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Outline
• Gene structure, computational gene finding

• Historical case study: GRAIL method
– Position weight matrices
– Briefly: indels and frame-shifts in coding regions

• Similar ideas for predicting transcription factor 
(TF) binding sites
– Use of homology to estimate significance

• Tutorial: Review protein structure optimization



Gene Structure Basics

A brief refresher

Some slides here are “borrowed” from Ken Sung
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Gene

• A gene is a sequence of DNA that encodes a 
protein or an RNA molecule

• About 30,000 – 35,000 (protein-coding) genes in 
human genome

• For gene that encodes protein
– In Prokaryotic genome, one gene corresponds to 

one protein
– In Eukaryotic genome, one gene can corresponds 

to more than one protein because of the process 
“alternative splicing”
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Introns and Exons
• Eukaryotic genes contain 

introns & exons
– Introns are seq that are 

ultimately spliced out of 
mRNA

– Introns normally satisfy 
GT-AG rule, viz. begin w/ 
GT & end w/ AG

– Each gene can have 
many introns & each 
intron can have 
thousands bases

• Introns can be very long
• An extreme example is a 

gene associated with 
cystic fibrosis in human:
– Length of 24 introns 

~1Mb
– Length of exons ~1kb
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Typical Eukaryotic Gene Structure

• Unlike eukaryotic genes, a prokaryotic gene typically 
consists of only one contiguous coding region

Image credit: Xu
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Reading frame #1
ATG
GCT
TAC
GCT
TGC

Reading frame #2
TGG
CTT
ACG
CTT
GA.

Reading frame #3
GGC
TTA
CGC
TTG
A..

ATGGCTTACGCTTGAForward strand:

Reading frame #4
TCA
AGC
GTA
AGC
CAT

Reading frame #5
CAA
GCG
TAA
GCC
AT.

Reading frame #6
AAG
CGT
AAG
CCA
T..

TCAAGCGTAAGCCATReverse strand:

Reading Frame

• Each DNA segment has six possible reading 
frames

How do I get this 
reverse strand?
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Open Reading Frame (ORF)

• ORF is a segment of DNA with a start codon and 
an in-frame stop codon at the two ends and no in-
frame stop codon in the middle

• Each ORF has a fixed reading frame

NB: Other definitions are also used. Most impt aspect is that there is no stop codon in the middle.

stop stop

ORF

start
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Coding Region

• Each coding region (exon or whole gene) has a 
fixed translation frame

• A coding region always sits inside an ORF of 
same reading frame

• All exons of a gene are on the same strand
• Neighboring exons of a gene could have different 

reading frames
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ATG GCT TGG GCT TTA A -------------- GT TTC CCG GAG AT ------ T GGG  

exon 1 exon 3exon 2

Frame Consistency

• Neighboring exons of a gene should be frame-
consistent

Exercise: Define frame consistency mathematically



Overview of Gene Finding

Some slides here are “borrowed” from Mark Craven
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What is Gene Finding?
• Find all coding regions 

from a stretch of DNA 
sequence, and construct 
gene structures from the 
identified exons

• Can be decomposed into
– Find coding potential of a 

region in a frame
– Find boundaries betw 

coding & non-coding  
regions

Image credit: Xu
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Computational Approaches

• Search-by-signal: find genes by identifying the 
sequence signals involved in gene expression
– E.g., Transcription factor binding sites (TFBS)

• Search-by-content: find genes by statistical 
properties that distinguish protein coding DNA 
from non-coding DNA

• Search-by-homology: find genes by homology 
(after translation) to proteins

• State-of-the-art computational systems for gene 
finding usually combine these strategies

What alternatives are there?
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Relevant Signals 
for Search-by-Signals

• Transcription initiation
– Promoter 

• Transcription termination
– Terminators

• Translation initiation
– Ribosome binding sites
– Initiation codons 

• Translation termination
– Stop codons

• RNA processing
– Splice junction Image credit: Xu
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How Search-by-Signal Works

