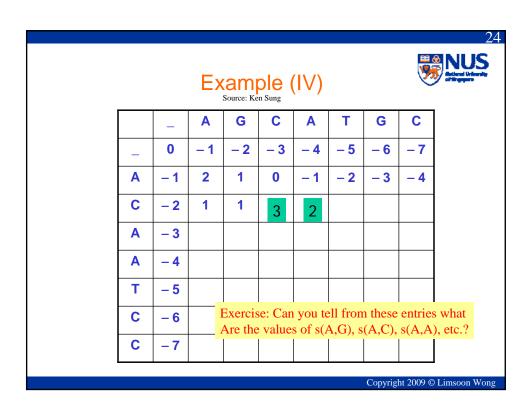
$$V(i,j) = \max \begin{cases} V(i-1,j-1) + s(S[i],T[j]) & \text{Match/mismatch} \\ V(i-1,j) - \delta & \text{Delete} \\ V(i,j-1) - \delta & \text{Insert} \end{cases}$$

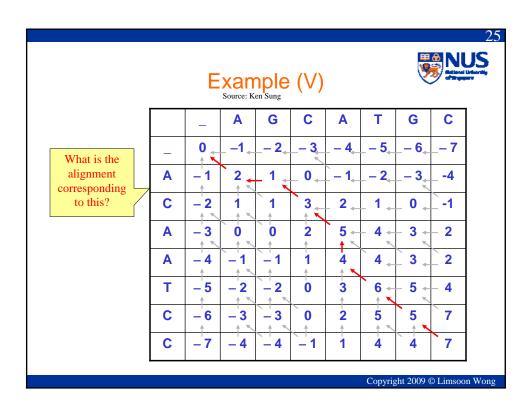
 In the alignment, the last pair must be either match/mismatch, delete, insert











Pseudo Codes Source: Ken Sung Create the table V[0..n,0..m] and P[1..n,1..m]; V[0,0] = 0;For j=1 to m, set V[0,j] := v[0,j-1] - δ ; For i=1 to n, set $V[i,0] := V[i-1,0] - \delta$; For j=1 to m { For i = 1 to n { set $V[i,j] := V[i,j-1] - \delta$; set P[i,j] := (0, -1);if $V[i,j] < V[i-1,j] - \delta$ then set $V[i,j] := V[i-1,j] - \delta$; set P[i,j] := (-1, 0);if (V[i,j] < V[i-1, j-1] + s(S[i],T[j])) then set V[i,j] := V[i-1, j-1] + s(S[i],T[j]);set P[i,j] := (-1, -1);} Backtracking P[n,m] to P[0,0] to find optimal alignment; Copyright 2009 © Limsoon Wong

- We need to fill in all entries in the n×m matrix
- Each entry can be computed in O(1) time
- ⇒ Time complexity = O(nm)
- ⇒ Space complexity = O(nm)

Exercise: Write down the memoized version of Needleman-Wunsch. What is its time/space complexity?

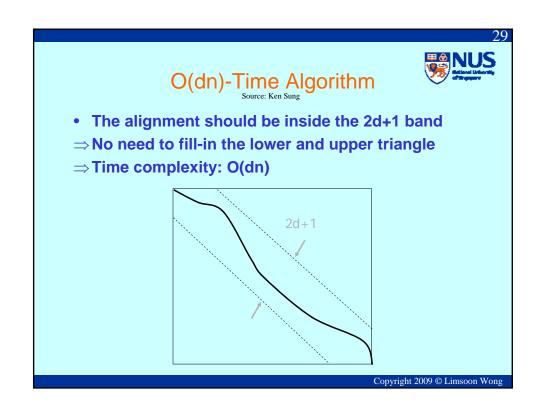
Copyright 2009 © Limsoon Wong

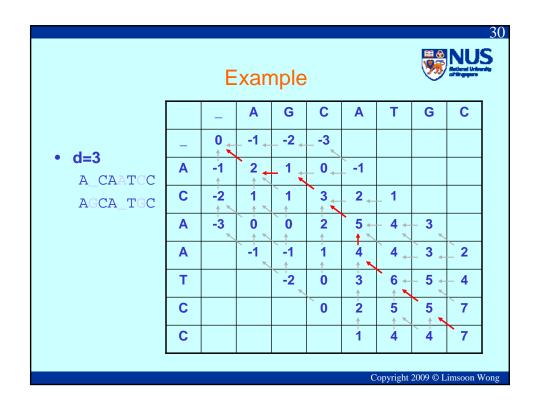
Problem on Speed

- If we can only compare whether two symbols are equal or not, the string alignment problem can be solved in $\Omega(nm)$ time
- Hirschberg 1978
 - If symbols are ordered and can be compared, the string alignment problem can be solved in Ω (n log n) time

