
January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

CHAPTER 10

HOMOLOGY SEARCH METHODS

Daniel G. Brown

University of Waterloo
browndg@monod.uwaterloo.ca

Ming Li

University of Waterloo
mli@pythagoras.math.uwaterloo.ca

Bin Ma

University of Western Ontario
bma@uwo.ca

Homology search methods have advanced substantially in recent years. Begin-
ning with the elegant Needleman-Wunsch and Smith-Waterman dynamic pro-
gramming techiques of the 1970s, algorithms have been developed that were
appropriate for the data sets and computer systems of their times. As data sets
grew, faster but less sensitive heuristic algorithms, such as FASTA and BLAST,
became a dominant force in the late 1980s and 1990s. As datasets have grown still
larger in the post-genome era, new technologies have appeared to address these
new problems. For example, the optimal spaced seeds of PatternHunter increase
speed and sensitivity. Using these ideas, we can achieve BLAST-level speed and
sensitivity approaching that of slow algorithms like the Smith-Waterman, bring-
ing us back to a full circle. We wish to take you with us on this round trip, with
some detours along the way so as to study both global and local alignment. We
present methods for general purpose homology that are widely adopted, not in-
dividual programs.

ORGANIZATION.

Section 1. We begin with a brief history of the development of homology search methods.

Section 2. Then we introduce the notions of edit distance, alignment, score matrix, and
gap penalty.

217

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

218 D. Brown, M. Li, & B. Ma

Section 3. Next, the classic dynamic programming approach to sequence alignment is pre-
sented. We discuss both global and local alignments, as well as the issues of gaps and
memory usage.

Section 4. Then we proceed to the probabilitistic issues underlying sequence alignment.
In particular, we discuss in some details the PAM and BLOSUM scoring matrices
and their derivations. We also briefly visit the issue of assessing the significance of an
alignment.

Section 5. After that, we introduce the second generation of sequence homology search
methods. These methods sacrifice sensitivity for speed by using simple seeds to index
into possible matching regions before more expensive dynamic programming align-
ments are performed.

Section 6. Then we come to the third generation of sequence homology search methods.
These methods rely on the more advanced idea of spaced seeds to achieve simultane-
ously the high sensitivity of the first-generation classical methods and the high speed of
second-generation methods. We discuss the optimality of spaced seeds with respect to
different sequence models. We also discuss the effectiveness of using multiple spaced
seeds.

Section 7. Finally, we show some experiments comparing the sensivity and speed of these
different generations of sequence homology search methods.

1. Overview

Two sequences are homologous if they share a common evolutionary ancestry.
Unfortunately, this is a hypothesis that usually cannot be verified simply from se-
quence data. Therefore, our title is really a convenient misuse of terminology. Ho-
mology search methods provide evidence about homologies, rather than demon-
strating their existence.

Homology search is important as its product—high scoring alignments—is
used in a range of areas, from estimating evolutionary histories, to predicting func-
tions of genes and proteins, to identifying possible drug targets. All contemporary
molecular biologists use it routinely, and it is used in many of the largest super-
computing facilities worldwide. The NCBI BLAST server for homology search is
queried over 100,000 times a day and this rate is growing by 10–15% per month.

The basic homology search problem is so easy that it is usually the first topic
in a bioinformatics course. However, the problem is also very hard, as queries
and databases grow in size, and the emphasis is on very efficient algorithms with
high quality. More programs have been developed for homology search than for
any other problem in bioinformatics, yet after 30 years of intensive research, key
problems in this area are still wide open.

As is true of many topics in early bioinformatics, the first two important
sequence alignment algorithms—the Needleman-Wunsch algorithm for global

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

Homology Search Methods 219

alignment and the Smith-Waterman algorithm for local alignment—were both
identified during the 1970s and early 1980s by a variety of different groups of
authors working in different disciplines. However, these algorithms ran in time
that was too slow as databases of DNA and protein sequences grew during the
1980s. Since the mid 1980s and 1990s, heuristic algorithms—like FASTA ��� and
BLAST��—that sacrificed sensitivity for speed became popular. These algorithms
offer far faster performance, while missing some fraction of good sequence ho-
mologies. The development of good homology search software makes another
advance recently, as researchers focus on the cores of alignments that are identi-
fied by heuristic search programs. This is seen in local alignment programs—such
as PatternHunter��� and BLAT���—that allow substantial improvement in sensi-
tivity at minimal cost. The spaced seeds of PatternHunter, in particular, can be
optimized to be highly sensitive for alignments matching a particular model of
alignments,�������� ���� ���� ��� which allows substantial improvement in sensitiv-
ity. In fact, one can use these spaced models to approach Smith-Waterman sensi-
tivity at BLAST speed.��� This chapter takes you through this round trip, stopping
to note key ideas along the way, rather than specific programs.

2. Edit Distance and Alignments

2.1. Edit Distance

The central question in this field is whether two given DNA or protein sequences
are homologous. This question cannot be answered precisely without intimate
knowledge of the origin of the biological sequences, even if they are very sim-
ilar in their sequence. However, the number of evolutionary mutations required to
change one sequence to the other can be used to estimate the probability that the
two sequences are homologous. We use a distance metric—“edit distance”—to
measure the evolutionary similarity of two sequences.

When a DNA sequence is copied from a parent to a child, three common types
of mutations can be introduced: substitution, insertion, and deletion. Substitution
is the change of one nucleotide to another. Insertion inserts a new nucleotide to
the sequence, and deletion deletes an existing nucleotide. See Figure 1.

These three operations are similar to the operations used when one edits a text
file. Any sequence can be converted to any other sequence using these three edit
operations, since we can change any sequence to the empty sequence by deletions,
and the empty sequence to any other sequence by insertions. However, such a
sequence of operations is rarely the shortest. The minimum number of operations
that are required to change a sequence � to a sequence � is called the edit distance
of � and �, denoted here by ���� ��.

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

220 D. Brown, M. Li, & B. Ma

parent: ACGTCT AGTCT ACGTCT
� � �

child: AGTCT ACGTCT AGGTCT
deletion insertion substitution

Fig. 1. The three types of modifications.

Before we examine the algorithm that computes the actual edit distance of two
given sequences, we prove that edit distance is a metric.

Theorem 1: Edit distance is a metric. That is, for any three sequences �, �, and
�, ���� �� satisfies the following three properties:

(1) Isolation: ���� �� � � if and only if � � �.
(2) Symmetry: ���� �� � ���� ��.
(3) Triangular inequality: ���� �� � ���� �� � ���� ��.

Proof: For Property 1, it is trivial.
For Property 2, first note that a deletion in one sequence is equivalent to an

insertion in the other sequence. Therefore, if �� insertions, �� deletions and ��
substitutions convert � to �, then �� substitutions, �� insertions and �� deletions
convert � to �.

For Property 3, we can transform � to � in ���� �� steps, and � to � in ���� ��
steps, for any �. This gives an upper bound of ���� �� � ���� �� steps on the edit
distance from � to �.

