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The development of microarray technology in the last decade has made possible
the simultaneous monitoring of the expression of thousands of genes. This de-
velopment offers great opportunities in advancing the diagnosis of dieases, the
treatment of diseases, and the understanding of gene functions. This chapter pro-
vides an in-depth survey of several approaches to some of the gene expression
analysis challenges that accompany these opportunities.

ORGANIZATION.

Section 1. We begin with a brief introduction to microarrays in terms of how they are
made and how they are used for measuring the expression level of thousands of genes
simultaneodly.

Section 2. Then we discuss how to diagnose disease subtypes and states by microarray
gene expression analysis. We present a standard approach that combines gene selec-
tion and subsequent machine learning. Besides applying gene selection and machine
learning methods from Chapter 3, we also present the shrunken centroid method of
Tibshirani et al. in some detail. The subtype diagnosis of childhood acute lymphoblas-
tic leukaemiais used as an example.

Section 3. Next we consider the problem of discovering new disease subtypes by means
of microarray gene expression analysis. We relate the discovery of anovel subtype of
childhood acute lymphoblastic leukaemia via a hierarchical clustering approach. We
also describe the discovery of novel transcription factor binding sites and novel gene
funtional groupings viaafuzzy k-means clustering approach.

Section 4. Then we look at the problem of infering how the expression of one gene in-
fluences the expression of another gene. We present two approaches; one is based on
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mining of association rules, the other is based on an ingenious use of normal classi-
fiers. We also describe the concept of interaction generality in the related problem of
detecting fal se positives from high-throughput protein-protein interaction experiments.

Section 5. Lastly, we present a highly speculative use of gene expression patterns to for-
mulate treatment plans.

1. Microarray and Gene Expression

Microarrays or DNA chips are powerful tools for analyzing the expression pro-
files of gene transcripts under various conditions.>'®:8%0 These microarrays con-
tain thousands of spots of either cDNA fragments corresponding to each gene
or short synthetic oligonucleotide sequences. By hybridizing labeled mRNA or
cDNA from a sample to a microarray, transcripts from all expressed genes can be
assayed simultaneously. Thus one microarray experiment can yield as much infor-
mation as thousands of Northern blots. It is hopeful that better diagnosis methods,
better understanding of disease mechanisms, and better understanding of biologi-
cal processes, can be derived from a careful analysis of microarray measurements
of gene expression profiles.

There are two main types of microarray. Thefirst type is based on the scheme
of Fodor et al.?* that uses lithographic production techniquesto synthesize an ar-
ray of short DNA fragments called oligos. Here is a brief outline of their scheme.
First a silicon surface is coated with linker molecules that bind the four DNA
building blocks, adenine (A), cytosine (C), guanine (G), and thymine (T). These
linkersareinitially capped by a“blocking” compound that can be removed by ex-
posureto light. By shining light through a mask, those areas of the silicon surface
that correspond to holes in the mask become exposed. The chip is then incubated
with one of the four DNA building blocks, say adenine, which then binds to those
exposed areas. After that, the blocking compound is reapplied. By repeating this
process with different masks and different DNA building blocks, an array of dif-
ferent oligos can be built up easily, as shown in Figure 1.

Each oligo can bind stretches of DNA that have complementary sequences to
theoligo inthe usual Crick-Watson way. Then the following procedureisfollowed
to use the microarray to monitor the expression of multiple genes in a sample.
RNAs areisolated from samples, converted into cDNAS, and conjugated to biotin.
These biotin-conjugated cDNASs are then fragmented by heat, and hybridized with
the oligos on the microarray. A washing step then follows to get rid of unbound
cDNAs. The strands that are bound to the microarray can then be stained by a
streptavidin-linked fluorescent dye, and detected by exciting the fluorescent tags
with a laser. Since the sequence of each oligo on the microarray is known by
construction, it is easy to know the sequence of the cDNA that is bound to a
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1.28 em

Actual size of GeneChip™

Millions of DNA strands built up in each cell

500,000 cells on each GeneChip~ array
Actual strand = 25 base pairs

Fig. 1. A cartoon of the oligos on a microarray. Notice that the sequence of each oligo and their po-
sition on the microarray are known by construction. The oligo-based microarrays made by Affymetrix
are called GeneChip® microarrays, and the oligos are 25 nucleotides in length. (Image credit:

Affymetrix.)

particular position of the microarray, as shown in Figure 2.

The second popular type of microarrays is based on the scheme developed
at Stanford.”2: 770 Here, cDNAs are directly spotted onto a glass slide, which is
treated with chemicals and heat to attach the DNA sequences to the glass surface
and denature them. This type of microarray is primarily used for determining the
relative level of expression of genesin two contrasting samples. The procedureis
asfollows. Thefluorescent probes are prepared from two different MRNA sources
with the use of reverse transcriptase in the presence of two different fluorophores.
The two set of probes are then mixed together in equal proportions, hybridized
to asingle array, and scanned to detect fluorescent color emissions corresponding
to the two fluorophores after independent excitation of the two fluorophores. The
differential gene expression is then typically calculated as a ratio of these two
fluorescent color emissions.
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Shining a laser light at GeneChip causes tagged DNA fragments that hybridized to glow

Hybridized DNA

Fig. 2. A cartoon depicting scanning of tagged and un-tagged probes on an Affymetrix GeneChigR
microarray. (Image credit: Affymetrix.)

2. Diagnosis by Gene Expression

A single microarray experiment can measure the expression level of tens of thou-
sands of genes simultaneously.?'®-%9% |n other words, the microarray experiment
record of a patient sample—see Figure 3 for an example—is arecord having tens
of thousands of features or dimensions. A major excitement due to microarraysin
the biomedical world is the possibility of using microarrays to diagnose disease
states or disease subtypesin away that is more efficient and more effective than
conventional techniques, 20> 269, 297,663,918

Let us consider the diagnosis of childhood leukaemia subtypes as an il-
lustration. Childhood leukaemia is a heterogeneous disease comprising more
than 10 subtypes, including T-ALL, E2A-PBX1, TEL-AML1, BCR-ABL, MLL,
Hyperdiploid>50, and so on. The response of each subtype to chemotherapy is
different. Thus the optimal treatment plan for childhood |eukaemia depends criti-
cally on the subtype.6® Conventional childhood |eukaemia subtype diagnosisis a
difficult and expensive process.?'® It requires intensive laboratory studies com-
prising cytogenetics, immunophenotyping, and molecular diagnostics. Usually,
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pairs
in avg abs

probe pos neg avg diff call Description

107_at 4 4 15 37233 795624 Human DNA ...

A
108_g_at 5 2 15 13924 A 795624 Human DNA ...
109_at 6 2 16 22747 M Z97074 Human mRNA ...