Masek and Paterson 1980

- Based on Four-Russian's paradigm, the string alignment problem can be solved in O(nm/log2 n) time
- Let d be the total number of inserts and deletes. Thus $0 \le d \le n+m$. If d is smaller than n+m, can we get a better algorithm? Yes!





$$v(i, j, d) = \max \begin{cases} \overline{v(i-1, j-1, d) + s(S[i], S[j])} \\ v(i-1, j, d-1) - \delta & \text{if } d > 0 \\ v(i, j-1, d-1) - \delta & \text{if } d > 0 \end{cases}$$

Exercise: Write down the base cases, the memoized version, and the non-recursive version.

Copyright 2009 © Limsoon Wong

Global Pairwise Alignment:

More Realistic Handling of Indels

So reformulate as follows:

Let g(k) be the indel weight for an indel of k letters. Typically, $g(k) \leq k \cdot g(1)$. Let U and V be two sequences of length n and m. Then their global pairwise alignment can be extracted from the dynamic programming computation of $S_{n,m}$, where

$$S_{0,0} = 0, \quad S_{0,j} = -g(j), \quad S_{t,0} = -g(i)$$

$$S_{t,j} = \max \left\{ \begin{array}{l} S_{t-1,j-1} + s(u'_t, v'_j) \\ \max_{1 \le k \le j} \{S_{t,j-k} - g(k)\} \\ \max_{1 \le k \le i} \{S_{t-k,j} - g(k)\} \end{array} \right\}$$

Gap Penalty Source: Ken Sung

- $g(q):N\rightarrow\Re$ is the penalty of a gap of length q
- Note g() is subadditive, i.e, $g(p+q) \le g(p) + g(q)$
- If $g(k) = \alpha + \beta k$, the gap penalty is called affine
 - A penalty (α) for initiating the gap
 - A penalty (β) for the length of the gap

Copyright 2009 © Limsoon Wong

N-W Algorithm w/ General Gap Penalty (1)

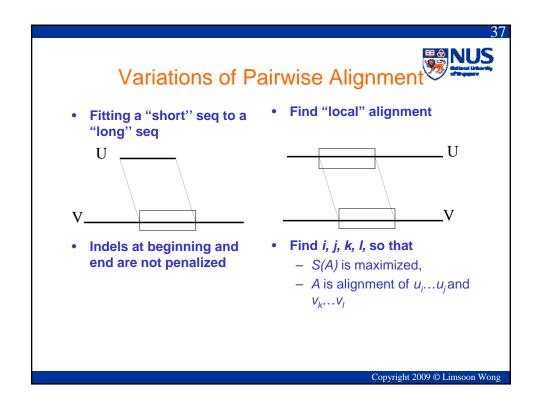
- Global alignment of S[1..n] and T[1..m]:
 - Denote V(i, j) be the score for global alignment between S[1..i] and T[1..j]
 - Base cases:
 - V(0, 0) = 0
 - V(0, j) = g(j)
 - V(i, 0) = g(i)

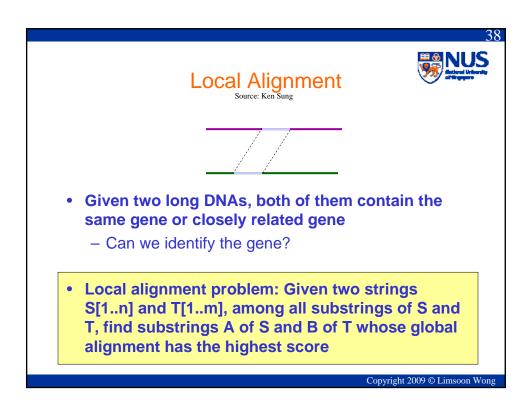
• Recurrence for i>0 and j>0,

$$V(i,j) = \max \begin{cases} V(i-1,j-1) + \mathcal{S}(S[i],T[j]) & \text{Match/mismatch} \\ \max_{0 \leq k \leq j-1} \{V(i,k) + g(j-k)\} & \text{Insert T[k+1..j]} \\ \max_{0 \leq k \leq i-1} \{V(k,j) + g(i-k)\} & \text{Delete S[k+1..i]} \end{cases}$$

