
CS2220: Introduction to Computational Biology
Lecture 6: Essence of Sequence

Comparison

Lisa Tucker-Kellogg
4 March 2010

Most slides the same as 6-Mar-2009 (Prof. Wong)

For written notes on this lecture, please read chapter 10 of The Practical Bioinformatician

2

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Plan

•  Dynamic Programming
•  String Comparison

•  Sequence Alignment
–  Pairwise Alignment

•  Needleman-Wunsch global alignment algorithm
•  Smith-Waterman local alignment algorithm

–  Multiple Alignment

•  Popular tools
–  FASTA, BLAST, Pattern Hunter

What is Dynamic Programming?

4

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

What is Dynamic Programming?

•  A poster child for why programmers should have
some formal education in computer science

•  A good way to find the best solution to certain
types of problems
–  when there are discrete, finite decisions;
–  when the arrangement can be broken into phases;
–  when there is independence between the cost/

benefit of each sub-decision

5

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

The Knapsack Problem

•  Each item that can go into the knapsack has a
size and a benefit

•  The knapsack has a certain capacity

•  What should go into the knapsack so as to
maximize the total benefit?

6

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Formulation of a Solution

•  Intuitively, to fill a w pound knapsack, we must
end off by adding some item. If we add item j, we
end up with a knapsack k’ of size w - wj to fill …

•  Where
–  wj and bj be weight and benefit for item j
–  g(w) be max benefit that can be gained from a w-

pound knapsack

Source: http://mat.gsia.cmu.edu/classes/dynamic/node6.html

Why is g(w)
optimal?

7

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

An Example: Direct Recursive Evaluation

65

30

65 30

80

g(5)

g(4) g(3) g(2)

65 80 30

65
g(2) g(0) g(1)

g(0) g(0)

30

g(1)

30

g(0)

65

g(0)

30

g(1)

30

g(0)

65 80 30

g(3) g(1) g(2)

g(0)

30

g(1)

30

g(0)

30

g(0)

65 80 30
g(2) g(0) g(1)

30

g(0)

65

g(0)

30

g(1)

30

g(0)

160 160 160

•  g(1), g(2), … are computed many times

Find the error

8

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

“Memoize” to avoid recomputation

80

80

30

30

65 30

80

g(5)

g(4) g(3)
65 30

65
g(2) g(0) g(1)

g(0) g(0)

65

160 160

int s[]; s[0] := 0;
g’(w) = if s[w] is defined
 then return s[w];
 else {
 s[w] := maxj{bj + g’(w – wj)};
 return s[w]; }

9

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Remove Recursion: Dynamic Programming

int s[]; s[0] := 0;
g’(w) = if s[w] is defined
 then return s[w];
 else {
 s[w] := maxj{bj + g’(w – wj)};
 return s[w]; }

int s[]; s[0] := 0; s[1] := 30;
s[2] := 65; s[3] = 95;
for i := 4 .. w do
 s[i] := maxj{bj + s[i – wj]};
 return s[w];

g(0) = 0
g(1) = 30, item 3
g(2) = max{65 + g(0) =65, 30 + g(1) = 60} = 65, item 1
g(3) = max{65 + g(1) = 95, 80 + g(0) = 80, 30 + g(2) = 95}

= 95, item 1/3
g(4) = max{65 + g(2) = 130, 80 + g(1) = 110, 30 + g(3) =

125} = 130, item 1
g(5) = max{65 + g(3) = 160, 80 + g(2) = 145, 30 + g(4) =

160} = 160, item 1/3

80

80

30

30

65 30

80

g(5)

g(4) g(3)
65 30

65
g(2) g(0) g(1)

g(0) g(0)

65

160 160

10

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Characteristics of Dynamic Programming
•  Problem can be divided into stages with a decision

required at each stage
•  Each stage has a # of states associated
•  Decision at one stage transforms one state into a state in

the next stage

•  Given current state, the optimal decision for each
remaining states does not depend on next states or
decisions

•  There is a recursive relationship that identifies the optimal
decision for stage j+1, given stage j has already been
solved

•  The initial stages must be solvable by themselves

Exercise: What is a stage
in the Knapsack problem?