Fig. 3. A partial example of a processed microarray measurement record of a patient sample using
the Affymetrix® GeneChip® U95A array set. Each row represents a probe. Typicaly each probe
represents agene. The U95A array set contains more than 12,000 probes. The 5th column contains the
gene expression measured by the corresponding probe. The 2nd, 3rd, 4th, and 6th columns are quality
control data. The 1st and last columns are the probe identifier and a description of the corresponding
gene.

these diagnostic approaches require the collective expertise of anumber of profes-
sionals comprising hematologists, oncologists, pathologists, and cytogeneticists.
Although such combined expertise is available in major medical centersin de-
veloped countries, it is generally unavailable in less devel oped countries. It is thus
very excitingif microarraysand associated automatic gene expression profile anal -
ysis can serve as a single easy-to-use platform for subtyping of childhood ALL.

2.1. The Two-Step Approach

The analysis of gene expression profiles for the diagnosis of disease sub-
types or states generally follows a two-step procedure first advocated by
Golub et al.,>*7 viz.

(1) selecting relevant genes and
(2) training a decision model using these genes.

The step of selecting relevant genes can be performed using any good fea
ture selection methods such as those presented in Chapter 3—signal-to-noise
measure,?°7 t-test statistical measure,'®? entropy measure, 242 2 measure,®'* in-
formation gain measure,%°2 information gain ratio,®°® Fisher criterion score,?5!
Wilcoxon rank sum test,”*? principal component analysis,**® and so on. The
step of decision model construction can be performed using any good ma
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T-ALL? ~— A Sample
A/Y * No
E2A-PBX1?

TEL-AML1?
- Y + No

BCR-ABL?

-y + No
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v

Fig. 4. The classification of the ALL subtypes is organized in atree. Given a new sample, we first
check if it is T-ALL. If it is not classified as T-ALL, we go to the next level and check if it is an
E2A-PBX1. If it is not classified as E2A-PBX1, we go to the third level and so on.

TEL

chine learning methods such as those presented in Chapter 3—decision tree in-
duction methods,%°% Bayesian methods,?'* support vector machines (SVM),3%°
PCL,%92:497 and so on.

We illustrate this two-step procedure using the childhood acute lymphoblas-
tic leskaemia (ALL) dataset reported in Yeoh et al.?'® The whole dataset con-
sists of gene expression profiles of 327 ALL samples. These profiles were ob-
tained by hybridization on the Affymetrix ® GeneChip® U95A array set con-
taining probesfor 12558 genes. The data contain all the known acute lymphoblas-
tic leukaemia subtypes, including T-ALL, E2A-PBX1, TEL-AML1, BCR-ABL,
MLL, and Hyperdiploid>50. The dataare divided by Yeoh et al. into atraining set
of 215 instances and an independent test set of 112 samples. The original training
and test data are layered in a tree-structure, as shown in Figure 4. Given a new
sample, wefirst check if it is T-ALL. If itisnot classified as T-ALL, we go to the
next level and check if itisan E2A-PBX1. If it is not classified as E2A-PBX1, we
go to the third level and so on.

Li et al.**2 are the first to study this dataset. At each level of the tree, they
first use the entropy measure?#? and the x> measure®** to select the 20 genes that
are most discriminative in that level’s training data. Then they apply the PCL
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Testing Data Error rate of different models

C45 SVYM NB PCL

T-ALL vs OTHERS1 0:1 0.0 00 0.0
E2A-PBX1 vs OTHERS2 0.0 00 00 0.0
TEL-AML1vs OTHERS3 11 01 01 1.0
BCR-ABL vs OTHER$4 2.0 3.0 1.4 2.0
MLL vs OTHERS5 0:1 0.0 00 0.0

Hyperdiploid>50vs OTHERS 2.6 02 02 0:1

Tota Errors 14 6 8 4

Fig. 5. Theerror counts of various classification methods on the blinded ALL test samples are given
inthisfigure. PCL is shown to make considerably |ess misclassifications. The OTHERS; class contains
all those subtypes of ALL below the ith level of the tree depicted in Figure 4.

classifier*®? on the training data using those 20 genes to construct a decision
model to predict the subtypes of test instances of that level. The entropy measure,
the x2 measure, and the PCL classifier are described in Chapter 3.

For comparison, Li et al. have also applied severa popular classification meth-
ods described in Chapter 3—C4.5,59% SVM 855 and Naive Bayes (NB)2!*—to the
same datasets after filtering using the same selected genes. In each of these com-
parison methods, the default settings of the weka package are used. The weka
package can beobtained at http://www.cs.waikato.ac.nz/ml/weka.

The number of false predictions on the test instances, after filtering by select-
ing relevant genes as described above, at each level of the tree by PCL, aswell as
those by C4.5, SVM, and NB, are given in Figure 5. The results of the same al-
gorithms but without filtering by selecting relevant genes beforehand are givenin
Figure 6, which clearly shows the beneficial impact of the step of gene selection.

2.2. Shrunken Centroid Approach

Tibshirani et al.®2” also use the same two-step approach to diagnose cancer type
based on microarray data. However, the details of their approach are different
fromthose basic methods already described in Chapter 3. Their approach performs
well, is easy to understand, and is suitable for the situation where there are more
than two classes.
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Testing Data Error rate of different models
C45 SVM NB
T-ALL vs OTHERS1 01 0:0 13:.0
E2A-PBX1vs OTHERS2 0.0 0.0 9.0
TEL-AML1vs OTHERS3 2.4 0:9 20:.0
BCR-ABL vs OTHERSA 1:3 2.0 6:0
MLL vs OTHERS5 01 0:0 6:0
Hyperdiploid>50vs OTHERS 4:10 12:0 7:2
Total Errors 26 23 63

Fig. 6. The error counts of various classification methods on the blinded ALL test samples without
filtering by selecting relevant genes are given in this figure. The OTHERS: class contains al those
subtypes of ALL below the ith level of the tree depicted in Figure 4.

The gist of the approach of Tibshirani et al. is as follows. Let X be a matrix
of gene expression values for p genes and n samples. Let us write X|[i, j] for the
expression of genei in sample j. Suppose we have k classes and we write C, for
theindices of the n;, samplesin class h. We create a“ prototype” gene expression
profile vector Y}, aso called a“shrunken” centroid, for each class h. Then given
anew test sample ¢, we simply assign to it the label of the class whose prototype
gene expression profileis closest to this test sample.

Let us use the notations (e; | ¢ = 1...n) to mean the vector (eq,...,ey,).
Then the usual centroid for aclass i is the vector

Zy = <7Ejech i, ‘ i=1.. .p>
nh
where the ith component Z 7] is the mean expression value in class h for gene
i. And the overall centroid is a vector O where the ith component O[i] =
Z;’Zl XTi, j]/n isthe mean expression value of gene: over samplesin all classes.

In order to give higher weight to geneswhose expressionis stable within sam-
ples of the same class, |et us standardize the centroid of each gene by the within-
class standard deviation in the usua way, viz.

Zn[i] = O[i]
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where s; is the pooled within-class standard deviation for gene i, viz.

xS (X il - 2l

h jECH

and the value s is a positive constant—with the same value for all genes—
included to guard against the possibility of large d;;, values arising by chance
from genes with low expression levels. Tibshirani et al. suggest to set s to the
median value of s; over the set of genes.

