
CS2220: Introduction to Computational Biology 
Lecture 6: Essence of Sequence 

Comparison 

Lisa Tucker-Kellogg 
4 March 2010 

Most slides the same as 6-Mar-2009 (Prof.  Wong) 

For written notes on this lecture, please read chapter 10 of The Practical Bioinformatician 
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Plan  

•  Dynamic Programming 
•  String Comparison 

•  Sequence Alignment 
–  Pairwise Alignment 

•  Needleman-Wunsch global alignment algorithm  
•  Smith-Waterman local alignment algorithm 

–  Multiple Alignment  

•  Popular tools 
–  FASTA, BLAST, Pattern Hunter 



What is Dynamic Programming? 
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What is Dynamic Programming? 

•  A poster child for why programmers should have 
some formal education in computer science 

•  A good way to find the best solution to certain 
types of problems 
–  when there are discrete, finite decisions; 
–  when the arrangement can be broken into phases; 
–  when there is independence between the cost/

benefit of each sub-decision 
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The Knapsack Problem 

•  Each item that can go into the knapsack has a 
size and a benefit 

•  The knapsack has a certain capacity  

•  What should go into the knapsack so as to 
maximize the total benefit?  
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Formulation of a Solution 

•  Intuitively, to fill a w pound knapsack, we must 
end off by adding some item. If we add item j, we 
end up with a knapsack k’ of size w - wj  to fill … 

•  Where 
–  wj and bj be weight and benefit for item j 
–  g(w) be max benefit that can be gained from a w- 

pound knapsack 

Source: http://mat.gsia.cmu.edu/classes/dynamic/node6.html 

Why is g(w) 
optimal? 
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An Example: Direct Recursive Evaluation 
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•  g(1), g(2), … are computed many times 

Find the error 
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“Memoize” to avoid recomputation 

80 

80 

30 

30 

65 30 

80 

g(5) 

g(4) g(3) 
65 30 

65 
g(2) g(0) g(1) 

g(0) g(0) 

65 

160 160 

int s[]; s[0] := 0; 
g’(w) = if s[w] is defined 
     then return s[w]; 
     else {  
          s[w] := maxj{bj + g’(w – wj)}; 
          return s[w]; } 
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Remove Recursion: Dynamic Programming 

int s[]; s[0] := 0; 
g’(w) = if s[w] is defined 
     then return s[w]; 
     else {  
          s[w] := maxj{bj + g’(w – wj)}; 
          return s[w]; } 

int s[]; s[0] := 0; s[1] := 30; 
s[2] := 65; s[3] = 95; 
for i := 4 .. w do  
     s[i] := maxj{bj + s[i – wj]}; 
 return s[w];  

g(0) = 0  
g(1) = 30, item 3  
g(2) = max{65 + g(0) =65, 30 + g(1) = 60} = 65, item 1 
g(3) = max{65 + g(1) = 95, 80 + g(0) = 80, 30 + g(2) = 95} 

= 95, item 1/3  
g(4) = max{65 + g(2) = 130, 80 + g(1) = 110, 30 + g(3) = 

125} = 130, item 1 
g(5) = max{65 + g(3) = 160, 80 + g(2) = 145, 30 + g(4) = 

160} = 160, item 1/3 

80 

80 

30 

30 

65 30 

80 

g(5) 

g(4) g(3) 
65 30 

65 
g(2) g(0) g(1) 

g(0) g(0) 

65 

160 160 
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Characteristics of Dynamic Programming 
•  Problem can be divided into stages with a decision 

required at each stage 
•  Each stage has a # of states associated 
•  Decision at one stage transforms one state into a state in 

the next stage 

•  Given current state, the optimal decision for each 
remaining states does not depend on next states or 
decisions 

•  There is a recursive relationship that identifies the optimal 
decision for stage j+1, given stage j has already been 
solved  

•  The initial stages must be solvable by themselves 

Exercise: What is a stage 
in the Knapsack problem? 

Exercise: What is a state 
in the Knapsack problem? 