• There are 2 impt regions in a promoter seq
–10 region, ~10bp before TSS
–35 region, ~35bp before TSS 

• Consensus for –10 region in E. coli is TATAAT, 
but few promoters actually have this seq

• Recognize promoters by
– weight matrices
– probabilistic models
– neural networks, …
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How Search-by-Content Works
• Encoding a protein affects 

stats properties of a DNA 
seq
– some amino acids used 

more frequently
– diff number of codons for 

diff amino acids
– for given protein, usually 

one codon is used more 
frequently than others

⇒ Estimate prob that a given 
region of seq was “caused 
by” its being a coding seq

Image credit: Craven
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How Search-by-Homology Works

• Translate DNA seq in all reading frames

• Search against protein db

• High-scoring matches suggest presence of 
homologous genes in DNA

⇒ You can use BLASTX for this



18

Copyright 2009 © Limsoon Wong

Search-by-Content Example: 
Codon Usage Method

• Staden & McLachlan, 1982
• Process a seq w/ “window” of length L
• Assume seq falls into one of 7 categories, viz.

– Coding in frame 0, frame 1, …, frame 5
– Non-coding

• Use Bayes’ rule to determine prob of each 
category

• Assign seq to category w/ max prob
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Image credit: Craven
in frame i.
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Image credit: Craven
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Image credit: Craven

• Pr(codingi) is the same for 
each frame if window size 
fits same number of codons 
in each frame

• Otherwise, consider relative 
number of codons in 
window in each frame
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Image credit: Craven
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Genbank 
or nr

candidate gene

BLAST 
search

sequence alignments 
with known genes,

alignment p-values

Image credit: Xu

Search-by-Homology Example: 
Gene Finding Using BLAST

• High seq similarity typically implies homologous 
genes 

⇒ Search for genes in yeast seq using BLAST
⇒ Extract Feature for gene identification



24

Copyright 2009 © Limsoon Wong

BLAST hits

sequence

• Searching all ORFs 
against known genes in nr 
db helps identify an initial 
set of (possibly 
incomplete) genes

Image credit: Xu
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• A (yeast) gene starts w/ 
ATG and ends w/ a stop 
codon, in same reading 
frame of ORF 

• Have “strong” coding 
potentials, measured by, 
preference models, 
Markov chain model, ...

• Have “strong” translation 
start signal, measured by 
weight matrix model, ...

• Have distributions wrt 
length, G+C composition, 
...

• Have special seq signals 
in flanking regions, ...

known 
genes

0

%known 
non-

genes

coding potential

gene length distribution



GRAIL  (Historically Important 
Program for Gene Finding)

Signals  assoc w/ coding regions 
Models for coding regions

Signals assoc w/ boundaries 
Models for boundaries

Other factors & information fusion
Some slides here are “borrowed” from Ying Xu
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Coding Signal
• Freq distribution 

of dimers in 
protein seq

• E.g., Shewanella
– Ave freq is 5%
– Some amino 

acids prefer to 
be next to 
each other

– Some amino 
acids prefer to 
be not next to 
each other

Shewanella is a bacterial marine 
species, chosen for genome sequencing

Image credit: Xu
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Coding Signal

• Dimer preference implies dicodon (6-mers like AAA 
TTT) bias in coding vs non-coding regions

• Relative freq of a dicodon in coding vs non-coding
– Freq of dicodon X (e.g, AAA AAA) in coding region 

= total number of occurrences of X divided by total 
number of dicodon occurrences

– Freq of dicodon X (e.g, AAA AAA) in noncoding 
region = total number of occurrences of X divided by 
total number of dicodon occurrences

Exercise: In human genome, freq of dicodon “AAA AAA”  is ~1% in coding
region vs ~5% in non-coding region. If you see a region with many “AAA AAA”, 
would you guess it is a coding or non-coding region?
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There are 
43 = 64 codons
46 = 4096 dicodons
49 = 262144 tricodons