Exercise: What is a state
in the Knapsack problem?

E.g., g(2) doesnt
depends on g(3)

E.g., g(0) = 0

Source: http://mat.gsia.cmu.edu/classes/dynamic/node4.html

Sequence Alignment

12

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Motivations for Sequence Comparison

•  DNA is blue print for living organisms
⇒  Evolution causes mutations=changes in DNA
⇒  By comparing DNA seqs (or protein seqs) we can

infer evolutionary relationships betw seqs w/o
knowledge of the evolutionary events themselves
 (Be careful not to use wordings that imply you know
what happened during evolution.)

•  Sequence similarity is a foundation concept for
inferring what the sequences do. Why?

13

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Earliest Research in Seq Comparison

•  Doolittle et al. (Science, July 1983) searched for
platelet-derived growth factor (PDGF) in his own
DB. He found that PDGF is similar to v-sis
oncogene

 PDGF-2 1 SLGSLTIAEPAMIAECKTREEVFCICRRL?DR?? 34
p28sis 61 LARGKRSLGSLSVAEPAMIAECKTRTEVFEISRRLIDRTN
100

Source: Ken Sung

14

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

How To Define Sequence Similarity?
•  Hamming distance – among the most common

ways in computer science for measuring similarity
between two character strings. How many bits are
flipped, or how many characters are altered?

 ABCDEFGABCDEFG
 ||*|||**||||*|
 ABXDEFQWBCDEAG

 Can you suggest any improvements?

 DNASEQUENCECOMPARISON
 |**********|*********
 DEOXYRIBONUCLEICACIDSEQUENCECOMPARISON

What’s the best method generally depends on
what you expect biology will throw at you.

15

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Alignment

•  Key aspect of seq
comparison is seq
alignment

•  A seq alignment
maximizes the
number of
positions that are in
agreement in the
sequences

Sequence U

Sequence V

mismatch

match

indel

16

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Sequence Alignment: Poor Example

•  Poor seq alignment shows few matched positions
⇒  The two proteins are not likely to be homologous

No obvious match between
Amicyanin and Ascorbate Oxidase

17

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Sequence Alignment: Good Example

•  Good alignment usually has clusters of extensive
matched positions

⇒  The two proteins are likely to be homologous

good match between
Amicyanin and unknown M. loti protein

18

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

h

Alignment:
Simple-Minded Probability & Score

•  Define score S(A) by simple log likelihood as
–  S(A) = log(prob(A)) - [m log(s) + h log(s)], with log

(p/s) = 1
•  Then S(A) = #matches - µ #mismatches - δ #indels

Exercise: Derive µ and δ

19

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Global Pairwise Alignment:

Problem Definition
•  Given sequences U and V of lengths n and m,

then number of possible alignments is given by
–  f(n, m) = f(n-1,m) + f(n-1,m-1) + f(n,m-1)
–  f(n,n) ~ (1 + √2)2n+1 n-1/2

•  The problem of finding a global pairwise
alignment is to find an alignment A so that S(A) is
max among exponential number of possible
alternatives

Exercise: Explain the
recurrence above

20

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Global Pairwise Alignment:
Dynamic Programming Solution

•  Define an indel-similarity matrix s(.,.); e.g.,
–  s(x,x) = 2
–  s(x,y) = -µ, if x ≠ y

•  Then

This is the basic idea of the
Needleman-Wunsch algorithm

Exercise: What is the
effect of a large δ ?