E.g., g(2) doesnt  
depends on g(3) 

E.g., g(0) = 0 

Source: http://mat.gsia.cmu.edu/classes/dynamic/node4.html 



Sequence Alignment 
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Motivations for Sequence Comparison 

•  DNA is blue print for living organisms 
⇒  Evolution causes mutations=changes in DNA 
⇒  By comparing DNA seqs (or protein seqs) we can 

infer evolutionary relationships betw seqs w/o 
knowledge of the evolutionary events themselves 
 (Be careful not to use wordings that imply you know 
what happened during evolution.) 

•  Sequence similarity is a foundation concept for 
inferring what the sequences do.   Why? 
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Earliest Research in Seq Comparison 

•  Doolittle et al. (Science, July 1983) searched for 
platelet-derived growth factor (PDGF) in his own 
DB. He found that PDGF is similar to v-sis 
oncogene 

 PDGF-2  1       SLGSLTIAEPAMIAECKTREEVFCICRRL?DR?? 34 
p28sis 61 LARGKRSLGSLSVAEPAMIAECKTRTEVFEISRRLIDRTN 
100 

Source: Ken Sung 
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How To Define Sequence Similarity?        
•  Hamming distance – among the most common 

ways in computer science for measuring similarity 
between two character strings.  How many bits are 
flipped, or how many characters are altered? 

  ABCDEFGABCDEFG 
  ||*|||**||||*| 
  ABXDEFQWBCDEAG 

 Can you suggest any improvements? 

    DNASEQUENCECOMPARISON 
 |**********|********* 
 DEOXYRIBONUCLEICACIDSEQUENCECOMPARISON 

What’s the best method generally depends on  
what you expect biology will throw at you. 
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Alignment 

•  Key aspect of seq 
comparison is seq 
alignment 

•  A seq alignment 
maximizes the 
number of 
positions that are in 
agreement in the 
sequences 

Sequence U 

Sequence V 

mismatch 

match 

indel 



16 

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg 

Sequence Alignment: Poor Example 

•  Poor seq alignment shows few matched positions 
⇒  The two proteins are not likely to be homologous 

No obvious match between  
Amicyanin and Ascorbate Oxidase 
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Sequence Alignment: Good Example 

•  Good alignment usually has clusters of extensive 
matched positions 

⇒  The two proteins are likely to be homologous 

good match between  
Amicyanin and unknown M. loti protein 
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h 

Alignment: 
Simple-Minded Probability & Score 

•  Define score S(A) by simple log likelihood as 
–  S(A) = log(prob(A)) - [m log(s) + h log(s)], with log

(p/s) = 1 
•  Then S(A) = #matches - µ #mismatches - δ #indels 

Exercise: Derive µ and δ  
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Global Pairwise Alignment: 

Problem Definition 
•  Given sequences U and V of lengths n and m, 

then number of possible alignments is given by 
–  f(n, m) = f(n-1,m) + f(n-1,m-1) + f(n,m-1) 
–  f(n,n) ~ (1 + √2)2n+1 n-1/2 

•  The problem of finding a global pairwise 
alignment is to find an alignment A so that S(A) is 
max among exponential number of possible 
alternatives 

Exercise: Explain the  
recurrence above 
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Global Pairwise Alignment: 
Dynamic Programming Solution 

•  Define an indel-similarity matrix s(.,.); e.g.,  
–  s(x,x) = 2 
–  s(x,y) = -µ, if x ≠ y 

•  Then 

This is the basic idea of the 
Needleman-Wunsch algorithm 

Exercise: What is the  
effect of a large δ ? 
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Needleman-Wunsch Algorithm (I) 

•  Consider two strings S[1..n] and T[1..m] 
•  Let V(i, j) be score of opt alignment betw S[1..i] 

and T[1..j] 

•  Basis: 
–  V(0, 0) = 0 
–  V(0, j) = V(0, j -1) - δ  

•  Insert j times 
–  V(i, 0) = V(i - 1, 0) - δ  

•  Delete i times 

Source: Ken Sung 
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Needleman-Wunsch Algorithm (II) 