Thusd;;, is at-statistics for gene i, comparing class h to the overal centroid.
We can rearrange the equation as

/1 1
Zh[Z] = O[Z] + n— + — X (Si + 80) X d;p,
h

Tibshirani et al. shrink d;; toward zero, giving d}, and yielding the shrunken
centroid or prototype Y, for class h, where

/1 1
Yh[l] = O[Z] + _TL + — X (SZ + 80) X d;h
h

The shrinkage they use is a soft thr&eholdlng: each d;, is reduced by an amount
A inabsolutevalueand isset to O if it becomeslessthan 0. That is,

_ { sign(din)(|din| — &) if |din| = A >0

d
h 0 otherwise

Because many of the Z,,[i] values are noisy and close to the overall mean OJi],
soft thresholding usually produces more reliable estimates of the true means. This
method has the advantage that many of the genes are eliminated from the class pre-
diction as the shrinkage parameter A is increased. To see this, suppose A is such
that d}, = 0. Then the shrunken centroid Y} [i] for gene for any class h is O[],
whichisindependent of ~. Thus genei does not contribute to the nearest shrunken
centroid computation. By the way, A isnormally chosen by cross-validation.

Let ¢ be a new sample to be classified. Let ¢[i] be the expression of gene ¢
in this sample. We classify ¢ to the nearest shrunken centroid, standardizing by
s; + so and correcting for class population biases. That is, for each class h, we
first compute

6M=ZG%%%)4MMW

The first term here is simply the standardized squared distance of ¢ to the hth
shrunken centroid. The second term here is a correction based on the class prior
probability 7y, which givesthe overall frequency of class h in the population, and
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is usually estimated by 7;, = np/n. Then we assign ¢ the label h that minimizes
0n(t). In other words, the classification ruleis

C(t) = a, where . (t) = miny, 6(t)

This approach appears to be very effective. On the acute lymphaoblastic
leukaemiadataset of Golub et al.,2°7 Tibshirani et al 827 report that at A = 4.06—
the point at which cross-validation error starts to rise quickly—yields 21 genes as
relevant. Furthermore, these 21 genes produce a test error rate of 2/34. In com-
parison, Golub et al.2?” use 50 genes to obtain a test error rate of 4/34. On the
childhood small round blue cell tumoursdataset of Khan et al., *3° Tibshirani et al.
report that at A = 4.34 there are 43 genesthat are relevant. Furthermore, these 43
genes produce atest error rate of 0. This result is superior to that of Khan et al.,
who need 96 genes to achieve the same test error rate.

3. Co-Regulation of Gene Expression

In the preceding section we see that it is possible to diagnose disease subtypes
and states from gene expression data. |n those studies, we assume that al the dis-
ease subtypes are known. However, in redl life, it is possible for a heterogeneous
disease to have or to evolve new subtypes that are not previously known. Can
computational analysis of gene expression data help uncover such new disease
subtypes? Similarly, there are still many genes and their products whose functions
are unknown. Can computational analysis of gene expression data help uncover
functionally related gene groups? and can we infer the functions and regulation of
such gene groups? Unsupervised machine learning methods, especially clustering
algorithms, are useful for these problems. This section present two examples.

3.1. Hierarchical Clustering Approach

Let us use the childhood ALL dataset from Yeoh et al.?'® from Subsection 2.1
for illustration. As mentioned earlier, childhood ALL is a heterogeneous disease
comprising 6 known major subtypes, viz. T-ALL, hyperdiploid with > 50 chro-
mosomes, BCR-ABL, E2A-PBX1, TEL-AML1, and MLL gene rearrangements.
However, the dataset from Yeoh et al. also contain some samples that are not as-
signed to any of these subtypes—these are the group marked as “OTHERS” in
Figure4.

This“OTHERS’ group presents an opportunity for identifying new subtypes
of childhood ALL. To do so, Yeoh et al.?'® perform a hierarchical clustering on
their 327 childhood ALL samples using all the 12558 genes measured on their
Affymetrix® GeneChip® U95A array set and using Pearson correlation as the
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EZA-  MLL T-ALL Hyperdiploid =50 BCR- Hovel TEL-ANLY
PBX1 ABL

Fig. 7. Hierarchical clustering of 327 childhood ALL samples and genes chosen by »* measure.
Each column represents a sample, each row represents a gene. Note the 14 cases of the novel subtype.

distance between samples. Remarkably, this analysis clearly identifies the 6 ma-
jor childhood ALL subtypes mentioned above. Moreover, within the “OTHERS’
group, anovel subgroup of 14 cases areidentified that have a distinct gene expres-
sion profile. These 14 cases have normal, pseudodiploid, or hyperdiploid kary-
otypes, and lack any consistent cytogenetic abnormality.

Figure 7 depicts the result of a hierarchical clustering of the 327 childhood
ALL samples. To improve visualization clarity, instead of presenting a clustering
involving all 12558 genes, only the top 40 genes selected using the x 2 measure
for each of the 6 major groups and the novel group are retained in thisfigure. The
14 cases of the novel subtypeisclearly visible.

Thus, clustering algorithms can be used to discover new disease subtypes and
states. As an introduction to hierarchical cluster algorithmsand to the x > measure
can be found in Chapter 3, we omit them in this chapter. The definition of Pearson
correlation is given in the next subsection—however, for the current subsection,
the G and H in that formula should be interpreted as vectors representing the ex-
pression values of genesin sample g and sample h, and thus G[i] isthe expression
of gene in sample g and Hi] is the expression of gene in sample h.
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3.2. Fuzzy K-Means Approach

Gasch and Eisen®”” use a technique called fuzzy k-means®® to cluster a large
collection of gene expression data obtained under a variety of experimental con-
ditions. The dataset comprises 6153 genes in 93 microarray experiments taken
from genomic expression data of wild-type S cerevisiae responding to zinc
starvation,®? phosphate limitation,5?> DNA damaging agents,?”® and stressful
environmental changes.276

They have obtained severa very interesting results from analysing the result-
ing clusters. First, they have identified some meaningful clusters of genes that
hierarchical and standard k-means clustering methods are unable to identify. Sec-
ond, many of their clusters that correspond to previously recognized groups of
functionally-related genes are more comprehensive than those clusters produced
by hierarchical and standard k-means clustering methods. Third, they are able to
assign many genes to multiple clusters, revealing distinct aspects of their function
and regul ation. Forth, they have al so applied the motif-finding algorithm MEME °
to the promoter regions of genes in some of the clusters to find short patterns of
6 nucleotides that are over represented and thus identified afew potentially novel
transcription factor binding sites.

Before we proceed to describethe fuzzy k-means clustering method, let usfirst
fix some notations. Let X be a matrix of gene expression values of | X|" genes
under a variety of | X|¢ conditions. We write X[g, ¢] for the expression of gene
g in condition i in X. We write X|[g, ] for the vector (X|[g,i] | i = 1...|X])
representing the expression pattern of gene g in al the conditionsin X. We write
X[-,1] for the vector (X[g,i] | g = 1...|X|") representing the expression of
genes in condition ¢ in X. Similar notations are used for other two dimensional
matrices. Also, for avector G, wewrite |G| for itssizeand G[j] for its jth element.