21

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Needleman-Wunsch Algorithm (I)

•  Consider two strings S[1..n] and T[1..m]
•  Let V(i, j) be score of opt alignment betw S[1..i]

and T[1..j]

•  Basis:
–  V(0, 0) = 0
–  V(0, j) = V(0, j -1) - δ

•  Insert j times
–  V(i, 0) = V(i - 1, 0) - δ

•  Delete i times

Source: Ken Sung

22

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Needleman-Wunsch Algorithm (II)

•  Recurrence: For i>0, j>0

•  In the alignment, the last pair must be either
match/mismatch, delete, insert

Match/mismatch

Delete

Insert

Source: Ken Sung

 xxx…xx xxx…xx xxx…x_
 | | |
 xxx…yy yyy…y_ yyy…yy
Match/mismatch Delete Insert

23

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Example (I)
_ A G C A T G C

_ 0 -1 - 2 - 3 - 4 - 5 - 6 - 7

A - 1

C - 2

A - 3

A - 4

T - 5

C - 6

C - 7

Source: Ken Sung

24

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Example (II)
_ A G C A T G C

_ 0 -1 - 2 - 3 - 4 - 5 - 6 - 7

A - 1 2

C - 2

A - 3

A - 4

T - 5

C - 6

C - 7

Source: Ken Sung

25

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Example (III)
_ A G C A T G C

_ 0 -1 - 2 - 3 - 4 - 5 - 6 - 7

A - 1 2 1

C - 2

A - 3

A - 4

T - 5

C - 6

C - 7

Source: Ken Sung

26

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Example (IV)
_ A G C A T G C

_ 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7

A - 1 2 1 0 - 1 - 2 - 3 - 4

C - 2 1 1 ?

A - 3

A - 4

T - 5

C - 6

C - 7

3 2

Exercise: Can you tell from these entries what
Are the values of s(A,G), s(A,C), s(A,A), etc.?

Source: Ken Sung

27

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Example (V)
_ A G C A T G C

_ 0 -1 - 2 - 3 - 4 - 5 - 6 - 7

A - 1 2 1 0 - 1 - 2 - 3 -4

C - 2 1 1 3 2 1 0 -1

A - 3 0 0 2 5 4 3 2

A - 4 - 1 - 1 1 4 4 3 2

T - 5 - 2 - 2 0 3 6 5 4

C - 6 - 3 - 3 0 2 5 5 7

C - 7 - 4 - 4 - 1 1 4 4 7

Source: Ken Sung

What is the
alignment

corresponding
to this?

28

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Pseudo Codes
Create the table V[0..n,0..m] and P[1..n,1..m];
V[0,0] = 0;
For j=1 to m, set V[0,j] := v[0,j - 1] - δ ;
For i=1 to n, set V[i,0] := V[i - 1,0] - δ ;
For j=1 to m {
 For i = 1 to n {
 set V[i,j] := V[i,j - 1] - δ ;
 set P[i,j] := (0, - 1);
 if V[i,j] < V[i - 1,j] - δ then
 set V[i,j] := V[i - 1,j] - δ ;
 set P[i,j] := (- 1, 0);
 if (V[i,j] < V[i - 1, j - 1] + s(S[i],T[j])) then
 set V[i,j] := V[i - 1, j - 1] + s(S[i],T[j]);
 set P[i,j] := (- 1, - 1);
 }

}
Backtracking P[n,m] to P[0,0] to find optimal alignment;

Source: Ken Sung

29

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Analysis

•  We need to fill in all entries in the n×m matrix
•  Each entry can be computed in O(1) time
⇒ Time complexity = O(nm)
⇒ Space complexity = O(nm)

Source: Ken Sung

Exercise: Write down the memoized version of
Needleman-Wunsch. What is its time/space
complexity?

30

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Problem on Speed
•  Aho, Hirschberg, Ullman

1976
–  If we can only compare

whether two symbols are
equal or not, the string
alignment problem can
be solved in Ω(nm) time

•  Hirschberg 1978
–  If symbols are ordered

and can be compared,
the string alignment
problem can be solved in
Ω(n log n) time

•  Masek and Paterson 1980
–  Based on Four-Russian’s

paradigm, the string
alignment problem can
be solved in O(nm/log2
n) time

•  Let d be the total number
of inserts and deletes.
Thus 0 ≤ d ≤ n+m. If d is
smaller than n+m, can we
get a better algorithm?
Yes!