•  Recurrence: For i>0, j>0 

•  In the alignment, the last pair must be either 
match/mismatch, delete, insert 

Match/mismatch 

Delete 

Insert 

Source: Ken Sung 

  xxx…xx      xxx…xx    xxx…x_ 
       |           |         | 
  xxx…yy      yyy…y_    yyy…yy 
Match/mismatch           Delete               Insert 
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Example (I) 
_ A G C A T G C 

_ 0 -1 - 2 - 3 - 4 - 5 - 6 - 7 

A - 1 

C - 2 

A - 3 

A - 4 

T - 5 

C - 6 

C - 7 

Source: Ken Sung 
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Example (II) 
_ A G C A T G C 

_ 0 -1 - 2 - 3 - 4 - 5 - 6 - 7 

A - 1 2 

C - 2 

A - 3 

A - 4 

T - 5 

C - 6 

C - 7 

Source: Ken Sung 



25 

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg 

Example (III) 
_ A G C A T G C 

_ 0 -1 - 2 - 3 - 4 - 5 - 6 - 7 

A - 1 2 1 

C - 2 

A - 3 

A - 4 

T - 5 

C - 6 

C - 7 

Source: Ken Sung 
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Example (IV) 
_ A G C A T G C 

_ 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 

A - 1 2 1 0 - 1 - 2 - 3 - 4 

C - 2 1 1 ? 

A - 3 

A - 4 

T - 5 

C - 6 

C - 7 

3 2 

Exercise: Can you tell from these entries what  
Are the values of s(A,G), s(A,C), s(A,A), etc.? 

Source: Ken Sung 
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Example (V) 
_ A G C A T G C 

_ 0 -1 - 2 - 3 - 4 - 5 - 6 - 7 

A - 1 2 1 0 - 1 - 2 - 3 -4 

C - 2 1 1 3 2 1 0 -1 

A - 3 0 0 2 5 4 3 2 

A - 4 - 1 - 1 1 4 4 3 2 

T - 5 - 2 - 2 0 3 6 5 4 

C - 6 - 3 - 3 0 2 5 5 7 

C - 7 - 4 - 4 - 1 1 4 4 7 

Source: Ken Sung 

What is the 
alignment 

corresponding 
to this? 
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Pseudo Codes 
Create the table V[0..n,0..m] and P[1..n,1..m]; 
V[0,0] = 0; 
For j=1 to m, set V[0,j] := v[0,j - 1] - δ ; 
For i=1 to n, set V[i,0] := V[i - 1,0] - δ ; 
For j=1 to m { 
 For i = 1 to n { 
  set V[i,j] := V[i,j - 1] - δ ; 
  set P[i,j] := (0, - 1); 
  if V[i,j] < V[i - 1,j] - δ then 
   set V[i,j] := V[i - 1,j] - δ ; 
   set P[i,j] := (- 1, 0); 
  if (V[i,j] < V[i - 1, j - 1] + s(S[i],T[j])) then 
   set V[i,j] := V[i - 1, j - 1] + s(S[i],T[j]); 
   set P[i,j] := (- 1, - 1); 
 } 

} 
Backtracking P[n,m] to P[0,0] to find optimal alignment; 

Source: Ken Sung 
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Analysis 

•  We need to fill in all entries in the n×m matrix 
•  Each entry can be computed in O(1) time 
⇒ Time complexity = O(nm) 
⇒ Space complexity = O(nm) 

Source: Ken Sung 

Exercise: Write down the memoized version of  
Needleman-Wunsch. What is its time/space  
complexity? 
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Problem on Speed 
•  Aho, Hirschberg, Ullman 

1976 
–  If we can only compare 

whether two symbols are 
equal or not, the string 
alignment problem can 
be solved in Ω(nm) time 

•  Hirschberg 1978 
–  If symbols are ordered 

and can be compared, 
the string alignment 
problem can be solved in 
Ω(n log n) time 

•  Masek and Paterson 1980 
–  Based on Four-Russian’s 

paradigm, the string 
alignment problem can 
be solved in O(nm/log2 
n) time 

•  Let d be the total number 
of inserts and deletes. 
Thus 0 ≤ d ≤ n+m. If d is 
smaller than n+m, can we 
get a better algorithm? 
Yes! 