Why Dicodon (6-mer)?
• Codon (3-mer)-based 

models are not as info rich 
as dicodon-based models

• Tricodon (9-mer)-based 
models need too many 
data points 

• To make stats reliable, 
need ~15 occurrences of 
each X-mer

⇒ For tricodon-based 
models, need at least 
15*262144 = 3932160 
coding bases in our 
training data, which is 
probably not going to be 
available for most 
genomes
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Coding Signal

• Most dicodons show bias toward either coding or 
non-coding regions

⇒ Foundation for coding region identification

⇒ Dicodon freq are key signal used for coding 
region detection; all gene finding programs use 
this info

Regions consisting of dicodons that 
mostly tend to be in coding regions are 

probably coding regions; otherwise 
non-coding regions
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Shewanella Bovine

Coding Signal

• Dicodon freq in coding vs non-coding are 
genome-dependent

Image credit: Xu
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Coding Signal
• In-frame vs any-frame 

dicodons
• In-frame dicodon freq 

provide a more sensitive 
measure than any-frame 
dicodon freq

ATG TTG GAT GCC CAG AAG.....

in-frame dicodons

not in-frame dicodons
In-frame:
ATG TTG
GAT GCC
CAG AAG

Not in-frame:
TGTTGG, ATGCCC
AGAAG ., GTTGGA
AGCCCA, AGAAG ..

any-frame
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Dicodon Preference Model

• The preference value P(X) of a dicodon X is 
defined as

P(X) = log FC(X)/FN(X)
where

FC(X) is freq of X in coding regions
FN(X) is freq of X in non-coding regions

This is an example of a “log odds ratio.”
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Dicodon Preference Model’s Properties

• P(X) = 0 if X has same freq in coding and non-
coding regions

• P(X) > 0 if X has higher freq in coding than in non-
coding region; the larger the diff, the more 
positive the score is

• P(X) < 0 if X has higher freq in non-coding than in 
coding region; the larger the diff, the more 
negative the score is
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Dicodon Preference Model Example
• Suppose AAA ATT, AAA 

GAC, AAA TAG have the 
following freq:

FC(AAA ATT) = 1.4%
FN(AAA ATT) = 5.2%

FC(AAA GAC) = 1.9%
FN(AAA GAC) = 4.8%

FC(AAA TAG) = 0.0%
FN(AAA TAG) = 6.3%

• Then
P(AAA ATT) = –0.57
P(AAA GAC) = –0.40
P(AAA TAG) = –∞,
treating STOP codons 

differently

⇒ A region consisting of 
only these dicodons is 
probably a non-coding 
region
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Frame-Insensitive 
Coding Region Preference Model

• A frame-insensitive coding preference Sis(R) of a 
region R can be defined as

Sis(R) = ΣX is a dicodon in R P(X)

• R is predicted as coding region if Sis(R) > 0

NB. This model is not commonly used
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In-Frame 
Dicodon Preference Model

• The in-frame + i preference value Pi(X) of a 
dicodon X is defined as

Pi(X) = log FCi(X)/FN(X)

where 
FCi(X) is freq of X in coding regions 

at in-frame + i positions
FN(X) is freq of X in non-coding regions

ATG TGC CGC GCT P0
P1

P2
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In-Frame 
Coding Region Preference Model

• The in-frame + i preference Si(R) of a region R can 
be defined as

Si(R) = ΣX is a dicodon at in-frame + i position in R Pi(X)

• R is predicted as coding if Σi=0,1,2 Si(R)/|R| > 0

NB. This coding preference model is commonly 
used
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Coding Region Prediction: 
An Example Procedure 

• Calculate all ORFs of a DNA segment
• For each ORF

– Slide thru ORF w/ increment of 10bp
– Calculate in-frame coding region preference 

score, in same frame as ORF, within window of 
60bp

– Assign score to center of window
• E.g., forward strand in a particular frame...

preference scores

0

+5

-5
Image credit: Xu
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Problem with Coding Region Boundaries

• Making the call: coding or non-coding and where 
the boundaries are

⇒ Need training set with known coding and non-
coding regions to select threshold that includes 
as many known coding regions as possible, and 
at the same time excludes as many known non-
coding regions as possible

coding 
region? where to draw the 

boundaries?

where to draw 
the line?