Another measure that is often used in the comparison of strings is the “Ham-
ming distance”. For two strings � � ���� � � � �� and � � ���� � � � �� of the same
length, their Hamming distance ����� �� is the number of positions 	, � � 	 �
,
such that �� �� ��. Unfortunately, despite its simplicity, Hamming distance is not
suitable for measuring the similarity of long genetic sequences, because of the
existence of insertions and deletions.

2.2. Optimal Alignments

Edit distance is defined in the form of the minimum number of edit operations
between two sequences, where insertions, substitutions and deletions all count as
one mutation. However, edit distance is usually formulated as sequence alignment.
Let � � ���� � � � �� and � � ���� � � � �� be two sequences over a finite alphabet �.
We augment the alphabet � with a “space” symbol denoted by “�” that is not in

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

Homology Search Methods 221

�, yielding the alignment alphabet � �. Any equal-length sequences � and � over
the alphabet � � ��� that result from inserting space characters between letters
of � and � are called an alignment of the original sequences � and �.

Usually, the objective of the sequence alignment of � and � is to maximize the
similarity of � and � , so that characters in the same position in both sequences are
closely related or identical. The simplest goal is to minimize the Hamming dis-
tance ����� � �. Figure 2 shows an optimal alignment of two sequences ACGTCT
and AGTACG under this objective.

ACGT-CT
A-GTACG

Fig. 2. The optimal alignment of two sequences

Computing the optimal alignment to minimize Hamming distance is equiva-
lent to computing edit distance, as shown in the following theorem:

Theorem 2: Let � and � be two sequences, and ���� �� be their edit distance. Let
� and � be the optimal alignment of � and � that minimizes ����� � �. Then
����� � � � ���� ��.

Proof: It is easy to see that in the edit operations that convert � to �, each insertion
corresponds to a space symbol in �, each deletion corresponds to a space symbol
in � , and each substitution corresponds to a mismatch between � and � .

2.3. More Complicated Objectives

It is possible to perform biologically meaningful sequence alignments using only
the edit distance. However, typical homology search programs optimize somewhat
more complicated functions of the alignments. As we will see in Section 4, there is
actually a probabilistic basis to these more complicated functions. In the interim,
we provide a descriptive overview here.

2.3.1. Score Matrices

The edit distance measure causes the same cost to be incurred for every substi-
tution. Yet—especially for protein sequences—some mutations are far less con-
servative than others, and are less expected in truly homologous sequences. In
these cases, a “score matrix” is used to discriminate different types of matches

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

222 D. Brown, M. Li, & B. Ma

and mismatches. The score matrix value
��� �� is a real number that is the con-
tribution to the alignment score of aligning � and �, for any �� � 	 � �. Given two
sequences � and �, and their alignment ��� � �, the score of the alignment is defined
by
��

�	�
���		� � �		�. When a score matrix is used, we usually let
��� �� � �

if � and � are closely related. Therefore, the objective of the alignment is to find
an alignment that maximizes the alignment score

��

�	�
���		� � �		�.
In this framework, minimizing Hamming distance can be regarded as a special

case, using a score matrix
��� �� � � and
��� �� � �� for � �� �.

2.3.2. Gap Penalties

Another important way of scoring alignments is to look at the lengths of regions
consisting entirely of space characters in an alignment. In homologous sequences,
such “gaps” correspond to either deletion or insertion mutations. If we use a typ-
ical scoring matrix where we score a negative constant
����� for aligning any
letter � to a gap, the cost of the gap is proportional to its length. In both theory
and practice, this is undesirable. As such, the typical response is to penalize gaps
through a length-dependent gap penalty, rather than only through the scoring ma-
trix. The most common type of gap penalty is the affine penalty, where the score
of a gap of length 	 is �� 	
�. In this scheme, the gap “opening” penalty � is typ-
ically much more negative than the “extension” penalty � paid per gap position.
Both costs, however, are typically negative.

3. Sequence Alignment: Dynamic Programming

3.1. Dynamic Programming Algorithm for Sequence Alignment

We return to the simplest case of sequence alignment, where we incorporate the
costs of insertions and deletions in the score matrix
 . Here, the optimal align-
ment of two sequences is easily computed by dynamic programming. ����
��

Let � � ���	��
	 � � � ���	 and � � ���	��
	 � � � ��
	. Let �� �	� �	 be the opti-
mal alignment score for �����		 and ������	. The dynamic programming algorithm
computes�� �	� �	 recursively, and�� ���
	 ends up as the score of the optimal
alignment between � and �. The actual alignment of the two sequences can be
computed by a standard backtracking procedure after�� �	� �	 is computed for all
� � 	 � � and � � � �
.

Suppose the optimal alignment of �����		 and ������	 has � columns. There are
three possibilities for the last column of the alignment:

(1) ��		 is aligned to “�”. In this case, the first � � � columns of the alignment
should be an optimal alignment of �����	��	 and ������	. Otherwise, we could

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

Homology Search Methods 223

replace the first � � � columns with the optimal alignment of �����	� �	 and
������	, and get a better alignment for �����		 and ������	. Therefore,�� �	� �	 �
�� �	� �� �	 �
���		���.

(2) ���	 is aligned to “�”. For the same reason as in Case 1,�� �	� �	 � �� �	� ��
�	 �
��� ���	�.

(3) ��		 is aligned to ���	. For the same reason as in Cases 1 and 2, �� �	� �	 �
�� �	� �� � � �	 �
���		� ���	�.

By now we have almost derived a way to compute �� �	� �	 recursively, ex-
cept that for each �	� ��, we must choose the correct case, which is the case that
yields the highest score. This gives the following recursive algorithm to compute
�� �	� �	.

�� �	� �	 � ��

��
�
�� �	� �� �	 �
���		���

�� �	� � � �	 �
��� ���	�

�� �	� �� � � �	 �
���		� ���	�

(1)

By definition,�� ��� �	 is the alignment score of two empty sequences. There-
fore, �� ��� �	 � �. Also, �� �	� �	 is the alignment score between �����		 and
an empty sequence. Therefore, �� �	� �	 �

��

�	�
����	���. Similarly we can
compute�� ��� �	.

To fill in the�� matrix, we may calculate Formula 1 for 	 from 1 to� and for
� from 1 to
. Therefore, when we compute �� �	� �	, all the needed right-hand
side values in Formula 1 are already known, and �� �	� �	 can be computed in
constant time. Hence, the time complexity of this algorithm is ���

�.

When the algorithm is implemented in a programming language, the values of
�� �	� �	 are usually stored in a two dimensional array, as shown in Figure 3. The
first row and column of the array must be initialized. For each of the other entries,
its value is determined by the three adjacent entries—viz. the upper, left, upper left
entries. The arrows in Figure 3 illustrate that the three entries determine the value
of the last entry.