Source: Ken Sung 
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O(dn)-Time Algorithm 

•  The alignment should be inside the 2d+1 band 
⇒ No need to fill-in the lower and upper triangle 
⇒ Time complexity: O(dn) 

2d+1 

Source: Ken Sung 
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Example 

•  d=3 
A_CAATCC 
AGCA_TGC 

_ A G C A T G C 

_ 0 -1 -2 -3 

A -1 2 1 0 -1 

C -2 1 1 3 2 1 

A -3 0 0 2 5 4 3 

A -1 -1 1 4 4 3 2 

T -2 0 3 6 5 4 

C 0 2 5 5 7 

C 1 4 4 7 
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Recursive Equation for O(dn)-Time Algo 

Exercise: Write down the base 
cases, the memoized version, and 
the non-recursive version. 
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Global Pairwise Alignment: 
More Realistic Handling of Indels 

•  In Nature, indels of several adjacent letters are 
not the sum of single indels, but the result of one 
event 

•  So reformulate as follows: 
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Gap Penalty 

•  g(q):Νℜ is the penalty of a gap of length q 
•  Note g() is subadditive, i.e, g(p+q) ≤ g(p) + g(q) 

•  If g(k) = α + βk, the gap penalty is called affine 
–  A penalty (α) for initiating the gap 
–  A penalty (β) for the length of the gap 

Source: Ken Sung 
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N-W Algorithm w/ General Gap Penalty (I) 

•  Global alignment of S[1..n] and T[1..m]: 
–  Denote V(i, j) be the score for global alignment 

between S[1..i] and T[1..j] 
–  Base cases: 

•  V(0, 0) = 0 
•  V(0, j) = g(j) 
•  V(i, 0) = g(i) 

Source: Ken Sung 
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N-W Algorithm w/ General Gap Penalty (II) 

•  Recurrence for i>0 and j>0, 

Match/mismatch 

Insert T[k+1..j] 

Delete S[k+1..i] 

Source: Ken Sung 
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Analysis 

•  We need to fill in all entries in the n×m table 

•  Each entry can be computed in O(max{n, m}) time 
⇒ Time complexity = O(nm max{n, m}) 
⇒ Space complexity = O(nm) 

Source: Ken Sung 
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Local Alignment 

•  Given two long DNAs, both of them contain the 
same gene or closely related gene  
–  Can we identify the gene? 

•  Local alignment problem: Given two strings S
[1..n] and T[1..m], among all substrings of S and 
T, find substrings A of S and B of T whose global 
alignment has the highest score 

Source: Ken Sung 



40 

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg 

Brute-Force Solution 

•  Algorithm: 
–  For every substring A of S, for every substring B of 

T, compute the global alignment of A and B 
–  Return the pair (A, B) with the highest score 

•  Time: 
–  There are n2 choices of A and m2 choices of B 
–  Global alignment computable in O(nm) time 
–  In total, time complexity = O(n3m3) 

•  Can we do better? 

Source: Ken Sung 
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Some Background 

•  X is a suffix of S[1..n] if X=S[k..n] for some k≥1 
•  X is a prefix of S[1..n] if X=S[1..k] for some k≤n 

•  E.g. 
–  Consider S[1..7] = ACCGATT 
–  ACC is a prefix of S, GATT is a suffix of S 
–  Empty string is both prefix and suffix of S 

Source: Ken Sung 

Which other string is both a prefix and suffix of S? 
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Dynamic Programming for  
Local Alignment Problem 