Copyright 2009 © Limsoon Wong

- We need to fill in all entries in the n×m table
- Each entry can be computed in O(max{n, m}) time
- ⇒ Time complexity = O(nm max{n, m})
- ⇒ Space complexity = O(nm)





Brute-Force Solution Source: Ken Sung

- Algorithm:
 - For every substring A of S, for every substring B of T, compute the global alignment of A and B
 - Return the pair (A, B) with the highest score
- Time:
 - There are n² choices of A and m² choices of B
 - Global alignment computable in O(nm) time
 - In total, time complexity = $O(n^3m^3)$
- · Can we do better?

Copyright 2009 © Limsoon Wong

40

Some Background Source: Ken Sung

- X is a suffix of S[1..n] if X=S[k..n] for some k≥1
- X is a prefix of S[1..n] if X=S[1..k] for some k≤n
- E.g.
 - Consider S[1..7] = ACCGATT
 - ACC is a prefix of S, GATT is a suffix of S
 - Empty string is both prefix and suffix of S

Which other string is both a prefix and suffix of S?

Dynamic Programming for Local Alignment Problem

- Define V(i, j) be max score of global alignment of A and B over
 - all suffixes A of S[1..i] and
 - all suffixes B of T[1..j]
- Then, score of local alignment is
 - max_{i,i} V(i ,j)

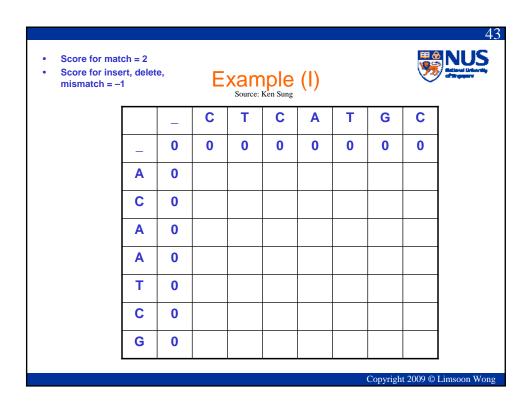
Smith-Waterman Algorithm Source: Ken Sung

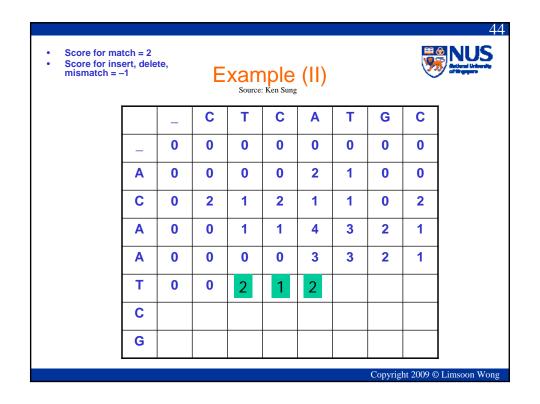
• Basis:

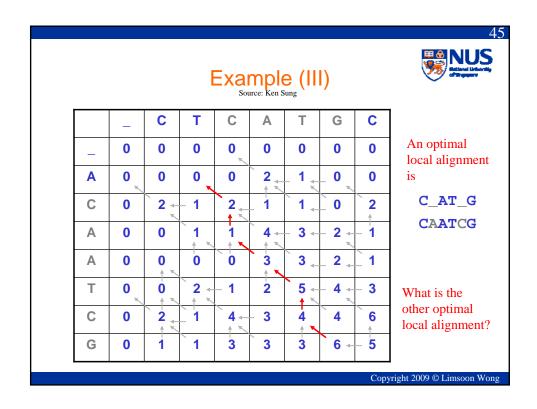
$$V(i, 0) = V(0, j) = 0$$

• Recursion for i>0 and j>0:

$$V(i,j) = \max \begin{cases} 0 & \text{Ignore initial segment} \\ V(i-1,j-1) + s(S[i],T[j]) & \text{Match/mismatch} \\ V(i-1,j) - \delta & \text{Delete} \\ V(i,j-1) - \delta & \text{Insert} \end{cases}$$