After the�� table is filled, the value of�� ���
	 is the score of the optimal
alignment of the two sequences. In constant time, we can determine which of the
three cases maximizes the value in Formula 1, and thus determine the last column
of the alignment. For example, in Figure 3, it is the third case that maximizes
the value of the last entry. Therefore, the last column of the alignment is ���	

matching ��
	, preceded by the optimal alignment of ������� �	 and �����
� �	.
These preceding columns can be identified by examining�� ��� ��
� �	, and
so on. Eventually, we trace back to �� ��� �	 and get the optimal alignment of
� and �. This procedure is called backtracking. Figure 4 shows the backtracking

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

224 D. Brown, M. Li, & B. Ma

C G T C TA

A

G

T

A

C

G

0 −1 −3 −4 −5 −6

1 0 −1 −2 −3 −4

−2

−1

−2

−3

−4

−5

−6

0 0 1 0 −1 −2

−1 −1 0 2 1 0

−2 −2 −1 1 1 0

−3 −1 −2 0 2 1

−4 −2 0 −1 1 1

Fig. 3. The DP table for the alignment of two sequences ACGTCT and AGTACG.

through the table in Figure 3, giving the alignment of Figure 2.
During backtracking, it is possible that for an entry, more than one of the

three cases give the entry its value. If we want all possible optimal alignments, we
must examine all adjacent entries that give this optimal value. Therefore, there are
potentially an exponential number of backtracking paths, each corresponding to
an optimal alignment with the same value. If we only need one optimal alignment,
we can choose an arbitrary one that maximizes the value. Because each step of the
backtracking reduces either 	 or � or both by one, the total number of steps does
not exceed � �
. Thus, most computation time in computing a single optimal
alignment is spent filling the DP table.

3.1.1. Reducing Memory Needs

The algorithm we have given requires ���

� space to store the entire ��
matrix. However, if all that is desired is the score of the optimal alignment, this
can be computed in ��
� space by only keeping track of two columns or rows of
the�� matrix—since when computing a row, we need only to know the value of
the previous row.

A slightly more complicated trick��� allows the computation of the optimal
alignment in ��
� space as well. Here, we keep track of the most recent two
rows of the matrix, and after we have computed row ��
 of the matrix, we also
remember which cell in the ��
 row the alignment path that is optimal in the
current cell passed through last. When we compute this for the ���
	 entry of the

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

Homology Search Methods 225

C G T C TA

A

G

T

A

C

G

0 −1 −3 −4 −5 −6

1 0 −1 −2 −3 −4

−2

−1

−2

−3

−4

−5

−6

0 0 1 0 −1 −2

−1 −1 0 2 1 0

−2 −2 −1 1 1 0

−3 −1 −2 0 2 1

−4 −2 0 −1 1 1

Fig. 4. Backtracking.

�� matrix, this allows us to divide the problem in half and recurse on smaller
problems, which preserves both the ���

� runtime and the ��
� space.

Since these heuristics work fine for columns as well, they can actually be used
to produce optimal alignments in ��������
�� space.

3.2. Local Alignment

The dynamic programming algorithm given in Section 3.1 gives optimal align-
ments of complete sequences. However, we often want to find closely homolo-
gous parts of the two sequences. For example, a protein usually consists of a few
domains. Two proteins may have one domain in common, but be otherwise un-
related. In this case, we may want to find the similar domains. Identifying these
regions of similarity, such that the alignment score of the two local regions are
maximized, is called “local alignment”. In contrast, the alignment we described in
Section 3.1 is sometimes called “global alignment”.

One way to consider local alignment is to think that eliminating prefixes and
suffixes of the two sequences is free. Therefore, if the global alignment has nega-
tive scores at its either end, we can eliminate the end to get a better local alignment.
Consequently, if the same scoring matrix is used, the local alignment score of two
sequences is always higher than or equal to the global alignment score. However,
the optimal local alignment may not be a part of the global alignment. For exam-
ple, the optimal local alignment of the two sequences in Figure 2 is the substring
ACG of the first sequence aligned with the substring ACG of the second sequence,
which is not a part of the alignment shown in Figure 2.

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

226 D. Brown, M. Li, & B. Ma

To compute optimal local alignments, we must make two modifications to the
algorithm for global alignments, to deal with prefixes and suffixes respectively.
First, we note that to find the optimal alignments that can eliminate suffixes of the
strings, we are actually seeking the highest scoring alignment of two prefixes of
� and �. Recall that �� �	� �	 is the score of the optimal alignment between �����		
and ������	. We must thus examine the entire�� table, and find the �	� �� pair that
maximizes�� �	� �	. We then do the backtracking for the generation of the actual
alignments of �����		 and ������	 from entry�� �	� �	.

Next, we consider eliminating prefixes. For the substrings �����		 and ������	,
let

�� ��	� �	 � ��

�������

������

�optimal alignment score for ��	� � � � 		 and ��� � � � � �	�

That is, �� ��	� �	 is the maximum possible alignment score of two suffixes of
�����		 and ������	. It is possible that both suffixes are empty; the value then is just
zero.

Similar to the computation of �� �	� �	 in a global alignment, we examine
the last column of the optimal alignment of the two optimal suffixes of �����		
and ������	. The three cases in Section 3.1 still exist. However, there is one more
case where both suffixes are empty strings, and �� ��	� �	 � �. This gives a new
recursive formula for the score:

�� ��	� �	 � ��

����
���

�� ��	� �� �	 �
���		���

�� ��	� � � �	 �
��� ���	�

�� ��	� �� � � �	 �
���		� ���	�

�

(2)

Combining the two modifications, we may fill the �� � matrix using For-
mula 2. We require that �� ���� 		 � �� ���� �	 � � for all values of 	 and �.
Lastly, we search the matrix to find the highest value, and backtrace from there
until we reach a position where�� �	� �	 � �, when we stop.

This algorithm is typically called the Smith-Waterman algorithm,��� in honor
of the authors of one of the original papers introducing it. Its runtime and space
complexity are both ���

�, and the space complexity can be reduced to
��������
�� using methods analogous to those given in Section 3.1.1.

Exercise: Given two sequences � and �, give an algorithm that identifies a sub-
string �� of � that maximizes the optimal global alignment score of � and � �. This
type of alignment is called “fit alignment”.

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

Homology Search Methods 227

3.3. Sequence Alignment with Gap Open Penalty

We now move to consider optimal global alignments when there are specific score
penalties imposed for opening gaps, as in Section 2.3.2. Let
 be a score matrix,
and � � � be the gap open penalty. We also assume that the score
����� of
aligning any letter � 	 � to a “�” symbol is a constant negative value �.

The dynamic programming algorithm in Section 3.1 cannot be straightfor-
wardly used here to compute the optimal alignment with gap open penalty. The
problem is in the first two cases in Formula 1. If the “�” symbol is the first one in a
gap, then we are opening a gap and should add the gap open penalty � to the score.
Otherwise, we should not. The DP table does not provide enough information to
differentiate these cases.

To solve this problem, we use three different DP tables—����	� �	, ����	� �	
and ����	� �	—to record the optimal alignment score of the alignments whose
last column is respectively

(1) ��		 matches “�”,
(2) “�” matches ���	, and
(3) ��		 matches ���	.

Consider these three DP tables, using the computation of ����	� �	 as an ex-
ample. The last column must be ��		 matching “�”. The preceding column can be
any of the three cases:

(1) ��	 � �	 matches “�”, and therefore the gap in the last column is not a gap
opening. Thus,����	� �	 � ����	� �� �	 � �.