For any two vectors G and H of gene expression patternsof genes g and h over
the same conditions, so that G[i] isthe expression of gene g in condition ¢ and H [i]
is the expression of gene A in condition i, the Pearson correlation coefficient of
the observations of G and H is defined as:

L sl
S(G,H) = @ >

i=1

Gli] - pa  H[i] = pu
JG OH

where ug and p g are the mean of observationson G and H, and o and oy are
the standard deviation of G and H':

<

Gli L (Gli] - pe)?
MGZZ;F[H and O'G:\JZ( []|G|M0)

i=1
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and similarly for uy and ox. The corresponding Pearson distance D(G, H) is
definedas1 — S(G, H).
Let V' be a matrix representing |V|" cluster centroids of averaged gene ex-
pression values in |V|¢ conditions. The fuzzy k-means algorithm?®° is based on
the minimization of the objectivefunction below, for a given fuzzy partition of the
dataset X into |V|" clusters having centroids V':
| X" |V]"
=3 M(X[g,],V[j,],V)? x D(X[g, ], V[j, )
g=1 j=1

where M (X|g, ], V[j, ], V) isthe membership of gene g in cluster j.

The cluster membershipfunctionisacontinuousvariablefrom Oto 1. Itsvalue
isto be interpreted as the strength of a gene's membership in a particular cluster.
That is, under fuzzy k-means, a gene can belong to several clusters. The cluster
membership function is defined as:

v

. B 1
MXlo V) = 5 175 7R | 2 DO VG T

During a cycle of fuzzy k-means clustering, the centroids are refined repeat-
edly. A centroid V[j, ] isrefinedto V[, ]’ on the basis of the weighted means of
all the gene expression patternsin the dataset X according to

. EﬁﬁWXM$Vu$W:HWmeXMM .
Vi = X[ 5 |V
2g=1 M(X[g, ], V15, ], V)? x W(X, g)
where the geneweight W (X, g) is defined empiricaly as
X1 N\
VV(X,Q) — (Z S(X[ga—]lai([ci’la—]) O)
h=1

and C'is a correlation cutoff threshold. In the work of Gasch and Eisen, 277 they
set C = 0.6.

In each clustering cycle, the centroids are iteratively refined until the average
change in gene memberships between interationsis < 0.001. After each cluster-
ing cycle, the centroids are combined with those identified in previous cycles, and
replicate centroids are averaged as follows. Each centroid is compared to all other
centroids in the set, and centroid pairs that are Pearson correlated at > 0.9 are
replaced by the average of the two vectors. The new vector is compared to the
remaining centroidsin the set and is again averaged with thoseto which it is Pear-
son correlated at > 0.9. This process continues until each centroid is compared to
all other existing centroidsin the set.
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At the end of a clustering cycle, those genes with a Pearson correlation at
> 0.7 to any of the identified centroids are taken as belonging to the respective
clusters. These genes are then removed from further consideration. The next cycle
of fuzzy k-means clustering are carried out on the remaining genes—i.e., those
with Pearson correlation at < 0.7 to all the centroids. Incidentally, by considering
a gene whose Pearson correlation to a centroid is > 0.7 as belong to the cluster
of that centroid, it is therefore possible for a gene to belong simultaneously to
multiple clusters. This is a great advantage of the fuzzy k-means method over
other clustering methods that do not allow a gene to belong to more than one
cluster. The reason is that many genes in real life do have multiple functiona
roles and thus naturally should belong to multiple clusters.

Gasch and Eisen?™" perform 3 successive cycles of fuzzy k-means cluster-
ing. Since k clusters are desired at the end of the 3 cycles, they aim to produce
k/3 clustersin each cycle. Thefirst cycle of clustering is initialized by using the
top k/3 eigen vectors from a principle component analysis®*? on their dataset as
prototype centroids for that clustering cycle. Subsequent cycles of clustering are
initialized similarly, except that principle component analysisis performed on the
respective data subset used in that clustering cycle. As details of principle compo-
nent analysis have already been described in Chapter 3, we do not repeat here.

4. Inference of Gene Networks

A large number of genes can be differentially expressed in a microarray experi-
ment. Such genes can serve as markers of the different classes—such as tumour
vs. normal—of samples in the experiment. Some of these genes can even be the
primary cause of a sample being tumour. In order to decide which gene is part
of the primary cause and which gene is merely a down-stream effect, the under-
lying molecular network has to be assembled and considered. After the causal
genes are identified, we may want to further develop drug substances to target
them. The two magjor causes of treatment failure by drug substances are side ef-
fects and compensation effects. Side effects arise because genes and their protein
products other than the intended ones are also modulated by the drug substances
in unexpected ways. Compensation effects arise due to existence of parallel path-
ways that perform similar functions of the genes and proteins targeted by the drug
substances and these parallel pathways are not affected by those drug substances.
An understanding of the underlying molecular network is also useful for suggest-
ing how best to target the causal genes. Motivated by these reasons, construction
of a database of molecular network on the basis of microarray gene expression
experiments has been attempted.
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Let us recall that in analysing microarray gene expression output in the last
two sections, we first identify a number of candidate genes by feature selec-
tion. Do we know which ones of these are causal genes and which are mere
surrogates? Genes are “connected” in a “circuit” or network. The expression
of a gene in a network depends on the expression of some other genes in
the network. Can we reconstruct the gene network from gene expression data?
For each gene in the network, can we determine which genes affect it? and
how they affect it—positively, negatively, or in more complicated ways? There
are severa techniques to reconstructing and modeling molecular networks from
gene expression experiments. Some techniques that have been tried are Bayesian
networks,?%? Boolean networks, %17 differential equations,'®* association rule
discovery,%4? classification-based methods, "®* and several other approachesto re-
lated problems, 380,734,735

We devote the rest of this section to describe the classification-based method
of Soinov et al.,”®* the association rules method of Creighton and Hanash, *7¢ and
the interaction generality method of Saito et al.”>* The last method—interaction
generality”* 735 —js actually concerned more with assessing the reliability of
protein-protein interaction networks than with gene networks. However, it has
been shown?80: 301,390 that the average correlation coefficient of gene expression
profiles that correspond to interacting gene productsis higher than that of random
pairs of gene products. Therefore, one might conceivably apply it in the context
of gene networks.

4.1. Classification-Based Approach

In this subsection, we describe the classification-based method of Soinov et al. 782
for inferring molecular networks. L et acollection of n microarray gene expression
output be given. For convenience, this collection can be organized into a gene
expression matrix X . Each row of the matrix is a gene, each column is a sample,
and each element X, j] is the expression of gene ¢ in sample j. Then the basic
idea of the method of Soinov et al.”®3 is as follows.