- Need to fill in all entries in the n×m matrix
- Each entries can be computed in O(1) time
- Finally, finding the entry with the max value
- ⇒ Time complexity = ??
- ⇒ Space complexity = O(nm)

Exercise: What is the time complexity?

Multiple Sequence Alignment

What is a domain

- A domain is a component of a protein that is selfstabilizing and folds independently of the rest of the protein chain
 - Not unique to protein products of one gene; can appear in a variety of proteins
 - Play key role in the biological function of proteins
 - Can be "swapped" by genetic engineering betw one protein and another to make chimeras
- May be composed of one, more than one, or not any structural motifs (often corresponding to active sites)

<u>49</u>

Discovering Domain and Active Site

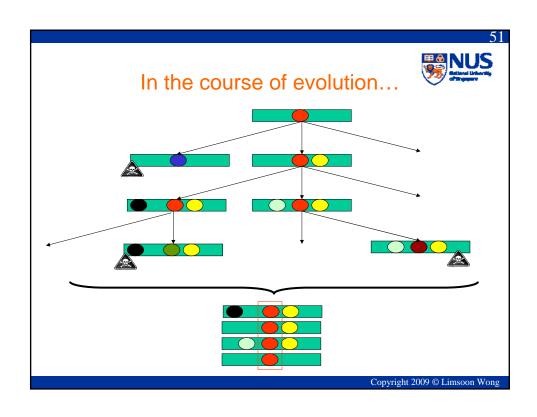
>gi|475902|emb|CaA83657.1| protein-tyrosine-phosphatase alpha
MDLWFFVLLLGSGLISVGATNVTTEPPTTVPTSTRIPTKAPTAAPDGGTTPRVSSLNVSSPMTTSAPASE
PPTTTATSISPNATTASLNASTPGTSVPTSAPVAISLEPSATESALLTALPSTEAEMTERNVSATVTTQE
TSSASHNGNSDRRDETPIIAVMVALSSLLVIVFIIIVLYMLRFKKYKQAGSHSNSFRLPNGRTDDAEPQS
MPLLARSPSTNRKYPPLPVDKLEEEINRRIGDDNKLFREEFNALPACPIQATCEAASKEENKEKNRYVNI
LPYDHSRVHLTPVEGVPDSHYINTSFINSYQEKNKFIAAQGPKEETVNDFWRMIWEQNTATIVMVTNLKE
RKECKCAQYWPDQGCWTYGNIRVSVEDVTVLVDYTVRKFCIQQVGDVTNKKPQRLVTQFHFTSWPDFGVP
FTPIGMLKFLKKVKTCNPQYAGAIVVHCSAGVGRTGTFIVIDAMLDMMHAERKVDVYGFVSRIRAQRCQM
VQTDMQYVFIYQALLEHYLYGDTELEVTSLEIHLQKIYNKVPGTSSNGLEEEFKKLTSIKIQNDKMRTGN
LPANMKKNRVLQIIPYEFNRVIIPVKRGEENTDYVNASFIDGYRRRTPTCQPRPVQHTIEDFWRMIWEWK
SCSIVMLTELEERGQEKCAQYWPSDGSVSYGDINVELKKEEECESYTVRDLLVTNTRENKSRQIRQFHFH
GWPEVGIPSDGKGMINIIAAVQKQQQQSGNHPMHCHCSAGAGAGRTGTFCALSTVLERVKAEGILDVFQTVK
SLRLQRPHMVQTLEQYEFCYKVVQEYIDAFSDYANFK

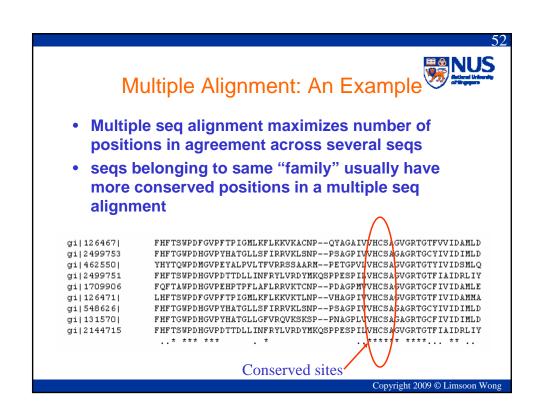
 How do we find the domain and associated active sites in the protein above?