(2) “�” matches ���	, and therefore the gap in the last column is a gap opening.
Thus,����	� �	 � ����	� �� �	 � �� �.

(3) ��	��	 matches ���	, and therefore the gap in the last column is a gap opening.
Thus,����	� �	 � ����	� �� �	 � �� �.

Because����	� �	 is the best of these three possibilities, we have:

����	� �	 � ����

��
�
����	� �� �	

����	� �� �	 � �

����	� �� �	 � �

We make a special note that Case 2 indicates that in the alignment, a column of
aligning ��		 to “�” is followed immediately by a column of aligning “�” to ���	.
The two columns can obviously be replaced by a column of aligning ��		 to ���	.
For many scoring matrices
 , the latter alignment is better. Therefore, usually we
can discard Case 2 in the computation.

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

228 D. Brown, M. Li, & B. Ma

Similarly, we can fill the other two DP tables with the following two formulas:

����	� �	 � ����

��
�
����	� � � �	 � �

����	� � � �	

����	� � � �	 � �

����	� �	 �
���		� ���	� � ��

��
�
����	� �� � � �	

����	� �� � � �	

����	� �� � � �	

After appropriate initialization of the three DP tables, we can compute all
three tables row-by-row. Then the maximum value of�� ����
	,������
	, and
������
	 is the optimal alignment score with gap open penalty. Which of the
three is the maximum determines which of the three cases is the last column of
optimal alignment. A backtracking from that table entry to �� ���� �	 gives the
actual optimal alignment.

Similarly to Section 3.2, one can define the local alignment with gap open
penalty. The extension from global alignment with gap open penalty to local align-
ment with gap open penalty is similar to what we have done in Section 3.2.

Exercise: Similar to Section 3.2, extend the algorithm for global alignment with
gap open penalty to local alignment with gap open penalty.

4. Probabilistic Approaches to Sequence Alignment

Underlying the simple dynamic programming algorithms of the previous sections
is a rich mathematical theory.�������� ��� In particular, the score of an alignment
can be seen as a measure of the surprisingness of that alignment, given probabilis-
tic models for related and unrelated sequences. The richest part of this theory—
which we do not visit in this tour—estimates the probability that an alignment
with a particular score or higher would occur in random sequences, to allow re-
searchers to estimate the statistical significance of an alignment.

We begin by considering how to pick the members of a scoring matrix.

4.1. Scoring Matrices

What values should be used in a scoring matrix? Intuitively, the value
 �	� �	

should be more positive for more closely related symbols. But how do we quantify
this?

For DNA sequences, the scoring matrix is often very simple. For example,
the default score matrix used in the DNA homology search program BLASTN

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

Homology Search Methods 229

A C G T
A 91 –114 –31 –123
C –114 100 –125 –31
G –31 –125 100 –114
T –123 –31 –114 91

Fig. 5. Blastz score matrix.

is simple. Matches between the same base score 1, mismatches between bases
score ��, and matches between a “�” symbol and a base score ��. BLAST also
includes a gap open penalty, which by default is ��, for the alignments it gener-
ates. Other programs—such as Blastz—use a more carefully investigated scoring
scheme, proposed in Chiaromonteet al.��
 and shown in Figure 5 with gap open
penalty ���� and gap extension ���. This matrix comes from a similar origin to
the probabilistic explanation given below for protein alignments.

For protein sequences, a more complicated approach is used, based on align-
ments of sequences known to be homologous. Two complementary approaches
are found in PAM matrices��� (Point Accepted Mutation, or Percent Accepted
Mutation) and BLOSUM matrices��
 (BLOcks SUbstitution Matrices). But both
use fundamentally similar ideas.

The central idea is to have a scoring matrix where higher-scoring entries are
more likely to be aligned in homologous sequences than in random sequences.
To encapsulate this, entries in both PAM and BLOSUM matrices are related to
the logarithm of the odds ratio—also known as “log-odds”—that a given pair of
symbols are aligned due to homology versus by chance.

For two amino acids 	 and �, let �� and �� be the probabilities of amino acids 	
and � occurring at a random position of a random protein sequence, respectively.
Then ��
 �� is the probability that 	 is aligned to � in a random position in the
alignment of two unrelated sequences. Let � �� be the probability that a column of
a true alignment of two related sequences aligns 	 to �. The odds ratio that an 	
matched to a � comes from a true alignment versus a random alignment is thus
�������
 ���, and its logarithm is �����������
 ����.

4.1.1. PAM Matrices

PAM matrices—also called Dayhoff matrices in honor of their inventor—are
based on a very simple model of protein evolution, in which amino acid sequences
evolve by a series of independent single substitution events. PAM matrices de-

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

230 D. Brown, M. Li, & B. Ma

scribe the frequency with which amino acids “safely” mutate to other amino acids.
Because different biomolecules may mutate at different rates, the PAM unit—
instead of the time—is used to measure the amount of variation.

One PAM of mutation describes an amount of evolution which changes, on the
average, 1% of the amino acids. The PAM-1 mutation matrix has been calculated
by Dayhoffet al.,��� by examining the mutations that separate closely related pro-
tein sequences. Here we denote the PAM-1 mutation matrix by �, where ��	� �	
is the probability that a given amino acid 	 is mutated to � after one PAM of mu-
tations have occurred. Given the assumption that evolution acts as independent
mutation events, it is easy to prove that if
 PAMs of mutations have occured, the
mutation matrix PAM-
 is equal to ��, the
-th power of the PAM-1 matrix.

After computing the PAM-
 matrix��, we usually use it in practice as a log-
odds scoring matrix. To do this, we need the probability � � with which amino
acid 	 appears in a random position of random protein sequences. In a random
alignment, 	 and � are aligned with probability � �
�� . But in a random position of
an alignment of two sequences separated by
 PAMs of mutation, the probability
that 	 and � are aligned is ��
���	� �	. Given these two possible hypotheses for
why 	 is aligned to �, the odds ratio is just

��	� �	 �
��
���	� �	

��
 ��
�
���	� �	

��

This is then converted to a score matrix by taking the logarithm in base 10 and
multiplying by 10:

 �
��	� �	 � ��
 �����

���	� �	

��

If 	 is aligned to � more frequently at a random column of the alignment of
two homologous proteins than that of two random proteins, � �� � ��
 �� and

 �

��	� �	 � �. Otherwise,
 �
��	� �	 � �.

4.1.2. BLOSUM Matrices

An alternative scoring approach for protein sequences is the BLOSUM ma-
trices. Recall that PAM matrices are derived from alignments of closely re-
lated sequences. By contrast, the BLOSUM matrices invented by Henikoff and
Henikoff��
���� are derived from contiguous segments of multiple alignments of
sequences that are not known to be closely related or even homologous in an evo-
lutionary sense.

The database used is the BLOCKS database, which identifies protein motifs
from multiple alignments of amino acid sequences. The database includes thou-

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

Homology Search Methods 231

sands of blocks, where each block contains many sequence segments that are sim-
ilar with each other. For the computation of BLOSUM
 matrix, the segments
that are identical at
� or more of the positions within a block are clustered and
weighted as a single sequence. This reduces the multiple contributions to amino
acid pairs from the most closely related members of a protein family. From these
blocks, one can then identify how often two amino acids 	 and � are aligned to each
other in these blocks, versus how often they appear unrelatedly in the BLOCKS
database.