•  Define V(i, j) be max score of global alignment of 
A and B over  
–  all suffixes A of S[1..i] and  
–  all suffixes B of T[1..j] 

•  Then, score of local alignment is  
–  maxi,j V(i ,j) 

Source: Ken Sung 
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Smith-Waterman Algorithm 

•  Basis:  

 V(i, 0) = V(0, j) = 0 

•  Recursion for i>0 and j>0: 

Match/mismatch 

Delete 

Insert 

Ignore initial segment 

Source: Ken Sung 
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Example (I) 
•  Score for match = 2 
•  Score for insert, delete, 

mismatch = -1 

_ C T C A T G C 

_ 0 0 0 0 0 0 0 0 

A 0 

C 0 

A 0 

A 0 

T 0 

C 0 

G 0 

Source: Ken Sung 
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Example (II) 

_ C T C A T G C 

_ 0 0 0 0 0 0 0 0 

A 0 0 0 0 2 1 0 0 

C 0 2 1 2 1 1 0 2 

A 0 0 1 1 4 3 2 1 

A 0 0 0 0 3 3 2 1 

T 0 0 ? 

C 

G 

1 2 2 

•  Score for match = 2 
•  Score for insert, delete, 

mismatch = -1 

Source: Ken Sung 
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Example (III) 

C_AT_G 
CAATCG 

_ C T C A T G C 

_ 0 0 0 0 0 0 0 0 

A 0 0 0 0 2 1 0 0 

C 0 2 1 2 1 1 0 2 

A 0 0 1 1 4 3 2 1 

A 0 0 0 0 3 3 2 1 

T 0 0 2 1 2 5 4 3 

C 0 2 1 4 3 4 4 6 

G 0 1 1 3 3 3 6 5 

Source: Ken Sung 

What is the other 
optimal local 
alignment? 

An optimal 
local alignment 
is 
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Analysis 

•  Need to fill in all entries in the n×m matrix 
•  Each entries can be computed in O(1) time 
•  Finally, finding the entry with the max value 
⇒ Time complexity = ?? 
⇒ Space complexity = O(nm) 

Exercise: What is the time complexity? 

Source: Ken Sung 



Multiple Sequence Alignment 
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Multiple Sequence Alignment 

•  Multiple seq alignment maximizes the number of 
positions in agreement across several sequences 

 ... but it is so much more! 

      (and much harder) 
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Multiple Alignment: 
Naïve Approach 

•  Suppose we have 3 sequences to align, S1, S2, 
S3, and they’re all moderatly similar to each other 
with no one sequence serving as a bridge 
between the other two.   

How could we compute the best alignment if we had 
all the time and space in the world? 
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Multiple Alignment: 
Naïve Approach 

•  Suppose we alread have a dynamic programming 
table for aligning S1 and S2, and suppose we 
want to compare that with a third sequence S3. 

How could we compute the best alignment with 
more reasonable efficiency? 

•  This requires O(2r) steps 

What would the score function look like? 
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What is a domain 

•  A domain is a component of a protein that is self-
stabilizing and folds independently of the rest of 
the protein chain 
–  Not unique to protein products of one gene; can 

appear in a variety of proteins 
–  Play key role in the biological function of proteins 
–  Can be "swapped" by genetic engineering betw 

one protein and another to make chimeras 

•  May be composed of one, more than one, or not 
any structural motifs (often corresponding to 
active sites) 
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Discovering Domain and Active Sites 

•  How do we find the domain and associated active 
sites in the protein above?  