Copyright 2009 © Limsoon Wong

50

- How to discover active site and/or domain?
- If you are lucky, domain has already been modelled
 - BLAST,
 - HMMPFAM, ...
- If you are unlucky, domain not yet modelled
 - Find homologous seqs
 - Do multiple alignment of homologous seqs
 - Determine conserved positions
 - ⇒ Emerging patterns relative to background
 - ⇒ Candidate active sites and/or domains





Multiple Alignment: Naïve Approach

Let S(A) be the score of a multiple alignment A.
 The optimal multiple alignment A of sequences
 U₁, ..., U_r can be extracted from the following dynamic programming computation of S_{m1},...,_{mr}:

$$S_{m_1,\dots,m_r} = \max_{\epsilon_1 \in \{0,1\},\dots,\epsilon_r \in \{0,1\}} \left\{ \begin{array}{l} S_{m_1-\epsilon_1,\dots,m_r-\epsilon_r} + \\ s(\epsilon_1 \cdot u'_{1,m_1},\dots,\epsilon_r \cdot u'_{r,m_r}) \end{array} \right\}$$

where

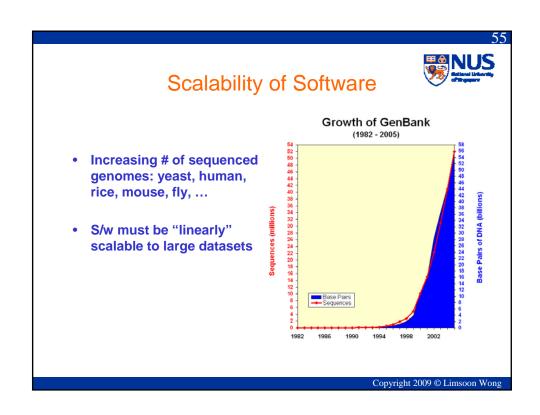
$$\epsilon_i \cdot a =
\begin{cases}
 a & \text{if } \epsilon_i = 1 \\
 - & \text{if } \epsilon_i = 0
\end{cases}$$

• This requires O(2^r) steps

Exercise for the Brave: Propose a practical approximation

Copyright 2009 © Limsoon Wong

Popular Tools for Sequence Comparison: FASTA, BLAST, Pattern Hunter



Need Heuristics for Sequence Comparison

- Time complexity for optimal alignment is O(n²), where n is seq length
- ⇒ Given current size of seq databases, use of optimal algorithms is not practical for database search
- Heuristic techniques:
 - BLAST
 - FASTA
 - Pattern Hunter
 - MUMmer, ...
- Speed up:
 - 20 min (optimal alignment)
 - 2 min (FASTA)
 - 20 sec (BLAST)

Exercise: Describe MUMer

Basic Idea: Indexing & Filtering

- Good alignment includes short identical, or similar fragments
- ⇒ Break entire string into substrings, index the substrings
- ⇒ Search for matching short substrings and use as seed for further analysis
- ⇒ Extend to entire string find the most significant local alignment segment