If 	 is aligned to � a total of ��	� �� times in the blocks, out of a total of �
aligned pairs in blocks, then the probability of 	 being aligned to � in a random
aligned pair is clearly ��	� ���� . By contrast if the probability of that 	 occurs at
a random position in the database is �� and the probability of that � occurs is �� ,
then the probability of aligning 	 to � in unrelated sequences is just � �
 �� . The
odds ratio is therefore

��	� �	 �
��	� ��

��
 ��
 �

Typically, BLOSUM matrices result from doubling the logarithm in base 2 of this
� matrix. As such, they are again log-odds matrices.

Reducing the value of
 allows the BLOSUM
 matrix to be biased toward
finding homologies between sequences that are not very similar, ideally allowing
their use in searching for homologies that are not very strong. In practice, BLO-
SUM matrices like BLOSUM 62 or BLOSUM 50 have largely supplanted the use
of PAM matrices.

4.1.3. Weaknesses of this Approach

A serious issue with these scoring methods is that they are based on encapsu-
lating statistics from existing alignments. In particular, they can be inappropriate
in estimating the quality of an alignment between membrane proteins, given that
the alignments that are used to develop both PAM and BLOSUM matrices are of
largely globular proteins.

4.2. Probabilistic Alignment Significance

In addition to the log-odds interpretation of protein scoring matrices, a similar
approach can be used to interpret alignment scores. We make a completely un-
justified assumption: that positions of an alignment are all independent of one
another. Now, consider an alignment � between two unrelated sequences � and �,
in a scoring system with no added penalties for opening gaps. If the probability of

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

232 D. Brown, M. Li, & B. Ma

a symbol 	 occurring is �� in a random aligned sequence, then the probability of
alignment� appearing randomly is just

�
� ���
 �	� . If, by contrast, the probabil-

ity that 	 is aligned to � in sequence that matches a model of homologous sequence
is ��� , then the probability of that alignment occuring at random is

�
� ���	� . The

odds ratio of these probabilities is just
�
�

���	�
���
 �	�

If the alignment is scored with a log-odds scoring matrix
 , where
 �	� �	

is the logarithm of the ratio between the probability that 	 is aligned to � in the
known homologous sequences versus at random, then the score of the alignment
is just

�
�

���
���	�
���
 �	�

which is exactly the logarithm of the odds ratio for the alignment.
How do we use this observation? There are two common approaches, from

Bayesian and frequentist statistics. In the Bayesian approach, we assess the prob-
ability that the alignment is of homologous sequences, given a prior estimate
of that probability, using the odds ratio. In the more complicated frequentist
approach,������� the probability that a local alignment with score greater than
� would appear in unrelated sequences of length ��� and ��� is estimated, and this
is used as a measure of the statistical significance of the alignment. This can be
extended to consider the sequence content of � and � as well in the estimation.

5. Second Generation Homology Search: Heuristics

Filling in an entire dynamic programming matrix when aligning two sequences
is quite time consuming. As a result, in the late 1980s and early 1990s, obvious
heuristic methods were proposed. These methods share a common theme: sac-
rifice sensitivity for speed. That is, they run much faster than full dynamic pro-
gramming, but they may miss some alignments. The two most popular heuristics
are found in FASTA��� and BLAST.�� To focus on central ideas, we concentrate
on DNA sequence homology search. Protein sequence homology search involves
similar strategies.

5.1. FASTA and BLAST

One of the earliest of these heuristics is FASTA. FASTA uses a hashing approach
to find all matching �-tuples (between 4 and 6 for DNA), between the query

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

Homology Search Methods 233

and database. Then nearby �-tuples, separated by a constant distance in both se-
quences, are joined into a short local alignment. With these short local alignments
as seeds, Smith-Waterman dynamic programming is applied to larger gaps be-
tween two high scoring pairs still separated by short distances, with the restriction
that only the part of the dynamic programming matrix nearest the diagonal is filled
in. FASTA outputs only one alignment per query sequence, after the dynamic
programming phase, and estimates the probability of the alignment occurring by
chance.

More popular has been the BLAST family of heuristics. BLAST works sim-
ilarly at its beginning, identifying seed matches of length � (= 9–11 for DNA).
Each seed match is extended to both sides until a drop-off score is reached. Along
the way, seed matches that are being extended in ways that are not typical of
truly homologous sequences are also thrown out. BLAST can be set so that two
nonoverlapping seed matches may be required before alignments are extended.
Newer versions of BLAST�� allow gapped alignments to be built. BLAST out-
puts all alignments found, and estimates for each alignment the expected number
of alignments of unrelated sequences whose score would be as large. This quantity
is estimated in ways described in Section 4.2.

5.2. Large-Scale Global Alignment

Another topic of great interest in the last years has been the identification of global
alignments between long stretches of sequenced genomes. Beginning with the
work of Delcheret al.,��� a number of other authors have begun to use somewhat
different methods than classical dynamic programming ones for this problem.

This problem is of interest partially because portions of these global align-
ments in some genomes have undergone enough mutations that their homology
is no longer significant, yet they may have regulatory or other significant func-
tions that are still conserved. At the same time, researchers identifying homolo-
gous blocks that have not been broken by major genome rearrangement events
may want to use the non-exonic regions as a tag to identify which of two dupli-
cated blocks is truly homologous to another sequence. As such, the whole-genome
alignment problem has been the subject of considerable research in the last few
years.

Two methodologies in particular augment and complement the techniques
used in heuristic local alignment. The first is the use of seed alignments; but in-
stead of using them to build local alignments, whole genome alignment packages
typically use them as anchors that are required to be used in the chosen alignment.
The second is the use of variable-length regions as these anchors—most often ac-

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

234 D. Brown, M. Li, & B. Ma

complished by the use of suffix trees or similar data structures, which are used to
identify long completely conserved regions as anchors.

6. Next-Generation Homology Search Software

In the post-genome era, supercomputers and specialized hardware implementing
sequence alignment methods in digital logic are employed to meet the ever ex-
panding needs of researchers. Pharmaceutical corporations and large scientific
funding agencies proudly spend much money to support such supercomputing
centers. Unfortunately, the reliability of these solutions must be considered in
light of the consistent doubling of sequence databases, as GenBank doubles in
size every 18 months.
�

In the late 1990s, however, several methods have been developed that im-
prove the sensitivity of homology search software to a level comparable to that
of full-scale dynamic programming, while avoiding very large runtime complex-
ities. These have largely focused on characterizing the central seeds from which
heuristic alignment programs build their local alignments.

6.1. Improved Alignment Seeds

BLAST-like heuristics first find short seed matches which are then extended. This
technique faces one key problem: As seeds grow longer, we can expect fewer ho-
mologies to have the large conserved regions. However, shorter seeds yield many
random hits that significantly slow down the computation.