Image credit: Xu
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Types of Coding Region Boundaries

• Knowing boundaries of coding regions helps 
identify them more accurately

• Possible boundaries of an exon

• Splice junctions:
– Donor site:  coding region | GT
– Acceptor site: CAG | TAG | coding region

• Translation start
– in-frame ATG

{ translation start, 
acceptor site } 

{ translation stop, 
donor site } 

Image credit: Xu

What do you expect at 
translation stop?
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Signals for Coding Region Boundaries

• Splice junction sites and translation starts have 
certain distribution profiles

• For example, ...
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Acceptor Site (Human Genome)

• If we align all known acceptor sites (with their 
splice junction site aligned), we have the 
following nucleotide distribution

• Acceptor site: CAG | TAG | coding region
Image credit: Xu
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Donor Site (Human Genome)

• If we align all known donor sites (with their splice 
junction site aligned), we have the following 
nucleotide distribution

• Donor site:  coding region | GT
Image credit: Xu
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What Positions Have “High” Info Content?

• For a weight matrix, information content of each 
column is calculated as 

– ΣX∈{A,C,G,T} F(X)*log (F(X)/0.25)

• When a column has evenly distributed 
nucleotides, its information content is lowest

• Only need to look at positions having high 
information content
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Information Content Around 
Donor Sites in Human Genome

• Information content
column –3 = – .34*log (.34/.25) – .363*log 

(.363/.25) – .183* log (.183/.25) – .114* log 
(.114/.25) = 0.04

column –1 = – .092*log (.92/.25) – .03*log 
(.033/.25) – .803* log (.803/.25) – .073* log 
(.73/.25) = 0.30

Image credit: Xu
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• Weight matrix model 
– Build a weight matrix for donor, acceptor, 

translation start site, respectively
– Use positions of high information content

Weight Matrix Model for Splice Sites

Image credit: XuNucleotide distribution around human donor sites
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Just to make sure you know what I mean …

• Give me 3 DNA seq of length 10:
– Seq1 = ACCGAGTTCT
– Seq2 = AGTGTACCTG
– Seq3 = AGTTCGTATG

• Then the weight matrix is …

1-mer pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10

A 3/3 0/3 0/3
C 0/3 1/3 1/3
G 0/3 2/3 0/3
T 0/3 0/3 2/3

Exercise: Fill in the rest of the table
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Splice Site Prediction: A Procedure 

• Add up freq of corr letter in corr positions:

• Make prediction on splice site based on some 
threshold

AAGGTAAGT: .34 + .60 + .80 +1.0 + 1.0 
+ .52 + .71 + .81 + .46 = 6.24

TGTGTCTCA: .11 + .12 + .03 +1.0 + 1.0 
+ .02 + .07 + .05 + .16 = 2.56

Image credit: Xu
Nucleotide distribution around human donor sites
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Other Factors Considered by GRAIL

• G+C composition affects dicodon distributions
• Length of exons follows certain distribution
• Other signals associated with coding regions

– periodicity 
– structure information 
– .....

• Pseudo genes
• ........
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GC Background Matters
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Info Fusion by ANN in GRAIL

Image credit: Xu

Artificial Neural Network



Indel & Frame-Shift in Coding Regions

Problem definition
Indel & frameshift identification

Indel correction
An iterative strategy

Some slides here are “borrowed” from Ying Xu
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Indels in Coding Regions

• Indel = insertion or deletion in coding region

ATG GAT CCA CAT …..
ATG GAT CA CAT …..