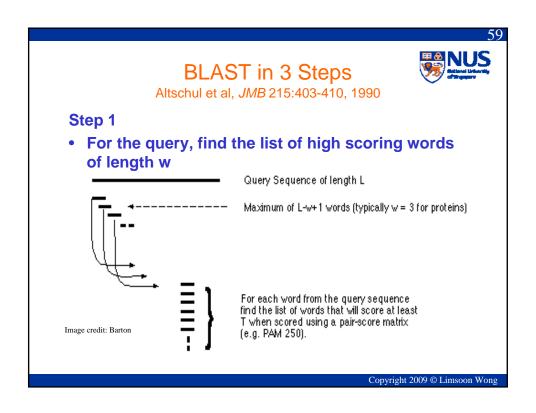
Copyright 2009 © Limsoon Wong

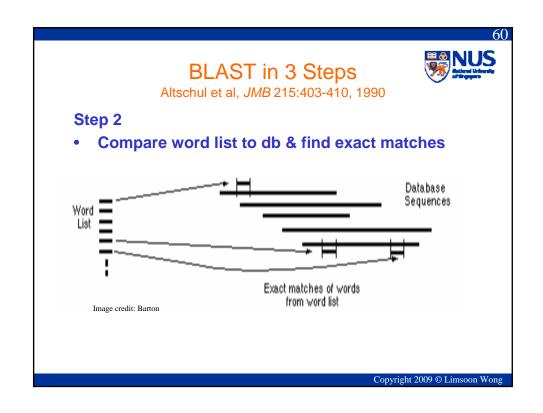
58

BLAST in 3 Steps

Altschul et al, JMB 215:403-410, 1990

- Similarity matching of words (3 aa's, 11 bases)
 - No need identical words
- If no words are similar, then no alignment
 - Won't find matches for very short sequences
- MSP: Highest scoring pair of segments of identical length. A segment pair is locally maximal if it cannot be improved by extending or shortening the segments
- Find alignments w/ optimal max segment pair (MSP) score
- Gaps not allowed
- Homologous seqs will contain a MSP w/ a high score; others will be filtered out

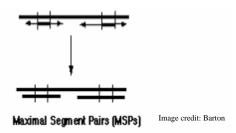




Altschul et al, JMB 215:403-410, 1990

Step 3

 For each word match, extend alignment in both directions to find alignment that score greater than a threshold s



Copyright 2009 © Limsoon Wong

Spaced Seeds

- 111010010100110111 is an example of a spaced seed model with
 - 11 required matches (weight=11)
 - 7 "don't care" positions

• 1111111111 is the BLAST seed model for comparing DNA seqs

Observations on Spaced Seeds

- Seed models w/ different shapes can detect different homologies
 - the 3rd base in a codon "wobbles" so a seed like 110110110... should be more sensitive when matching coding regions
- ⇒ Some models detect more homologies
 - More sensitive homology search
 - PatternHunter I.
- ⇒ Use >1 seed models to hit more homologies
 - Approaching 100% sensitive homology search
 - PatternHunter II

Exercise: Why does the 3rd base wobbles?

Copyright 2009 © Limsoon Wong

PatternHunter I

Ma et al., Bioinformatics 18:440-445, 2002

- BLAST's seed usually uses more than one hits to detect one homology
- ⇒ Wasteful

- Spaced seeds uses fewer hits to detect one homology
- ⇒ Efficient

TTGACCTCACC? ||||||||||? TTGACCTCACC? 11111111111 111111111111

1/4 chances to have 2nd hit next to the 1st hit

CAA?A??A?C??TA?TGG? |||?|??|?|??||?|||? CAA?A??A?C??TA?TGG? 111010010100110111 111010010100110111

1/46 chances to have 2nd hit next to the 1st hit

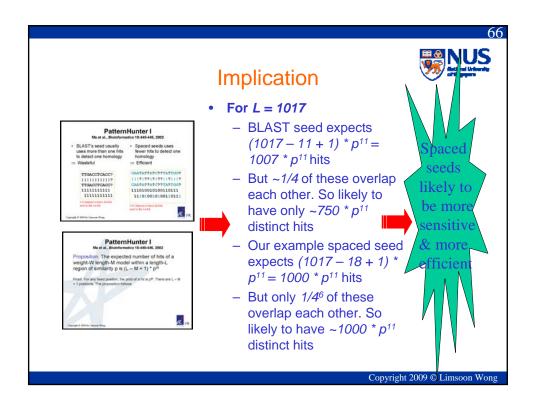
PatternHunter I

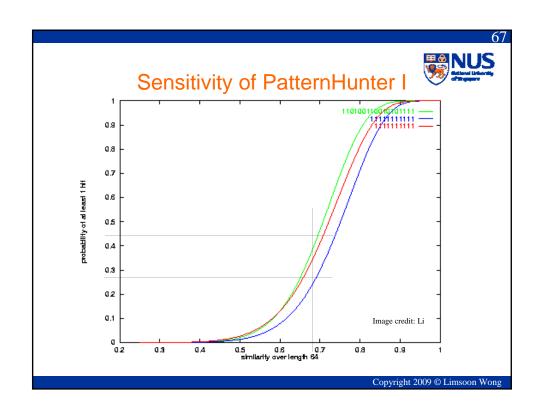
Ma et al., Bioinformatics 18:440-445, 2002