To resolve this problem, a novel seeding scheme has been introduced in
PatternHunter.��� BLAST looks for matches of �—default � � �� in BLASTN
and � �
� in MegaBlast—consecutive letters as seeds. PatternHunter instead
uses non-consecutive � letters as seeds. The relative positions of the � letters is
called a “spaced seed model”, and � its “weight”. For convenience, we denote a
model by a 0-1 string, where ones represent required matches and zeros repre-
sent “don’t care” positions. For example, if we use the weight 6 model 1110111,
then the alignment ACTGCCT versus ACTTCCT matches the seed, as does
ACTGCCT versus ACTGCCT. In this framework, BLAST can be thought of
as using models of the form ��� � � � �.

Let � be the length of a homologous region with no indels, and
 be the
length of a seed model. Then there are ��
 � � positions that the region may
contain a hit; see Figure 6. In a BLAST type of approach, as long as there is
one hit in such a region, the region can be detected. Therefore, although the hit
probability at a specific position is usually low, the probability that a long region
contains a hit can be reasonably high.

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

Homology Search Methods 235

TACTGCCTG
|||| ||||
TACTACCTG

1: 1110101
2: 1110101
3: 1110101

Fig. 6. There are many positions that a homology may contain a hit. In this figure, the seed model
1110101 hits the region at the second position.

Ma, Tromp, and Li��� notice that different seed models with identical weight
can result in very different probabilities to hit a random homology. For a seed with
weight , the fewer zeros it has, the shorter the seed is, and the more positions it
can hit the region at. Therefore, intuitively, BLAST’s seed model with consec-
utive ones seems to have the highest hit probability among all the weight- seed
models. Quite surprisingly, this is not true. The reason is that the hits at different
positions of a region are not independent. For example, using BLAST’s seed, if
a hit at position 	 is known, the chance to have a second hit at position 	 � � is
then very high because it requires only one extra base match. The high depen-
dency between the hits at different positions make the detection of homologies
“less efficient”.

The same authors observe that the dependency can be reduced by adding some
zeros into the seed model. For example, if seed model 1110101 is used and there
is a hit at position 	, then the hit at position 	�� requires three extra base matches,
compared to one extra base match of the BLAST’s seed. Thus, hits at different
positions are less dependent when spaced seed models are used. On the other
hand, spaced seed models are longer than the consecutive seed model with the
same weight, and therefore have fewer positions to hit a region at. As a result,
the optimal seed must balance these two factors. In the same paper, the authors
have developed a method to find the optimal seed model that maximizes the hit
probability in a simple model, and the optimal seeds are then used to develop the
PatternHunter program.

Some other seeding or related strategies have also been developed before or af-
ter PatternHunter’s spaced seed model. In the program WABA,��� Kent proposes
the use of a simple pattern in identifying homologous coding sequences. Since
these sequences often vary in the third, “wobble”, position of codons, WABA ig-
nores these positions when identifying positions that match a seed. In the frame-
work of PatternHunter, this is equivalent to using spaced seeds of form ������ � � �.

Kent’s approach takes advantage of the special properties of the coding re-

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

236 D. Brown, M. Li, & B. Ma

gion homologies. Kent has also introduced a different approach for detecting non-
coding region homologies in his program BLAT. ��� BLAT uses consecutive seeds,
but allows one or two mismatches to occur in any positions of the seed. For exam-
ple, a BLAT hit might require at least ten matches in twelve consecutive positions.
This scheme naturally allows more false negatives, but the resultant collection of
hits is more enriched for true positives at a given level of false positives than for
consecutive seeds where all positions are required to match.

In a random hashing strategy, Buhler��� uses his experience with identifying
sequence motifs using random projection��� to speed up detection of homology
search. This idea is previously used by Indyk and Motwani. ��� Basically, this ap-
proach is to find all hits by random hashing over long sequence intervals. A sim-
ple probability calculation allows the computation of how many projections are
required to ensure a given probability that a homologous alignment has a hit to at
least one of these random projections. For good choices of projection weights, this
approaches 100% sensitivity. Other than the fact that high-weight random projec-
tions are not suitable and not designed for BLAST-type searches, this approach
also ignores the possibility of optimizing the choice of those projections.

Of these first three approaches—specific spaced seeds, consecutive seeds al-
lowing a fixed number of mismatches, and random spaced seeds—the first, typi-
fied by PatternHunter, allows for optimization. That is, one can use a seed specif-
ically tuned for the types of alignments one expects to see, with the highest sensi-
tivity at a particular false positive rate.

The optimal seed models in the PatternHunter paper��� are optimized for non-
coding regions. Later, Brejová, Brown, and Vinař ��� develop an algorithm for
optimizing the seeds in more complicated models, specifically for coding regions.
In a later paper,��� they also propose a unified framework to represent all of the
above mentioned seeding methods. In their framework, the seeds are represented
by a pair �!� � �: a vector ! that represents the seed sequence—e.g., the zeros
and ones from PatternHunter seeds—and a threshold � that in its simplest case
identifies how many “one” positions from the seed vector ! must be matching in
the two sequences to yield a hit.

6.2. Optimized Spaced Seeds and Why They Are Better

Optimized spaced seeds can have substantially greater sensitivity than the consec-
utive seed models of BLAST. Here we give one example. The simplest model
of an alignment is of a region of a fixed length where each position matches
with some probability �, independent of all other positions. Figure 7 com-
pares the optimal spaced seed model of weight 11 and length at most 18—viz.

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

Homology Search Methods 237

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

se
ns

iti
vi

ty

similarity

111010010100110111

11111111111

1111111111

Fig. 7. 1-hit performance of weight 11 spaced model versus weight 11 and 10 consecutive models,
coordinates in logarithmic scale.

111010010100110111—with BLAST’s consecutive models of weight 11 and 10,
for alignments of this type, of fixed length 64. For each similarity rate � shown
on the x-axis, the fraction of regions with at least 1 hit is plotted on the y-axis as
the sensitivity for that similarity rate. From the figure, one observes that the seem-
ingly trivial change in the seed model significantly increases sensitivity. At 70%
homology level, the spaced seed has over 50% higher probability—at 0.47—to
have a hit in the region than BLAST weight 11 seed—at probability 0.3.

However, the added sensitivity does not come at the cost of more false positive
hits or more hits inside true alignments:

Lemma 3: The expected number of hits of a weight- length-
 model within a
length � region of similarity � � � � � is ���
 � ��
 �
 .

Proof: The expected number of hits is the sum, over the �� �
 � �� possible
positions of fitting the model within the region, of the probability of specific
matches, the latter being �
 .

Lemma 3 reveals that spaced seeds have fewer expected hits, but have higher
probability to hit a homologous region, as shown in Figure 7. This is a bit counter
intuitive. The reason is that a consecutive seed often generates multiple hits in a
region, because a hit at position 	 increases the hit probability at position 	�� to �
as only one extra base match is required. However, optimized spaced seeds are less
likely to have multiple hits in a region because the second hit requires more base
matches. Therefore, given many homologous regions, although the total number

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

238 D. Brown, M. Li, & B. Ma

of hits generated by a spaced seed is comparable to the number for a consecutive
seed with the same weight, the spaced seed hits can cover more regions.