Source: Ken Sung

31

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

O(dn)-Time Algorithm

•  The alignment should be inside the 2d+1 band
⇒ No need to fill-in the lower and upper triangle
⇒ Time complexity: O(dn)

2d+1

Source: Ken Sung

32

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Example

•  d=3
A_CAATCC
AGCA_TGC

_ A G C A T G C

_ 0 -1 -2 -3

A -1 2 1 0 -1

C -2 1 1 3 2 1

A -3 0 0 2 5 4 3

A -1 -1 1 4 4 3 2

T -2 0 3 6 5 4

C 0 2 5 5 7

C 1 4 4 7

33

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Recursive Equation for O(dn)-Time Algo

Exercise: Write down the base
cases, the memoized version, and
the non-recursive version.

34

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Global Pairwise Alignment:
More Realistic Handling of Indels

•  In Nature, indels of several adjacent letters are
not the sum of single indels, but the result of one
event

•  So reformulate as follows:

35

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Gap Penalty

•  g(q):Νℜ is the penalty of a gap of length q
•  Note g() is subadditive, i.e, g(p+q) ≤ g(p) + g(q)

•  If g(k) = α + βk, the gap penalty is called affine
–  A penalty (α) for initiating the gap
–  A penalty (β) for the length of the gap

Source: Ken Sung

36

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

N-W Algorithm w/ General Gap Penalty (I)

•  Global alignment of S[1..n] and T[1..m]:
–  Denote V(i, j) be the score for global alignment

between S[1..i] and T[1..j]
–  Base cases:

•  V(0, 0) = 0
•  V(0, j) = g(j)
•  V(i, 0) = g(i)

Source: Ken Sung

37

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

N-W Algorithm w/ General Gap Penalty (II)

•  Recurrence for i>0 and j>0,

Match/mismatch

Insert T[k+1..j]

Delete S[k+1..i]

Source: Ken Sung

38

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Analysis

•  We need to fill in all entries in the n×m table

•  Each entry can be computed in O(max{n, m}) time
⇒ Time complexity = O(nm max{n, m})
⇒ Space complexity = O(nm)

Source: Ken Sung

39

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Local Alignment

•  Given two long DNAs, both of them contain the
same gene or closely related gene
–  Can we identify the gene?

•  Local alignment problem: Given two strings S
[1..n] and T[1..m], among all substrings of S and
T, find substrings A of S and B of T whose global
alignment has the highest score

Source: Ken Sung

40

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Brute-Force Solution

•  Algorithm:
–  For every substring A of S, for every substring B of

T, compute the global alignment of A and B
–  Return the pair (A, B) with the highest score

•  Time:
–  There are n2 choices of A and m2 choices of B
–  Global alignment computable in O(nm) time
–  In total, time complexity = O(n3m3)

•  Can we do better?

Source: Ken Sung

41

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Some Background

•  X is a suffix of S[1..n] if X=S[k..n] for some k≥1
•  X is a prefix of S[1..n] if X=S[1..k] for some k≤n

•  E.g.
–  Consider S[1..7] = ACCGATT
–  ACC is a prefix of S, GATT is a suffix of S
–  Empty string is both prefix and suffix of S

Source: Ken Sung

Which other string is both a prefix and suffix of S?

42

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Dynamic Programming for
Local Alignment Problem

•  Define V(i, j) be max score of global alignment of
A and B over
–  all suffixes A of S[1..i] and
–  all suffixes B of T[1..j]

•  Then, score of local alignment is
–  maxi,j V(i ,j)

Source: Ken Sung

43

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Smith-Waterman Algorithm

•  Basis:

 V(i, 0) = V(0, j) = 0

•  Recursion for i>0 and j>0:

Match/mismatch

Delete

Insert

Ignore initial segment

Source: Ken Sung

44

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Example (I)
•  Score for match = 2
•  Score for insert, delete,

mismatch = -1

_ C T C A T G C

_ 0 0 0 0 0 0 0 0

A 0

C 0

A 0

A 0

T 0

C 0

G 0

Source: Ken Sung

45

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Example (II)

_ C T C A T G C

_ 0 0 0 0 0 0 0 0

A 0 0 0 0 2 1 0 0

C 0 2 1 2 1 1 0 2

A 0 0 1 1 4 3 2 1

A 0 0 0 0 3 3 2 1

T 0 0 ?