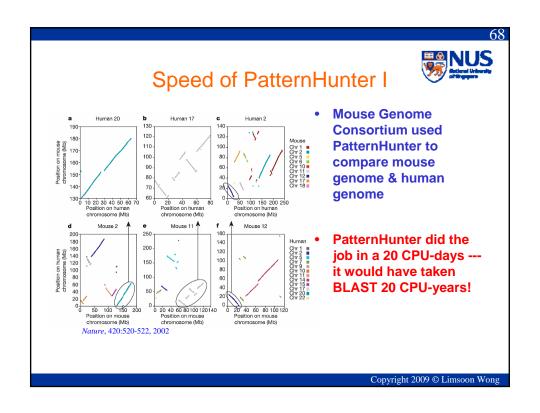
Proposition. The expected number of hits of a weight-W length-M model within a length-L region of similarity p is $(L - M + 1) * p^W$

Proof.

For any fixed position, the prob of a hit is p^{W} . There are L - M + 1 candidate positions. The proposition follows.







How to Increase Sensitivity?

- · Ways to increase sensitivity:
 - "Optimal" seed
 - Reduce weight by 1
 - Increase number of spaced seeds by 1
- Intuitively, for DNA seq,
 - Reducing weight by 1 will increase number of matches 4 folds
 - Doubling number of seeds will increase number of matches 2 folds
- Is this really so?

Copyright 2009 © Limsoon Wong

How to Increase Sensitivity?

- Ways to increase sensitivity:
 - "Optimal" seed
 - Reduce weight by 1
 - Increase number of spaced seeds by 1

Proposition. The expected number of hits of a weight-W length-M model within a length-L region of similarity p is $(L - M + 1) * p^W$

Proof. For any fixed position, the prob of a hit is p^{W} . There are L – M + 1 positions. The proposition follows.

- For L = 1017 & p = 50%
 - 1 weight-11 length-18 model expects 1000/2¹¹ hits
 - 2 weight-12 length-18 models expect 2 * 1000/2¹² = 1000/2¹¹ hits
 - ⇒ When comparing regions w/ >50% similarity, using 2 weight-12 spaced seeds together is more sensitive than using 1 weight-11 spaced seed!

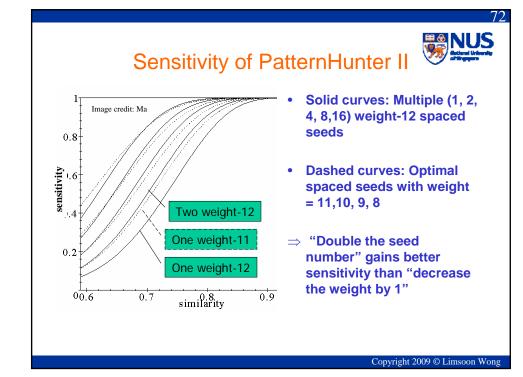
Exercise: Proof this claim

PatternHunter II

Li et al, *GIW*, 164-175, 2003

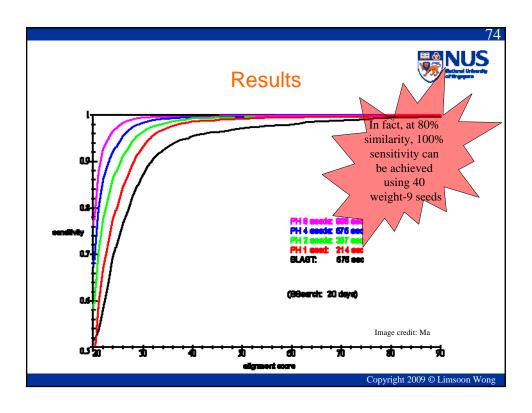
- Idea
 - Select a group of spaced seed models
 - For each hit of each model, conduct extension to find a homology
- Selecting optimal multiple seeds is NP-hard
- Algorithm to select multiple spaced seeds
 - Let A be an empty set
 - Let s be the seed such that A ∪ {s} has the highest hit probability
 - $-A=A\cup\{s\}$
 - Repeat until |A| = K
- Computing hit probability of multiple seeds is NPhard