>gi|475902|emb|CAA83657.1| protein-tyrosine-phosphatase alpha  
MDLWFFVLLLGSGLISVGATNVTTEPPTTVPTSTRIPTKAPTAAPDGGTTPRVSSLNVSSPMTTSAPASE  
PPTTTATSISPNATTASLNASTPGTSVPTSAPVAISLPPSATPSALLTALPSTEAEMTERNVSATVTTQE  
TSSASHNGNSDRRDETPIIAVMVALSSLLVIVFIIIVLYMLRFKKYKQAGSHSNSFRLPNGRTDDAEPQS  
MPLLARSPSTNRKYPPLPVDKLEEEINRRIGDDNKLFREEFNALPACPIQATCEAASKEENKEKNRYVNI  
LPYDHSRVHLTPVEGVPDSHYINTSFINSYQEKNKFIAAQGPKEETVNDFWRMIWEQNTATIVMVTNLKE  
RKECKCAQYWPDQGCWTYGNIRVSVEDVTVLVDYTVRKFCIQQVGDVTNKKPQRLVTQFHFTSWPDFGVP  
FTPIGMLKFLKKVKTCNPQYAGAIVVHCSAGVGRTGTFIVIDAMLDMMHAERKVDVYGFVSRIRAQRCQM  
VQTDMQYVFIYQALLEHYLYGDTELEVTSLEIHLQKIYNKVPGTSSNGLEEEFKKLTSIKIQNDKMRTGN  
LPANMKKNRVLQIIPYEFNRVIIPVKRGEENTDYVNASFIDGYRRRTPTCQPRPVQHTIEDFWRMIWEWK  
SCSIVMLTELEERGQEKCAQYWPSDGSVSYGDINVELKKEEECESYTVRDLLVTNTRENKSRQIRQFHFH  
GWPEVGIPSDGKGMINIIAAVQKQQQQSGNHPMHCHCSAGAGRTGTFCALSTVLERVKAEGILDVFQTVK  
SLRLQRPHMVQTLEQYEFCYKVVQEYIDAFSDYANFK  
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Domain/Active Sites as Emerging Patterns 

•  How to discover active site and/or domain? 
•  If you are lucky, domain has already been 

modelled 
–  BLAST,  
–  HMMPFAM, … 

•  If you are unlucky, domain not yet modelled 
–  Find homologous seqs 
–  Do multiple alignment of homologous seqs  
–  Determine conserved positions 
⇒  Emerging patterns relative to background 
⇒  Candidate active sites and/or domains 
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In the course of evolution… 
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Multiple Alignment: An Example 

•  Multiple seq alignment maximizes number of 
positions in agreement across several seqs 

•  seqs belonging to same “family” usually have 
more conserved positions in a multiple seq 
alignment 

Conserved sites 
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MSA: Naïve Approach 

•  Let S(A) be the score of a multiple alignment A. 
The optimal multiple alignment A of sequences 
U1, …, Ur can be extracted from the following 
dynamic programming computation of Sm1,…,mr: 

•  This requires O(2r) steps 
Exercise for the Brave:  
Propose a practical approximation 
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MSA: Heuristic Approach 
•  Progressive technique (a.k.a. hierarchical or tree) 

–  Find pairwise alignments beginning with the most 
similar pair and ending with most distant. 

–  First stage is to build a guide tree 
•  Using a clustering method such as neighbor-joining 

–  Second stage is to add additional sequences onto 
the MSA according to the guide tree.  

•  Progressive alignments aren’t globally optimal.  
–  When errors are made at any early step, they 

propagate and grow 
–  Progressive alignments are efficient enough to 

handle hundreds of sequences. 
Source: Wikipedia 



Popular Tools for Sequence Comparison: 
FASTA, BLAST, Pattern Hunter 
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Scalability of Software 

•  Increasing # of sequenced 
genomes: yeast, human, 
rice, mouse, fly, … 

•  S/w must be “linearly” 
scalable to large datasets 
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Need Heuristics for  
Pairwise Sequence Comparison 

•  Time complexity for 
optimal alignment is O(n2), 
where n is seq length 

⇒   Given current size of seq 
databases, use of optimal 
algorithms is not practical 
for database search 

•  Heuristic techniques:  
–  BLAST 
–  FASTA 
–  Pattern Hunter 
–  MUMmer, ... 