C

G

1 2 2

•  Score for match = 2
•  Score for insert, delete,

mismatch = -1

Source: Ken Sung

46

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Example (III)

C_AT_G
CAATCG

_ C T C A T G C

_ 0 0 0 0 0 0 0 0

A 0 0 0 0 2 1 0 0

C 0 2 1 2 1 1 0 2

A 0 0 1 1 4 3 2 1

A 0 0 0 0 3 3 2 1

T 0 0 2 1 2 5 4 3

C 0 2 1 4 3 4 4 6

G 0 1 1 3 3 3 6 5

Source: Ken Sung

What is the other
optimal local
alignment?

An optimal
local alignment
is

47

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Analysis

•  Need to fill in all entries in the n×m matrix
•  Each entries can be computed in O(1) time
•  Finally, finding the entry with the max value
⇒ Time complexity = ??
⇒ Space complexity = O(nm)

Exercise: What is the time complexity?

Source: Ken Sung

Multiple Sequence Alignment

49

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Multiple Sequence Alignment

•  Multiple seq alignment maximizes the number of
positions in agreement across several sequences

 ... but it is so much more!

 (and much harder)

50

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Multiple Alignment:
Naïve Approach

•  Suppose we have 3 sequences to align, S1, S2,
S3, and they’re all moderatly similar to each other
with no one sequence serving as a bridge
between the other two.

How could we compute the best alignment if we had
all the time and space in the world?

51

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Multiple Alignment:
Naïve Approach

•  Suppose we alread have a dynamic programming
table for aligning S1 and S2, and suppose we
want to compare that with a third sequence S3.

How could we compute the best alignment with
more reasonable efficiency?

•  This requires O(2r) steps

What would the score function look like?

52

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

What is a domain

•  A domain is a component of a protein that is self-
stabilizing and folds independently of the rest of
the protein chain
–  Not unique to protein products of one gene; can

appear in a variety of proteins
–  Play key role in the biological function of proteins
–  Can be "swapped" by genetic engineering betw

one protein and another to make chimeras

•  May be composed of one, more than one, or not
any structural motifs (often corresponding to
active sites)

53

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Discovering Domain and Active Sites

•  How do we find the domain and associated active
sites in the protein above?

>gi|475902|emb|CAA83657.1| protein-tyrosine-phosphatase alpha
MDLWFFVLLLGSGLISVGATNVTTEPPTTVPTSTRIPTKAPTAAPDGGTTPRVSSLNVSSPMTTSAPASE
PPTTTATSISPNATTASLNASTPGTSVPTSAPVAISLPPSATPSALLTALPSTEAEMTERNVSATVTTQE
TSSASHNGNSDRRDETPIIAVMVALSSLLVIVFIIIVLYMLRFKKYKQAGSHSNSFRLPNGRTDDAEPQS
MPLLARSPSTNRKYPPLPVDKLEEEINRRIGDDNKLFREEFNALPACPIQATCEAASKEENKEKNRYVNI
LPYDHSRVHLTPVEGVPDSHYINTSFINSYQEKNKFIAAQGPKEETVNDFWRMIWEQNTATIVMVTNLKE
RKECKCAQYWPDQGCWTYGNIRVSVEDVTVLVDYTVRKFCIQQVGDVTNKKPQRLVTQFHFTSWPDFGVP
FTPIGMLKFLKKVKTCNPQYAGAIVVHCSAGVGRTGTFIVIDAMLDMMHAERKVDVYGFVSRIRAQRCQM
VQTDMQYVFIYQALLEHYLYGDTELEVTSLEIHLQKIYNKVPGTSSNGLEEEFKKLTSIKIQNDKMRTGN
LPANMKKNRVLQIIPYEFNRVIIPVKRGEENTDYVNASFIDGYRRRTPTCQPRPVQHTIEDFWRMIWEWK
SCSIVMLTELEERGQEKCAQYWPSDGSVSYGDINVELKKEEECESYTVRDLLVTNTRENKSRQIRQFHFH
GWPEVGIPSDGKGMINIIAAVQKQQQQSGNHPMHCHCSAGAGRTGTFCALSTVLERVKAEGILDVFQTVK
SLRLQRPHMVQTLEQYEFCYKVVQEYIDAFSDYANFK