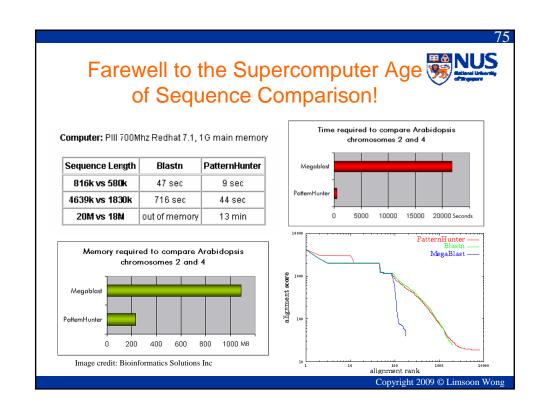
But see also Ilie & Ilie, "Multiple spaced seeds for homology search", *Bioinformatics*, 23(22):2969-2977, 2007

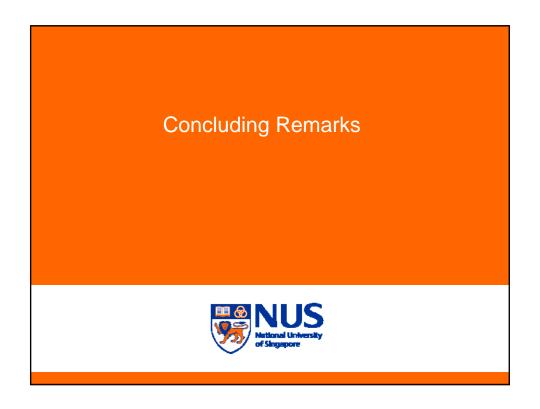


Expts on Real Data

- 30k mouse ESTs (25Mb) vs 4k human ESTs (3Mb)
 - downloaded from NCBI genbank
 - "low complexity" regions filtered out
- SSearch (Smith-Waterman method) finds "all" pairs of ESTs with significant local alignments
- Check how many percent of these pairs can be "found" by BLAST and different configurations of PatternHunter II







What have we learned?

- General methodology
 - Dynamic programming
- Dynamic programming applications
 - Pairwise Alignment
 - Needleman-Wunsch global alignment algorithm
 - Smith-Waterman local alignment algorithm
 - Multiple Alignment
- Important tactics
 - Indexing & filtering (BLAST)
 - Spaced seeds (Pattern Hunter)

Copyright 2009 © Limsoon Wong

Any Question?

Acknowledgements

- Some slides on popular sequence alignment tools are based on those given to me by Bin Ma and Dong Xu
- Some slides on Needleman-Wunsch and Smith-Waterman are based on those given to me by Ken Sung

Copyright 2009 © Limsoon Wong

80

References

- S.F.Altshcul et al. "Basic local alignment search tool", JMB, 215:403--410, 1990
- S.F.Altschul et al. "Gapped BLAST and PSI-BLAST: A new generation of protein database search programs", *NAR*, 25(17):3389--3402, 1997
- S.B.Needleman, C.D.Wunsch. "A general method applicable to the search for similarities in the amino acid sequence of two proteins", *JMB*, 48:444—453, 1970
- T.F.Smith, M.S.Waterman. "Identification of common molecular subsequences", *JMB*, 147:195—197, 1981
- B. Ma et al. "PatternHunter: Faster and more sensitive homology search", Bioinformatics, 18:440—445, 2002
- M. Li et al. "PatternHunter II: Highly sensitive and fast homology search", GIW, 164—175, 2003
- D. Brown et al. "Homology Search Methods", The Practical Bioinformatician, Chapter 10, pp 217—244, WSPC, 2004