•  Speed up: 
–  20 min (optimal 

alignment)  
–  2 min (FASTA)  
–  20 sec (BLAST) 

Exercise: Describe MUMer 
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Basic Idea: Indexing & Filtering 

•  Good alignment includes short identical, or 
similar fragments 

⇒  Break entire string into substrings, index the 
substrings 

⇒  Search for matching short substrings and use as 
seed for further analysis 

⇒  Extend to entire string find the most significant 
local alignment segment 
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BLAST in 3 Steps 
Altschul et al, JMB 215:403-410, 1990 

•  Similarity matching of 
words (3 aa’s, 11 bases)  
–  No need identical words 

•  If no words are similar, 
then no alignment 
–  Won’t find matches for 

very short sequences  

•  MSP: Highest scoring pair 
of segments of identical 
length. A segment pair is 
locally maximal if it cannot 
be improved by extending 
or shortening the 
segments 

•  Find alignments w/ optimal 
max segment pair (MSP) 
score 

•  Gaps not allowed 
•  Homologous seqs will 

contain a MSP w/ a high 
score; others will be 
filtered out 
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BLAST in 3 Steps 
Altschul et al, JMB 215:403-410, 1990 

Step 1 
•  For the query, find the list of high scoring words 

of length w 

Image credit: Barton 
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BLAST in 3 Steps 
Altschul et al, JMB 215:403-410, 1990 

Step 2 
•  Compare word list to db & find exact matches 

Image credit: Barton 
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BLAST in 3 Steps 
Altschul et al, JMB 215:403-410, 1990 

Step 3 
•  For each word match, extend alignment in both 

directions to find alignment that score greater 
than a threshold s 

Image credit: Barton 
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Spaced Seeds 
•  111010010100110111 is an example of a spaced seed model 

with 
–  11 required matches (weight=11) 
–  7 “don’t care” positions 

  GAGTACTCAACACCAACATTAGTGGCAATGGAAAAT… 
  || ||||||||| ||||| || |||||   |||||| 
  GAATACTCAACAGCAACACTAATGGCAGCAGAAAAT… 
         111010010100110111 

•  11111111111  is the BLAST seed model for comparing DNA 
seqs 

Who cares which bits you check first?  Doesn’t it all add up  
to the same amount of effort and the same results? 
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Observations on Spaced Seeds 

•  Seed models w/ different shapes can detect 
different homologies 
–  the 3rd base in a codon “wobbles” so a seed like 

110110110… should be more sensitive when 
matching coding regions 

⇒  Some models detect more homologies  
- More sensitive homology search 
–  PatternHunter I 

⇒  Use >1 seed models to hit more homologies 
–  Approaching 100% sensitive homology search 
–  PatternHunter II Exercise: Why does 

the 3rd base wobble? 
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CAA?A??A?C??TA?TGG? 
|||?|??|?|??||?|||? 
CAA?A??A?C??TA?TGG? 
111010010100110111 
 111010010100110111 

PatternHunter I 
Ma et al., Bioinformatics 18:440-445, 2002 

•  BLAST’s seed usually 
uses more than one hit to 
detect one homology  

⇒   Wasteful 

•  Spaced seeds uses fewer 
hits to detect one 
homology  

⇒   Efficient  

TTGACCTCACC? 
|||||||||||? 
TTGACCTCACC? 
11111111111 
 11111111111 

1/4 chances to have 2nd hit  
next to the 1st hit 1/46 chances to have 2nd hit 

next to the 1st hit 
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PatternHunter I 
Ma et al., Bioinformatics 18:440-445, 2002 

Proposition. The expected number of hits of a 
weight-W length-M model within a length-L region of 
similarity p is (L – M + 1) * pW 

Proof.   

For any fixed position, the prob of a hit is pW.  
There are L – M + 1 candidate positions.  
The proposition follows. 