To quantify this, let � � ��� and � � ��, as for the original PatternHunter
model. Given that the BLASTN seed 11111111111 matches a region, the expected
number of hits in that region is 3.56, while the expected number of hits to the
spaced seed 101101100111001011, given that there is at least one, is just 2.05.

Thus, using an optimized spaced seed, a homology search program increases
sensitivity but not running time. Inverting the above reasoning, we can use an
optimal weight-12 spaced seed to achieve the BLAST weight 11 seed sensitivity,
but generating four times fewer hits. This speeds up the search process by roughly
a factor of four.

6.3. Computing Optimal Spaced Seeds

The probability of a seed generating a hit in a fixed length region of a given level
similarity can be computed by dynamic programming �������� ���� ���� ���� ���� ���

under various assumptions. To choose an optimal seed, we compute the hit prob-
ability for all seeds, and pick the one with the highest probability.

Suppose we are given a seed �, of length
 and weight , and a homology
region ", of length � and homology level �, with all positions independent of
each other. In this model, we can compute the probability of � having a hit in ".
We represent " by a random string of zeros and ones, where each position has
probability � of being a one.

We say that seed � has a seed match to" at location 	 if the �-length substring
of" starting at position 	 has a one in each position with a one in the seed �. Let� �

be the event that seed � has a seed match at location 	 in", for all � � 	 � ��
 .
Our goal is to find the probability that � hits " � �������

�	� ��	�

For any
 � 	 � � and any binary string � such that ��� �
 , we use #�	� ��
to denote the probability that � hits the length 	 prefix of " that ends with �:

#�	� �� � ��������	� �� � "�	� $� � � � � 	� �	 � �	�

In this framework, if � matches �,

#�	� �� � ��

Otherwise, we have the recursive relationship:

#�	� �� � ��� ��
 #�	� �� ���� � �
 #�	� �� �����

where �� is � deleting the last bit.

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

Homology Search Methods 239

Once we have used this dynamic programming algorithm to compute #�� �

� �� for all strings �, we can compute the probability of � hitting the region. It is:

�
�
�	�

���"�	� �� � � � � 	� �	 � �	
 #���
� ��

This is the simplest algorithm, used in the original paper��� but not published
anywhere, to compute the hit probability of a seed. Other algorithms generalize
this algorithm to more sophisticated probabilistic assumptions of the region" and
improving time complexity.�������� ���� ���� ���

6.4. Computing More Realistic Spaced Seeds

The simple model of homologous regions described above is not very represen-
tative of real alignments. Homologous regions are not all of length 64, and vary
internally in how conserved they are. Of course, they also include gaps, but we are
not going to consider this in producing seeds.

For example, more than 50% of significant alignments in the human and
mouse genomes are between exonic regions, and these regions have much more
conservation in the first two positions of a codon than in the third, which has tradi-
tionally been called the “wobble” position.��� A seed that takes advantage of this
periodicity by ignoring the third position in codons is much more likely to hit than
a seed that does not. There is also substantial dependence within a codon: If the
second position is not matched, it is quite likely that neither are the first or third.

Similarly, real alignments vary substantially internally in their alignment as
well. This is particularly true for coding alignments. Such alignments tend to have
core regions with high fidelity, surrounded by less well-conserved regions.

Models that do not account for these variabilities can substantially underesti-
mate the hit probability of a seed.

6.4.1. Optimal Seeds for Coding Regions

Two recent papers try to address this need to optimize better models in differ-
ent ways. Brejová et al.��� use a Hidden Markov Model (HMM) to represent the
conservation pattern in a sequence. Their model accounts for both internal depen-
dencies within codons, and also for multiple levels of conservation throughout a
protein. They update the dynamic programming model above to this new frame-
work, and show that one can still relatively efficiently compute the probability that
a given seed matches a homologous region. Meanwhile, Buhler et al. ��� represent
the sequences by Markov chains, and present a different algorithm, based on finite
automata to compute the probability of a seed hit in that model.

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

240 D. Brown, M. Li, & B. Ma

The difference in using seeds tuned to find hits in homologous coding re-
gions versus seeds for general models is quite large. In particular, the optimal
seed—111001001001010111—of weight 10 and length at most 18 for noncod-
ing regions is ranked 10,350 among the 24,310 possible seeds in its theoretical
sensitivity in the HMM trained by Brejováet al., and ranked 11,258 among these
seeds in actual sensitivity on a test set of coding region alignments, matching just
58.5% of them. By contrast, the three optimal coding region seeds—which are
also optimal for the theoretical hidden Markov model—match between 84.3% and
85.5% of alignments. These seeds—11011011000011011, 11011000011011011,
and 11000011011011011—all ignore the third positions of codons, and also skip
entire codons. As such, they model the conservation pattern of real coding se-
quences much better than the non-periodic seeds optimized for noncoding regions.

Much of the advantage does of course come from the modeling. A previous
program, WABA��� uses three-periodic seeds of the form 110110110... with no
formal justification. In practice, this seed has sensitivity close to the optimum, at
81.4%. Still, the optimal seeds give a good improvement over this seed, and also
allow the optimization of multiple seeds for still greater sensitivity.

For the homology search in coding regions, an alternative approach is the use
of a “translated homology search” program—e.g., tblastx. Such a program first
translates DNA sequences to protein sequences, from which the homologies are
then found. The translated homology search is supposed to be more sensitive than
a DNA-based program for coding regions, however, is substantially slower.

Kisman, Ma, and Li��� have recently extended the spaced seed idea to trans-
lated homology search and developed tPatternHunter, which is both faster and
more sensitive than tblastx.

6.4.2. Optimal Seeds for Variable-Length Regions

As to the length of regions, it is quite simple for all of these algorithms to incorpo-
rate distributions on the length of homologous regions into the model. For a given
generative model, we simply compute the probability %�&� of a hit in a region of
length &, and the distribution '�&� of lengths of the region; the probability of a hit
in a random region is then just

�
� %�&�
 '�&�.

6.5. Approaching Smith-Waterman Sensitivity Using Multiple Seed
Models

Another idea that comes directly from the idea of optimal spaced seeds is the
one of using multiple seed models, which together optimize the sensitivity. In
such an approach, a set of several seed models are selected first. Then all the hits

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

Homology Search Methods 241

generated by all the seed models are examined to produce local alignments. This
obviously increases the sensitivity because more hits than using one seed model
are examined. But now, the several seed models need to be optimized together to
maximize the sensitivity.

This idea appears in the PatternHunter paper ��� and is further explored in
several recent papers.�������� ��� Brejováet al.��� use a heuristic method to design
a good pair of seeds. Buhleret al.��� use hill-climbing to locally improve good sets
of seeds and a pair of seeds have been designed by their method. Liet al. ��� extend
the dynamic programming algorithm in Section 6.3 to compute a suboptimal set
of seeds greedily.

Liet al.��� show that, in practice, doubling the number of seeds can achieve
better sensitivity than reducing the weight of the seeds by one. However, for DNA
homology search, the former only approximately doubles the number of hits,
whereas the latter increases the number of hits by a factor of four (the size of
DNA alphabet). Thus, multiple seeds are a better choice.