54

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Domain/Active Sites as Emerging Patterns

•  How to discover active site and/or domain?
•  If you are lucky, domain has already been

modelled
–  BLAST,
–  HMMPFAM, …

•  If you are unlucky, domain not yet modelled
–  Find homologous seqs
–  Do multiple alignment of homologous seqs
–  Determine conserved positions
⇒  Emerging patterns relative to background
⇒  Candidate active sites and/or domains

55

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

In the course of evolution…

56

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Multiple Alignment: An Example

•  Multiple seq alignment maximizes number of
positions in agreement across several seqs

•  seqs belonging to same “family” usually have
more conserved positions in a multiple seq
alignment

Conserved sites

57

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

MSA: Naïve Approach

•  Let S(A) be the score of a multiple alignment A.
The optimal multiple alignment A of sequences
U1, …, Ur can be extracted from the following
dynamic programming computation of Sm1,…,mr:

•  This requires O(2r) steps
Exercise for the Brave:
Propose a practical approximation

58

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

MSA: Heuristic Approach
•  Progressive technique (a.k.a. hierarchical or tree)

–  Find pairwise alignments beginning with the most
similar pair and ending with most distant.

–  First stage is to build a guide tree
•  Using a clustering method such as neighbor-joining

–  Second stage is to add additional sequences onto
the MSA according to the guide tree.

•  Progressive alignments aren’t globally optimal.
–  When errors are made at any early step, they

propagate and grow
–  Progressive alignments are efficient enough to

handle hundreds of sequences.
Source: Wikipedia

Popular Tools for Sequence Comparison:
FASTA, BLAST, Pattern Hunter

60

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Scalability of Software

•  Increasing # of sequenced
genomes: yeast, human,
rice, mouse, fly, …

•  S/w must be “linearly”
scalable to large datasets

61

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Need Heuristics for
Pairwise Sequence Comparison

•  Time complexity for
optimal alignment is O(n2),
where n is seq length

⇒  Given current size of seq
databases, use of optimal
algorithms is not practical
for database search

•  Heuristic techniques:
–  BLAST
–  FASTA
–  Pattern Hunter
–  MUMmer, ...

•  Speed up:
–  20 min (optimal

alignment)
–  2 min (FASTA)
–  20 sec (BLAST)

Exercise: Describe MUMer

62

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Basic Idea: Indexing & Filtering

•  Good alignment includes short identical, or
similar fragments

⇒  Break entire string into substrings, index the
substrings

⇒  Search for matching short substrings and use as
seed for further analysis

⇒  Extend to entire string find the most significant
local alignment segment

63

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

BLAST in 3 Steps
Altschul et al, JMB 215:403-410, 1990

•  Similarity matching of
words (3 aa’s, 11 bases)
–  No need identical words

•  If no words are similar,
then no alignment
–  Won’t find matches for

very short sequences

•  MSP: Highest scoring pair
of segments of identical
length. A segment pair is
locally maximal if it cannot
be improved by extending
or shortening the
segments