First determine the average value a; of each gene i as (3 ; X[i, j])/n. Next,
denote s;; as the state of gene in sample j, where s;; = up if X[i, j] > a;, and
sij = down if X[i, j] < a;. Then, accordingto Soinov et al.,”®3 to see whether the
state of a gene g is determined by the state of other genes G, we check whether
(sij] @ € G) can predict sg;. If it can predict s,; with high accuracy, then we
conclude that the state of the gene ¢ is determined by the states of other genesG.

Any classifier can be used to see if such predictions can be made reliably,
such as C4.5,%93 PCL,**" SVM,*® and other classifiers described in Chapter 3.
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Naturally, we can aso apply feature sel ection methods described in Chapter 3—
such as Fisher criterion score?®! or entropy-based methods?42—to select a subset
of genes from G before applying the classifiers to the selected subset of genes.
Furthermore, to see how the state of a gene g is determined by the state of other
genes, we apply C4.5, PCL, or other rule-based classifiers described in Chapter 3
to predict s,; from (s;;| i € G) and extract the decision tree or rules used.

This interesting method has a few advantages: It can identify genes affecting
atarget genes in an explicit manner, it does not need a discretization threshold,
each datasampleistreated as an example, and explicit rules can be extracted from
arule-based classifier like C4.5 or PCL. For example, we generate from the gene
expression matrix a set of n vectors (s;;| i # g) — sg;. Then C4.5 (or PCL)
can be applied to see if (s;;| @ # g) predicts s, ;. The decision tree (or emerging
patterns, respectively) induced would involve asmall number of s ;;. Then we can
suggest that those genes corresponding to these small number of s ;; affect gene g.

One other advantage of the Soinov method 783 isthat it is generalizableto time
series. Suppose the matrices X' ¢ and X+ correspond to microarray gene expres-
sion measurementstaken at time ¢ and ¢ + 1. Suppose s/; and s} correspond to
the state of genei in sample j at time ¢ and ¢ + 1. Then to find out whether the
state of a gene g is affected by other genes GG in atime-lagged manner, we check
whether (s!;| i € G) can predict s"". Therest of the procedureis as before.

Of course, there is a major caveat that this method as described assumes that
agene g can bein only two states, viz. s,; = up or s,; = down. As cautioned
by Soinov et al.,”®? it is possible for a gene to have more than two states and thus
this assumption may not infer the compl ete network of gene interactions. Another
caution is that if the states of two genes g and h are strongly co-related, the rules
spj — Sgj and sg; — sp; saying that h depends on g and g depends on b are
likely to be both inferred, even though only one of them may be true and the other
false. Hence, further confirmation by experimentsis advisable.

We do not have independent results on this approach to reconstructing mol ecu-
lar networks. However, we refer the curious reader to Soinov et al. 783 for adiscus-
sion on experiments they have performed to verify the relevance of this method.
In particular, Soinov et al. have applied this method to the microarray datasets
of Spellman and Cho for the Saccharomyces cerevisiae cell cycle. '™ 72 They
consider a set of well-defined genes that encode proteins important for cell-cycle
regulation and examine all extracted relations with respect to the known roles of
the selected genesin the cell cycle. They have shown that in most cases the rules
confirmthe a priori knowledge.
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4.2. Association Rules Approach

Recall from Chapter 3 that an association rule generally hasthe forma -7 3,
where a and 3 are digjoint sets of items, and the 5 set is likely to occur whenever
the a set occurs in the context of a dataset D. Note that we often drop the super-
script D if the dataset D is understood or unimportant. As mentionedin Chapter 3,
the support of an association rulea —? §3 isthe percentage of transactionsin D
that contains « U 3; and its confidenceis the percentage of transactionsin D con-
taining a that also contain 3.

In this subsection, we concentrate on the approach of Creighton and
Hanash! 7% for inferring associ ations between gene expression that is based on as-
sociation rules. Let a collection of n microarray gene expression output be given
as a gene expression matrix X so that each element X i, j] is the expression of
genei in sample j. Then the basic idea of the method of Creighton and Hanash is
asfollows.

Each element X|[i, j] is discretized into a state s;; that indicates whether the
genes in sample j is considered up (s;; = up), down (s;; = down), or neither
up nor down (s;; = neither). This discretization to 3 states—up, down, and
neither—isimportant because thereis agood deal of noisein the data? 823 and
binning whole ranges of gene expression valuesinto afew statesis agood way to
alleviate problems with noise. Creighton and Hanash 76 decide on the assignment
of up, down, neither by setting s;; = up if the expression value of gene ¢ in
sample j is greater than 0.2 for the log base 10 of the fold change, s ;; = down if
the expression value of gene ¢ in sample j is less than 0.2 for the log base 10 of
the fold change, and s;; = neither if the expression value of gene ¢ in sample j
is between —0.2 and 0.2 for the log base 10 of the fold change.

Then a dataset D = {T4, ..., T,,} of n transactions is formed, where each
sample j is trested as atransaction T; = {gene; = s;j, ..., geney = si; +. Then
association rule mining algorithms described in Chapter 3 such as the Apriori
agorithm'? and the Max-Miner algorithm™ can be used to mine for useful asso-
ciation rules. As many association rules can potentially be produced, Creighton
and Hanash'"® adopt three measures for restricting the association rules to the
most interesting ones, viz.

(1) they consider only those association rules that have support > 10% and con-
fidence > 80%;

(2) they consider only rulesof theforma — P 3 where a is asingleton; and

(3) they consider only the so-called “closed” rules, where arule a =P g is
closed in the sense that there is no other rulea —P 3’ such that 4 ¢ 4’ and
has support > 10% and confidence > 80%.
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Creighton and Hanash'7® have applied this method to mine association rules
from the gene expression profiles of 6316 transcripts corresponding to 300 di-
verse mutations and chemical treatment in yeast produced by Hughes et al.?™
They have obtained about 40 rules that contain > 7 genes such as {YHM1 =
up} - {ARG1 = up, ARG4 = up, ARO3 = up, CTF13 = up, HIS5 = up,
LY S1 = up, RIB5 = up, SNO1 = up, SNZ1 = up, YHR029C' = up,
YOL118C = up}. To see that these rules are significant, Creighton and Hanash
also construct a randomized dataset and carry out association rule mining on this
randomized dataset. On the randomized dataset, Creighton and Hanash is able
to find only one rule. Hence, it is very likely that al the rules that are found by
Creighton and Hanash from the dataset of Hughes et al. are not likely to have
existed by chance.

This interesting method has two advantages. First, while we have made each
transaction T to take the form {gene1 = siy, ..., geney = si;}, it is possible
to generalizeit to include additional information such as environment and effects.
Asan example, consider T; = {heatshock = 1, genei = s1j, ..., geneg = Sk;j .
where we usethe item heatshock = 1 to indicate that a heat shock treatment has
been first given to a sample j before profiling, and heatshock = —1 otherwise.
Then we would be able to mine rules such as {heatshock = 1} — {gene) =
up, gene; = down}. That is, association rules may be helpful in relating the
expression of genesto their cellular environment.