It is noteworthy that the multiple-seed approach is only possible when spaced
seeds are used—there is only one BLAST-type of consecutive seed with a
given weight. The newest version of PatternHunter implements the multiple-seed
scheme,��� having greedily chosen a set of sixteen seeds of weight 11 and length
at most 21 in 12 CPU days on a Pentium IV 3GHz PC. When the random region
has length 64 and similarity 70%, the first four seeds are: 111010010100110111,
111100110010100001011, 110100001100010101111, 1110111010001111. Mul-
tiple seeds for coding regions are also computed and implemented. The experi-
mental results shown later in Section 7 demonstrate that using carefully selected
multiple seeds can approach Smith-Waterman sensitivity at BLAST’s speed.

6.6. Complexity of Computing Spaced Seeds

Many authors���� ���� ���� ���� ���� ��� have proposed heuristic or exponential time
algorithms for the general seed selection problem: Find one or several optimal
spaced seeds so that a maximum number of target regions are each hit by at least
one seed. A seemingly simpler problem is to compute the hit probability of �
given seeds. Unfortunately, these are all (� -hard problems. ��� Thus the greedy
algorithm and the exponential time dynamic programming are the best we can do.
Although the proofs are beyond the scope of this tutorial, we to list some of the
recent results for these problems. Let #�
� be the maximum number of 0’s in each
seed, where
 is the seed length, the following are true.���

(1) If #�
� � �����
�, then there is a dynamic programming algorithm that
computes the hit probability of � seeds in polynomial time; otherwise the

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

242 D. Brown, M. Li, & B. Ma

problem is (� -hard.
(2) If #�
� � ����, one or a constant number of optimal seeds can be computed

in polynomial time by enumerating all seed combinations and computing their
probabilities; otherwise, even selecting one optimal seed is (� -hard.

(3) If #�
� � ����, then the greedy algorithm of picking � seeds by enumeration,
then adding the seed that most improves the first seed, and so on, approximates
the optimal solution within ratio �� �

�
in polynomial time, due to the bound

for the greedy algorithm for the maximum coverage problem; ��� otherwise
the problem cannot be approximated within ratio � � �

�
�) for any) � �,

unless (� � � .

7. Experiments

Here, we present some experimental comparisons between heuristic search tech-
niques and full Smith-Waterman dynamic programming. As expected, Smith-
Waterman dynamic programming is too slow for practical use when the database
is large. What is striking is that a good choice of multiple optimal spaced seeds
can allow near-total success in detecting alignments, with vastly better runtime.

The results that we show in this section are originally reported by Liet al. ��� In
the paper, several software packages—SSearch,
�� BLAST, and PatternHunter—
are used to find homologies between 29715 mouse EST sequences and 4407 hu-
man EST sequences. Those sequences are the new or newly revised mouse and
human EST sequences in NCBI’s GenBank database within a month before 14
April 2003. After downloading the EST sequences, a simple “repeat masking” is
conducted to replace all the sequences of ten or more identical letters to “N”s.
This is because they are low complexity regions and their existence generates so
many trivial sequence matches that overwhelm the real homologies.

SSearch is a subprogram in the FASTA package and implements the Smith-
Waterman algorithm that gurantees to find the optimal alignment of every pair of
sequences. Therefore, SSearch’s sensitivity is regarded to be 100% in the compar-
ison, and both BLAST and PatternHunter can only find a subset of the homologies
found by SSearch. The performance of BLAST version 2.2.6, and PatternHunter
version 2.0 are compared against SSearch. Each program uses a score scheme
equivalent to:

match : 1
mismatch : –1

gap open penalty : –5
gap extension penalty : –1

All pairs of ESTs with a local alignment of score at least 16 found by SSearch are

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

Homology Search Methods 243

0.9

0.92

0.94

0.96

0.98

1

sensitivity

20 25 30 35 40 45 50
alignment score

Fig. 8. The thick dashed curve is the sensitivity of Blastn, seed weight 11. From low to high, the
solid curves are the sensitivity of PatternHunter using 1, 2, 4, and 8 weight 11 coding region seeds,
respectively. From low to high, the dashed curves are the sensitivity of PatternHunter using 1, 2, 4, and
8 weight 11 general purpose seeds, respectively.

recorded. Also, if a pair of ESTs has more than two local alignments, only the one
with the highest score is considered. All of these alignments are kept as being the
correct set of homologies, noting of course that some of these alignments may be
between sequences that are not evolutionally related.

As expected, SSearch takes approximately 20 CPU days, while BLASTN
takes 575 CPU seconds, both on a 3GHz Pentium IV. SSearch finds 3,346,700
pairs of EST sequences that have local alignment score at least 16, with maximum
local alignment score 694.

It is difficult to compare SSearch’s sensitivity with BLASTN and Pattern-
Hunter. This is because BLASTN and PatternHunter are heuristic algorithms,
and need not compute optimal alignments. Thus Liet al. have decided—a bit
arbitrarily—that if SSearch finds a local alignment with score � for a pair of ESTs,
and BLAST (or PatternHunter) finds an alignment with score � ��
 for the same
pair of ESTs, then BLAST (or PatternHunter) “detects” the homology. The suc-
cessful detection rate is then regarded the sensitivity of BLAST (or PatternHunter)
at score �. PatternHunter is run several times with different number of spaced
seeds. Two sets of seeds—coding-region seeds and general-purpose seeds—are
used, respectively. The results are in Figure 8.

January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

244 D. Brown, M. Li, & B. Ma

SSearch Blastn PatternHunter

seeds 1 2 4 8

20 days 575 s general 242 s 381 s 647 s 1027 s

coding 214s 357s 575s 996s

Fig. 9. Running time of different programs.

Figure 9 lists the running time of different programs, with weight 11 seeds
for Blastn and PatternHunter, on a Pentium IV 3GHz Linux PC. This benchmark
demonstrates that PatternHunter achieves much higher sensitivity than Blastn at
faster speed. Furthermore, PatternHunter with 4 coding region seeds runs at the
same speed as Blastn and 2880 times faster than the Smith-Waterman SSearch,
but with a sensitivity approaching the latter. It also demonstrates that the coding
region seeds not only run faster—because there are less irrelevant hits—but are
also more sensitive than the general purpose seeds. This is not a surprise because
the EST sequences are coding regions.

For now, our brief tour through the world of homology search methods is com-
ing to an end. Early landmarks include the classic global and local alignment al-
gorithms that use full dynamic programming. Later highlights have been heuristic
search algorithms, including increasingly sophisticated ones based on optimizing
seeds for a particular type of alignment. At the end of it all, we have an algorithm
that is almost as sensitive as Smith-Waterman, but requiring 3 orders of magnitude
less time. We cannot believe, however, that the tour is entirely over, and encourage
our readers to enjoy some time sightseeing on their own.

Acknowledgments

This work was supported in part by the Natural Science and Engineering Research
Council of Canada (NSERC), the Ontario PREA award, Canada Council Research
Chair program, the Killam Fellowship, and the Human Frontier Science Program.
We would like to thank those who provided preprints or unpublished material that
was used in this article.