•  Find alignments w/ optimal
max segment pair (MSP)
score

•  Gaps not allowed
•  Homologous seqs will

contain a MSP w/ a high
score; others will be
filtered out

64

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

BLAST in 3 Steps
Altschul et al, JMB 215:403-410, 1990

Step 1
•  For the query, find the list of high scoring words

of length w

Image credit: Barton

65

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

BLAST in 3 Steps
Altschul et al, JMB 215:403-410, 1990

Step 2
•  Compare word list to db & find exact matches

Image credit: Barton

66

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

BLAST in 3 Steps
Altschul et al, JMB 215:403-410, 1990

Step 3
•  For each word match, extend alignment in both

directions to find alignment that score greater
than a threshold s

Image credit: Barton

67

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Spaced Seeds
•  111010010100110111 is an example of a spaced seed model

with
–  11 required matches (weight=11)
–  7 “don’t care” positions

 GAGTACTCAACACCAACATTAGTGGCAATGGAAAAT…
 || ||||||||| ||||| || ||||| ||||||
 GAATACTCAACAGCAACACTAATGGCAGCAGAAAAT…
 111010010100110111

•  11111111111 is the BLAST seed model for comparing DNA
seqs

Who cares which bits you check first? Doesn’t it all add up
to the same amount of effort and the same results?

68

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Observations on Spaced Seeds

•  Seed models w/ different shapes can detect
different homologies
–  the 3rd base in a codon “wobbles” so a seed like

110110110… should be more sensitive when
matching coding regions

⇒  Some models detect more homologies
- More sensitive homology search
–  PatternHunter I

⇒  Use >1 seed models to hit more homologies
–  Approaching 100% sensitive homology search
–  PatternHunter II Exercise: Why does

the 3rd base wobble?

69

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

CAA?A??A?C??TA?TGG?
|||?|??|?|??||?|||?
CAA?A??A?C??TA?TGG?
111010010100110111
 111010010100110111

PatternHunter I
Ma et al., Bioinformatics 18:440-445, 2002

•  BLAST’s seed usually
uses more than one hit to
detect one homology

⇒  Wasteful

•  Spaced seeds uses fewer
hits to detect one
homology

⇒  Efficient

TTGACCTCACC?
|||||||||||?
TTGACCTCACC?
11111111111
 11111111111

1/4 chances to have 2nd hit
next to the 1st hit 1/46 chances to have 2nd hit

next to the 1st hit

70

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

PatternHunter I
Ma et al., Bioinformatics 18:440-445, 2002

Proposition. The expected number of hits of a
weight-W length-M model within a length-L region of
similarity p is (L – M + 1) * pW

Proof.

For any fixed position, the prob of a hit is pW.
There are L – M + 1 candidate positions.
The proposition follows.

71

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Implication
•  For L = 1017

–  BLAST seed expects
(1017 – 11 + 1) * p11 =
1007 * p11 hits

–  But ~1/4 of these overlap
each other. So likely to
have only ~750 * p11
distinct hits

–  Our example spaced seed
expects (1017 – 18 + 1) *
p11 = 1000 * p11 hits

–  But only 1/46 of these
overlap each other. So
likely to have ~1000 * p11
distinct hits

Spaced
seeds

likely to
 be more
 sensitive
& more
efficient

72

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Sensitivity of PatternHunter I

Image credit: Li

73

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Speed of PatternHunter I
•  Mouse Genome

Consortium used
PatternHunter to
compare mouse
genome & human
genome

•  PatternHunter did the
job in a 20 CPU-days ---
it would have taken
BLAST 20 CPU-years!

Nature, 420:520-522, 2002

74

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

How to Increase Sensitivity?

•  Ways to increase sensitivity:
–  “Optimal” seed
–  Reduce weight by 1
–  Increase number of spaced seeds by 1

•  Intuitively, for DNA seq,
–  Reducing weight by 1 will increase number of

matches 4 folds
–  Doubling number of seeds will increase number of

matches 2 folds
•  Is this really so?