Second, the same gene is allowed to appear in several rules, in contrast to the
clustering situation where each geneis normally required to appear in one cluster.
A typical gene can participate in more than one gene network. Therefore, the
associ ation rule approach may be more useful in helping to uncover gene networks
than the clustering approach. Furthermore, association rules al so describe how the
expression of one gene may be associated with the expression of a set of other
genes.

Of course, thereis asimilar major caveat to that of the Soinov method. 783 This
method as described above also assumes that a gene g can be in only three states,
Viz. sy; = up, s4; = down, Or s,; = neither. As cautioned by Soinov et al.,”83
it is possible for a gene to have more than three states and thus this assumption
may not infer the complete network of gene interactions.

4.3. Interaction Generality Approach

In the two previous subsections, we have presented two techniques for inferring
gene networks from microarray data. Both of these techniques can be said to work
from a“ positive” perspective in the sense that they assume there are no relation-
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ship between the genes by default and attempt to directly infer rules that connect
the state of one or more genesto the state of another gene.

Isit possible to work from a “negative” perspective in the sense of assuming
every pair of genes affect each other by default and attempt to eliminate those
that have no effect on each other? It turns out that this approach has been used in
the related problem of eliminating false positive interactions from certain type of
high-throughput protein-protein interaction experiments by Saito et al. 734> 735

A network of protein-protein interactions can be represented as an undirected
graph G, where each node represents a protein and each edge connecting two
nodes represent an interaction between the two proteins corresponding to the two
nodes. Given an edge X « Y connecting two proteins, X and Y, the “interaction
generality” measure ig9 (X < Y) of this edge as defined by Saito et al.”™* is
equivalent to

i (X = YV)=1+{X' Y €G|X €{X,Y}, deg?(Y") > 1}|

where deg? (U) = |{V| U « V € G}| isthe degree of the node U in the undi-
rected graph G. Note that in an undirected graph, an edge X < Y isthe same one
astheedge Y + X. This measure is based on the idea that interacting proteins
that appear to have many other interacting partners that have no further interac-
tions are likely to be false positives.

Uetz et al.3*° and Ito et al .>® independently screen yeast protein-proteininter-
actions. Saito et al.”>* determine the interaction generality of al the interactions
detected by the screens of Uetz et al. and Ito et al.. While only 72.8% of in-
teractions that are detected exclusively by the screen of Ito et al. have interaction
generalitiesranging from 1 to 5, as many as 94.7% of interactionsthat are detected
by both screens have interaction generalities ranging from 1 to 5. As the portion of
protein-protein interactions that are detected in both screens are considered to be
reliable—whereas those that are detected in one screen are considered very likely
to be fal se positive interactions—this indicates that true positive interactions tend
to be associated with low interaction generalities.

It is also widely accepted that interacting proteins are likely to share a com-
mon cellular role,%33 to be co-localized,” or to have similar gene expression
profiles, 280,301,390 |f interaction generality isindeed inversely related to true pos-
itive protein-proteininteractions, then the proportion of protein-proteininteraction
pairs that share acommon cellular role, that are co-localized or have similar gene
expression profiles, must be increasing as we look at protein-protein interaction
pairs of decreasing interaction generality. This is confirmed by Saito et al.”* in
the datasets of Ito et al. and Uetz et al.

Theinteraction generality measure of Saito et al.”** does not take into consid-
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eration the local topological properties of the interaction network surrounding the
candidateinteracting pair. Saito et al. "> have also devel oped an improved interac-
tion generality measureig$ (X « Y) that incorporatesthe local topological prop-
erties of interactions beyond the candidate interacting pair. They consider 5 local
topological relationships between the candidate interacting pair and a third pro-
tein. The improved interaction generality measure is then computed as aweighted
sum of the 5 topological relationships with respect to the third protein.

Most recently, our colleagues—Jin Chen, Wynne Hsu, Mong Li Lee, and See-
Kiong Ng (private communication)—have proposed an “interaction pathway be-
lieveability” measureipb? (X < Y') for assessing thereliability of protein-protein
interactions obtained in large-scale biological experiments. It is defined as

ig% (U &V
iphY(X <+ Y) = max H <1 - zg(g7<—>)>
pEPI(X,Y) (USVYES tImax

whereigd. = max{ig9(X < Y)| (X < Y) € G} isthe maximum interaction
generality valuein G; and ®9(X,Y) isthe set of all possible non-reducible paths
between X and Y, but excluding the direct path X < Y. This measure can be
seen as a measure on the global topological properties of the network involving
X andY inthe sensethat it evaluates the “credibility” of the non-reducible alter-
native path connecting X and Y', where the “probability” of each edge U + V
in that path is 1 — ig9 (U « V) /ig$... Here, a path ¢ connecting X and Y is
non-reducibleif there is no shorter path ¢’ connecting X and Y that shares some
common intermediate nodes with the path ¢.

Jin Chen, Wynne Hsu, Mong Li Lee, and See-Kiong Ng further show that
iph¥(X <« Y) isbetter at separating true positive interactions from fal se positive
interactions than ig9(X « Y) and igy (X < Y). E.g., on a large dataset of
protein-protein interactions—comprising that of Uetz et al.84°, Ito et al.?8¢, and
Mewes et al.>%4—the difference between the average value of ig¥(X < Y) and
ig§ (X < Y) ontrue positive and false positive interactions are 7.37% and 7.83%
respectively; but that of ipb¥ (X <+ Y') is 29.96%.

As mentioned earlier, Saito et al.”> have identified 5 local topological rela-
tionships, between a candidate pair of interacting proteins and athird protein, that
are particularly useful in distinguishing true positive protein-protein interactions
from false positive interactions. Actually, Milo et al.?%” have also studied simi-
lar kind of local topological relationships in complex networks, including gene
networks. They call these topological relationships network motifs. In particular,
they%” have reported two such network motifs for gene regulation networks of E.
coli and S. cerevisiae. However, they have not explored using these network motifs
to distinguish true positive interactions in gene networks from fal se positives.
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5. Derivation of Treatment Plan

In Section 2, we see that the entropy measure can be used to identify genesthat are
relevant to the diagnosis of disease states and subtypes. L et us now end this chapter
with a provocativeidea of Li and Wong*°%-4°8 of the possibility of a personalized
“treatment plan” that converts tumor cells into normal cells by modulating the
expression levels of afew genes.

Let us use the colon tumour dataset of Alon et al.2! to demonstrate this highly
speculative idea. This dataset consists of 22 normal tissues and 40 colon tumor
tissues. We begin with finding out which intervals of the expression levels of a
group of genes occur only in cancer tissues but not in the normal tissues and vice
versa. Then we attempt an explanation of the results and suggest aplan for treating
the disease.

We use the entropy measure?*2 described in Chapter 3 to induce a partition of
the expression range of each gene into suitable intervals. This method partitions
a range of real values into a number of digoint intervals such that the entropy
of the partition is minimal. For the colon cancer dataset, of its 2000 genes, only
135 genes can be partitioned into 2 intervals of low entropy. 496:498 The remaining
1865 genes are ignored by the method. Thus most of the genes are viewed as
irrelevant by the method.