71 

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg 

Implication 
•  For L = 1017 

–  BLAST seed expects 
(1017 – 11 + 1) * p11 = 
1007 * p11 hits 

–  But ~1/4 of these overlap 
each other. So likely to 
have only ~750 * p11 
distinct hits 

–  Our example spaced seed 
expects (1017 – 18 + 1) * 
p11 = 1000 * p11 hits 

–  But only 1/46 of these 
overlap each other. So 
likely to have ~1000 * p11 
distinct hits 

Spaced  
seeds  

likely to 
 be more 
 sensitive 
& more  
efficient 
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Sensitivity of PatternHunter I 

Image credit: Li 
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Speed of PatternHunter I 
•  Mouse Genome 

Consortium used 
PatternHunter to 
compare mouse 
genome & human 
genome 

•  PatternHunter did the 
job in a 20 CPU-days ---
it would have taken 
BLAST 20 CPU-years!  

Nature, 420:520-522, 2002 
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How to Increase Sensitivity? 

•  Ways to increase sensitivity: 
–  “Optimal” seed 
–  Reduce weight by 1 
–  Increase number of spaced seeds by 1 

•  Intuitively, for DNA seq, 
–  Reducing weight by 1 will increase number of 

matches 4 folds 
–  Doubling number of seeds will increase number of 

matches 2 folds 
•  Is this really so? 
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How to Increase Sensitivity? 
•  Ways to increase 

sensitivity: 
–  “Optimal” seed 
–  Reduce weight by 1 
–  Increase number of 

spaced seeds by 1 

•  For L = 1017 & p = 50% 
–  1 weight-11 length-18 

model expects 1000/211 
hits 

–  2 weight-12 length-18 
models expect 2 * 
1000/212 = 1000/211 hits 

⇒  When comparing 
regions w/ >50% 
similarity, using 2 
weight-12 spaced seeds 
together is more 
sensitive than using 1 
weight-11 spaced seed! 

Exercise: Prove this claim 
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PatternHunter II 
Li et al, GIW, 164-175, 2003 

•  Idea 
–  Select a group of spaced 

seed models 
–  For each hit of each 

model, conduct extension 
to find a homology 

•  Selecting optimal multiple 
seeds is NP-hard 

•  Algorithm to select 
multiple spaced seeds 
–  Let A be an empty set 
–  Let s be the seed such 

that A ⋃ {s} has the 
highest hit probability 

–  A = A ⋃ {s} 
–  Repeat until |A| = K 

•  Computing hit probability 
of multiple seeds is NP-
hard 

But see also Ilie & Ilie, “Multiple spaced seeds for 
homology search”, Bioinformatics, 23(22):2969-2977, 2007 
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One weight-12 

Two weight-12 

One weight-11 

Sensitivity of PatternHunter II 
•  Solid curves: Multiple (1, 2, 

4, 8,16) weight-12 spaced 
seeds 

•  Dashed curves: Optimal 
spaced seeds with weight 
= 11,10, 9, 8 

⇒   “Double the seed number” 
gains better sensitivity 
than “decrease the weight 
by 1” 

se
ns
iti
vi
ty

 

Image credit: Ma 
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Expts on Real Data 

•  30k mouse ESTs (25Mb) vs 4k human ESTs (3Mb)  
–  downloaded from NCBI genbank 
–  “low complexity” regions filtered out 

•  SSearch (Smith-Waterman method) finds “all” 
pairs of ESTs with significant local alignments 

•  Check how many percent of these pairs can be 
“found” by BLAST and different configurations of 
PatternHunter II 
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In fact, at 80%  
similarity, 100%  
sensitivity can  

be achieved  
using 40  

weight-9 seeds 

Results 

Image credit: Ma 
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Farewell to the Supercomputer Age 
of Sequence Comparison! 

Image credit: Bioinformatics Solutions Inc 



Concluding Remarks 



82 

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg 

What have we learned?  
•  General methodology 

–  Dynamic programming 

•  Dynamic programming applications 
–  Pairwise Alignment 

•  Needleman-Wunsch global alignment algorithm  
•  Smith-Waterman local alignment algorithm 

–  Multiple Alignment  

•  Important tactics 
–  Indexing & filtering (BLAST) 
–  Spaced seeds (Pattern Hunter) 



Questions? 
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