75

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

How to Increase Sensitivity?
•  Ways to increase

sensitivity:
–  “Optimal” seed
–  Reduce weight by 1
–  Increase number of

spaced seeds by 1

•  For L = 1017 & p = 50%
–  1 weight-11 length-18

model expects 1000/211
hits

–  2 weight-12 length-18
models expect 2 *
1000/212 = 1000/211 hits

⇒  When comparing
regions w/ >50%
similarity, using 2
weight-12 spaced seeds
together is more
sensitive than using 1
weight-11 spaced seed!

Exercise: Prove this claim

76

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

PatternHunter II
Li et al, GIW, 164-175, 2003

•  Idea
–  Select a group of spaced

seed models
–  For each hit of each

model, conduct extension
to find a homology

•  Selecting optimal multiple
seeds is NP-hard

•  Algorithm to select
multiple spaced seeds
–  Let A be an empty set
–  Let s be the seed such

that A ⋃ {s} has the
highest hit probability

–  A = A ⋃ {s}
–  Repeat until |A| = K

•  Computing hit probability
of multiple seeds is NP-
hard

But see also Ilie & Ilie, “Multiple spaced seeds for
homology search”, Bioinformatics, 23(22):2969-2977, 2007

77

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

One weight-12

Two weight-12

One weight-11

Sensitivity of PatternHunter II
•  Solid curves: Multiple (1, 2,

4, 8,16) weight-12 spaced
seeds

•  Dashed curves: Optimal
spaced seeds with weight
= 11,10, 9, 8

⇒  “Double the seed number”
gains better sensitivity
than “decrease the weight
by 1”

se
ns
iti
vi
ty

Image credit: Ma

78

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Expts on Real Data

•  30k mouse ESTs (25Mb) vs 4k human ESTs (3Mb)
–  downloaded from NCBI genbank
–  “low complexity” regions filtered out

•  SSearch (Smith-Waterman method) finds “all”
pairs of ESTs with significant local alignments

•  Check how many percent of these pairs can be
“found” by BLAST and different configurations of
PatternHunter II

79

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

In fact, at 80%
similarity, 100%
sensitivity can

be achieved
using 40

weight-9 seeds

Results

Image credit: Ma

80

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Farewell to the Supercomputer Age
of Sequence Comparison!

Image credit: Bioinformatics Solutions Inc

Concluding Remarks

82

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

What have we learned?
•  General methodology

–  Dynamic programming

•  Dynamic programming applications
–  Pairwise Alignment

•  Needleman-Wunsch global alignment algorithm
•  Smith-Waterman local alignment algorithm

–  Multiple Alignment

•  Important tactics
–  Indexing & filtering (BLAST)
–  Spaced seeds (Pattern Hunter)

Questions?

84

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

Acknowledgements

•  Some slides on popular sequence alignment
tools are based on those given to me by Bin Ma
and Dong Xu

•  Some slides on Needleman-Wunsch and Smith-
Waterman are based on those given to me by Ken
Sung

85

Copyright 2010 © Limsoon Wong & Lisa Tucker-Kellogg

References
•  S.F.Altshcul et al. “Basic local alignment search tool”, JMB,

215:403--410, 1990
•  S.F.Altschul et al. “Gapped BLAST and PSI-BLAST: A new generation

of protein database search programs”, NAR, 25(17):3389--3402, 1997
•  S.B.Needleman, C.D.Wunsch. “A general method applicable to the

search for similarities in the amino acid sequence of two proteins”, JMB,
48:444—453, 1970

•  T.F.Smith, M.S.Waterman. “Identification of common molecular
subsequences”, JMB, 147:195—197, 1981

•  B. Ma et al. “PatternHunter: Faster and more sensitive homology
search”, Bioinformatics, 18:440—445, 2002

•  M. Li et al. “PatternHunter II: Highly sensitive and fast homology
search”, GIW, 164—175, 2003

•  D. Brown et al. “Homology Search Methods”, The Practical
Bioinformatician, Chapter 10, pp 217—244, WSPC, 2004