For the purpose of this chapter we further concentrate on the 35 genes with
the lowest entropy measure amongst the 135 genes. These 35 genes are shown in
Figure 8. This gives us an easy platform where asmall number of good diagnostic
indicators are concentrated. For simplicity of reference, the index numbersin the
first column of Figure 8 are used to refer to the two expression intervals of the
corresponding genes. For example, the index 1 means M26338 < 59.83 and the
index 2 means M 26383 > 59.83.

An emerging pattern, as explained in Chapter 3, is a pattern that occurs fre-
guently in one class of samples but never in other classes of samples. An efficient
border-based algorithm?°7- 495 js used to discover emerging patterns based on the
selected 35 genes and the partitioning of their expression intervals induced by the
entropy measure. Thus, the emerging patterns here are combinations of intervals
of gene expression levels of these relevant genes.

A total of 10548 emerging patterns are found, 9540 emerging patterns for the
normal class and 1008 emerging patternsfor the tumour class. Thetop several tens
of the normal class emerging patterns contain about 8 genes each and can reach
a frequency of 77.27%, while many tumour class emerging patterns can reach a
frequency of around 65%.

These top emerging patterns are presented in Figure 9 and Figure 10. Note
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Our accession  cutting
list number points Name

1,2 M26383  59.83 monocyte-derived neutrophil-activating ...

34 M63391  1696.22 Human desmin gene

5,6 R87126 379.38 myosin heavy chain, nonmuscle (Gallus gallus)
7,8 M76378  842.30 Human cysteine-rich protein (CRP) gene ...
9,10 HO08393 84.87 COLLAGEN ALPHA 2(XI) CHAIN ...

11,12 X12671 229.99 heterogeneous nuclear ribonucleoprotein core ...
13,14 R36977 27496  P03001 TRANSCRIPTION FACTOR I1IA
15,16 J02854 735.80 Myosin regulatory light chain 2 ...

17,18 M22382 447.04 Mitochondrial matrix protein P1 ...

19,20 JO5032 88.90 Human aspartyl-tRNA synthetase alpha-2 ...
21,22 M76378  1048.37 Human cysteine-rich protein (CRP) gene ...
2324 M76378  1136.74 Human cysteine-rich protein (CRP) gene ...
2526 M16937 390.44 Human homeo box c1 protein mRNA

27,28 H40095 400.03 Macrophage migration inhibitory factor
29,30 U30825 288.99 Human splicing factor SRp30c mRNA

31,32 H43887 334.01 Complement Factor D Precursor

33,34 H51015 84.19 Proto-oncogene DBL Precursor

3536 X57206 417.30 1D-myo-inositol-trisphosphate 3-kinase B ...
37,38 R10066 494.17  PROHIBITIN (Homo sapiens)

39,40 T96873 75.42 Hypothetical proteinin TRPE 3'region ...
41,42 T57619 2597.85 40Sribosomal protein S6 ...

43,44 R84411 735.57 Small nuclear ribonucleoprotein assoc. ...
4546 U21090 232.74 Human DNA polymerase delta small subunit
4748 U32519 87.58 Human GAP SH3 binding protein mRNA
4950 T71025 1695.98 Human (HUMAN)

51,52 T92451 845.7 Tropomyosin, fibroblast and epithelial ...
53,54 U09564 120.38 Human serine kinase mRNA

55,56  H40560 913.77  THIOREDOXIN (HUMAN)

5758 T47377 629.44 S-100P PROTEIN (HUMAN)

59,60 X53586 121.91 Human mRNA for integrin alpha 6

61,62 U25138 186.19 Human MaxiK potassium channel beta subunit
63,64 T60155 1798.65  Actin, aortic smooth muscle (human)

65,66 H55758 1453.15 ALPHA ENOLASE (HUMAN)

67,68 Z50753 196.12 H.sapiens mRNA for GCAP-I1/uroguanylin ...
69,70 U09587 486.17 Human glycyl-tRNA synthetase mRNA

Fig. 8. The 35 top-ranked genes by the entropy measure. The index numbers in the first column are
used to refer to the two expression intervals of the corresponding genes. For example, the index 1
means M26338 < 59.83 and the index 2 means M26383 > 59.83.
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Count & Freg. (%) Count & Freg. (%)
Emerging patterns in normal tissues in cancer tissues

{25,33,37,41,43,57, 59,69} 17(77.27%) 0
{25,33,37,41,43,47, 57,69} 17(77.27%) 0
{29,33,35,37,41,43, 57,69} 17(77.27%) 0
{29,33,37,41,43,47, 57,69} 17(77.27%) 0
{29,33,37,41,43,57, 59,69} 17(77.27%) 0
{25,33,35,37,41,43, 57,69} 17(77.27%) 0
{33,35,37,41,43,57, 65,69} 17(77.27%) 0
{33,37,41,43,47,57,65,69} 17(77.27%) 0
{33,37,41,43, 57,59, 65,69} 17(77.27%) 0
{33,35,37,41,43,45,57,69} 17(77.27%) 0
{33,37,41,43, 45,47,57,69} 17(77.27%) 0
{33,37,41,43,45,57,59,69} 17(77.27%) 0
{13,33,35,37,43,57,69} 17(77.27%) 0
{13,33,37,43,47,57,69} 17(77.27%) 0
{13,33,37,43,57,59,69} 17(77.27%) 0
{13,32,37,57,69} 17(77.27%) 0
{33,35,37,57,68} 17(77.27%) 0
{33,37,47,57,68} 17(77.27%) 0
{33,37,57,59, 68} 17(77.27%) 0
{32,37,41,57,69} 17(77.27%) 0

Fig. 9. Thetop 20 emerging patterns, in descending frequency order, in the 22 normal tissues. The
numbers in the emerging patterns above refer to the index numbersin Figure 8.

that the numbersin the emerging patternsin these figures, such as {2, 10} in Fig-
ure 10, refer to the index numbersin Figure 8. Hence, {2, 10} denotes the pattern
{M26383 > 59.83, H08393 > 84.87}.

The emerging patterns that are discovered are the most general ones. They oc-
cur in one class of data but do not occur in the other class. The discovered emerg-
ing patterns always contain only a small number of the relevant genes. This result
reveals interesting conditions on the expression of these genes that differentiate
between two classes of data.

Each emerging pattern with high frequency is considered as a common prop-
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Count & Freg. (%) Count & Freg. (%)

Emerging patterns  in normal tissues in cancer tissues
{2,10} 0 28 (70.00%)
{10,61} 0 27 (67.50%)
{10, 20} 0 27 (67.50%)
{3,10} 0 27 (67.50%)
{10,21} 0 27 (67.50%)
{10,23} 0 27 (67.50%)
{7,40,56} 0 26 (65.00%)
{2,56} 0 26 (65.00%)
{12, 56} 0 26 (65.00%)
{10, 63} 0 26 (65.00%)
{3,58} 0 26 (65.00%)
{7,58} 0 26 (65.00%)
{15, 58} 0 26 (65.00%)
{23, 58} 0 26 (65.00%)
{58,61} 0 26 (65.00%)
{2,58} 0 26 (65.00%)
{20, 56} 0 26 (65.00%)
{21, 58} 0 26 (65.00%)
{15,40,56} 0 25 (62.50%)
{21, 40,56} 0 25 (62.50%)

Fig. 10. Thetop 20 emerging patterns, in descending frequency order, in the 40 cancer tissues. The
numbers in the emerging patterns refer to the index numbersin Figure 8.

erty of aclass of cells. Based on thisidea, Li and Wong*°%: 498 propose a strategy
for treating colon tumors by adjusting the expression level of some improperly
expressed genes. That is, to increase or decrease the expression levels of some
particular genes in a cancer cell, so that it has the common properties of normal
cells and no properties of cancer cells. As aresult, instead of killing the cancer
cell, it is“converted” into a normal one. We show later that almost all “adjusted”
cells are predicted as normal cells by a number of good classifiers that are trained
to distinguish normal from colon tumor cells.

As shown in Figure 9, the frequency of emerging patterns can reach a very
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high level such as 77.27%. The conditions implied by a highly frequent emerg-
ing pattern form a common property of one class of cells. Using the emerg-
ing pattern {25, 33, 37,41, 43, 57,59, 69} from Figure 9, we see that each of the
77.27% of the normal cells simultaneously expresses the eight genes—M 16937,
H51015, R10066, T57619, R84411, T47377, X53586, and U09587 referenced in
this emerging pattern—in such a way that each of the eight expression levelsis
contained in the corresponding interva—the 25th, 33th, 37th, 41st, 43rd, 57th,
59th, and 69th—asindexed in Figure 8.

Although a cancer cell may express some of the eight genesin a similar man-
ner as normal cells do, according to the dataset, a cancer cell can never express
all of the eight genes in the same way as normal cells do. So, if the expression
levels of those improperly expressed genes can be adjusted, then the cancer cell
can be made to have one more common property that normal cells exhibit. Con-
versely, a cancer cell may exhibit an emerging pattern that is a common property
of a large percentage of cancer cells and is not exhibited in any of the normal
cells. Adjustments should also be made to some genes involved in this pattern so
that the cancer cell can be made to have one less common property that cancer
cells exhibit. A cancer cell can then be iteratively converted into a normal one as
described above.

As there usually exist some genes of a cancer cell which expressin asimilar
way as their counterparts in normal cells, less than 35 genes' expression levels
are required to be changed. The most important issueis to determine which genes
need an adjustment. The emerging patterns can be used to address this issue as
follows. Given a cancer cell, first determine which top emerging pattern of normal
cells has the closest Hamming distance to it in the sense that the least number of
genes need to be adjusted to make this emerging pattern appear in the adjusted
cancer cell. Then proceed to adjust these genes. This process is repeated severa
times until the adjusted cancer cell exhibits as many common properties of normal
cellsasanormal cell does. The next step is to ook at which top emerging pattern
of cancer cellsthat is still present in the adjusted cancer cell has the closest Ham-
ming distance to a pattern in anormal cell. Then we a so proceed to adjust some
genes involved in this emerging pattern so that this emerging pattern would van-
ish from the adjusted cancer cell. This process is repeated until all top emerging
patterns of cancer cells disappear from our adjusted cancer cell.

We use a cancer cell (T1) of the colon tumor dataset as an example to show
how a tumor cell is converted into a normal one. Recall the emerging pattern
{25,33,37,41,43,57,59,69} is a common property of normal cells. The eight
genes involved in this emerging pattern are M16937, H51015, R10066, T57619,
R84411, T47377, X53586, and U09587. Let us list the expression profile of these
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eight genesin T1:

genes  expressionlevelsin T1

M16937 369.92
H51015 137.39
R10066 354.97
T57619 1926.39
R84411 798.28
T47377 662.06
X53586 136.09
u09587 672.20

However, 77.27%—17 out of 22 cases—of the normal cells have the following
expression intervalsfor these 8 genes:

genes  expressioninterval

M16937 <390.44
H51015 <84.19
R10066 <494.17
T57619 <2597.85
R84411 <735.57
T47377 <629.44
X53586 <121.91
u09587 <486.17

Comparing T1's gene expression levels with the interval s of normal cells, we see
that 5 of the 8 genes—H51015, R84411, T47377, X53586, and U09587—of the
cancer cell T1 behavein adifferent way from those the 22 normal cells commonly
express. However, the remaining 3 genes of T1 are in the same expression range
as most of the normal cells. So, if the 5 genes of T1 can be down regulated to
scale below those cutting points, then this adjusted cancer cell will have a com-
mon property of normal cells. Thisisbecause {25, 33, 37,41, 43,57,59,69} isan
emerging pattern which does not occur in the cancer cells. Thisideais at the core
of Li and Wong*°%:49%'s suggestion for this treatment plan.

Interestingly, the expression change of the 5 genesin T1 leads to a chain of
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other changes. These include the change that 9 extra top-ten EPs of normal cells
are contained in the adjusted T1. So all top-ten EPs of normal cells are contained
inT1if the5 genes expression levels are adjusted. As the average number of top-
ten EPs contained in normal cellsis 7, the changed T1 cell will now be considered
as a cell that has the most important features of normal cells. Note that we have
adjusted only 5 genes' expression level so far.

It is also necessary to eliminate those common properties of cancer cells that
are contained in T1. By adjusting the expression level of 2 other genes, M26383
and H08393, the top-ten EPs of cancer cells all disappear from T1. According
to the colon tumor dataset, the average number of top-ten EPs of cancer cells
contained in a cancer cell is 6. Therefore, T1 is converted into anormal cell asit
now holds the common properties of normal cells and does not hold the common
properties of cancer cells.

By this method, all the other 39 cancer cells can be converted into normal
ones after adjusting the expression levels of 10 genes or so, possibly different
genes from person to person. Li and Wong*“%: 498 conjecture that this personal-
ized treatment plan is effective if the expression of some particular genes can be
modulated by suitable means.

Lastly, we discuss a validation of thisidea. The “adjustments’ made to the 40
colon tumour cells are based on the emerging patterns in the manner described
above. If these adjustments have indeed converted the colon tumour cells into nor-
mal cells, then any good classifier that can distinguish normal vs colon tumour
cells on the basis of gene expression profilesis going to classify our adjusted cells
as normal cells. So, Li and Wong*°%- 498 establish a SVM model using the origi-
nal entire 22 normal plus 40 cancer cells as training data. The code for construct-
ing thisSVM model isavailableat http://www.cs.waikato.ac.nz/ml/
weka. Theprediction result isthat al of the adjusted cells are predicted as normal
cells. Although Li and Wong's “therapy” is not applied to the real treatment of a
patient, the prediction result by the SVM model partially demonstrates the poten-
tial biological significance of this highly speculative and provocative proposal.
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