ATG GAT CTCA CAT …..
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Effects of Indels on Exon Prediction

• Indels may cause shifts in reading frames & 
affect prediction algos for coding regions

pref
scores

exon

indel

Image credit: Xu
Think: How do indels arise?
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Key Idea for Detecting Frame-Shift

• Preferred reading frame is reading frame w/ 
highest coding score

• Diff DNA segments may have diff preferred 
reading frames

⇒Segment a coding sequence into regions w/ 
consistent preferred reading frames corr  well w/ 
indel positions

⇒ Indel identification problem can be solved as a 
sequence segmentation problem!

Image credit: Xu
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Optimal Segmentation Problem
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Frame-Shift Detection by Seq Segmentation

• Partition seq into segs so that
– Each seg has diff preferred frame from the 

previous segment. 
– Each segment has >30 bps to excessive small 

fluctuations
– Sum of coding scores in the chosen frames over 

all segments is maximized
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Frame-Shift Detection: 
A Simplified Treatment

• Given DNA sequence a1 … an

• Define key quantities

C(i, r) = max score on a1 … ai, 
w/ the last segment in frame r 

• Then

maxr∈{0, 1, 2}C(n, r) is optimal solution
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Frame-Shift Detection: C(i,r)

• To calculate C(i,r), there are 3 possible cases for 
each position i:
– Case 1: no indel occurred at position i
– Case 2: ai is an inserted base
– Case 3: a base has been deleted in front of ai

⇒ C(i, r) = max { Case 1, Case 2, Case 3 }
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Frame-Shift Detection: Case 1

• No indel occurs at position i. Then

C(i,r) = C(i–1, r’) + Pr (ai–5…ai)

a1 a2 …… ai-5 ai-4 ai-3 ai-2 ai-1 ai

di-codon 
preference

r’’ r’ r

1 2 0

2 0 1

0 1 2
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a1 a2 …… ai-6 ai-5 ai-4 ai-3 ai-2  ai-1 ai

di-codon 
preference

Frame-Shift Detection: Case 2

• ai-1 is an inserted base. Then

C(i,r) = C(i–2, r’) + Pr (ai–6...a i–2ai)

r’’ r’ r

1 2 0

2 0 1

0 1 2
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a1 a2 …… ai-5 ai-4 ai-3 ai-2  ai-1 ai

add a neutral 
base “C”

Frame-Shift Detection: Case 3
• A base has been deleted in front of ai. Then

C(i, r) = C(i–1, r’’) + Pr’ (ai–5… ai–1C) + 
Pr (ai–4… ai–1Cai)

r’’ r’ r

1 2 0

2 0 1

0 1 2
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Frame-Shift Detection: Initiation

• Initial conditions,
C (k, r) = –∝, k < 6
C (6, r) = Pr (a1 … a6)

• This is a dynamic programming (DP) algorithm; the 
equations are DP recurrences

Exercise: How to modify the recurrence
so that each fragment is at least 30bp?
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Frame-Shift Detection: 
Determining Indel Positions

• Calculation of  maxr∈{0, 1, 2}C(i, r) gives an optimal 
segmentation of a DNA sequence

• Tracing back the transition points---viz. case 2 & 
case 3---gives the segmentation results

frame 0

frame 1

frame 2

Image credit: Xu
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Frame-Shift Detection: 
Determine Coding Regions

• For given H1 and H2 (e.g., = 0.25 for noncoding and 
0.75 for coding), partition a DNA seq into segs so 
that each seg has >30 bases & coding values of 
each seg are consistently closer to one of H1 or H2
than the other

H1
H2

segmentation 
result

Image credit: Xu
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Frame-Shift Detection: Finally…

• Overlay “preferred reading-frame segs” & 
“coding segs” gives coding region predictions 
regions w/ indels

Image credit: Xu
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actual 
indels

predicted 
indels

What Happens When Indels 
Are Close Together?

• Our procedure works well when indels are not too 
close together (i.e., >30 bases apart)

• When indels are too close together, they will be 
missed...
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Handling Indels That Are Close Together

• Employ an iterative process, viz
– Find one set of indels 
– Correct them 
– Iterate until no more indels can be found

actual 
indels

predicted 
indels

predicted indels
in iteration 2
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Gene Finding

• In practice most gene finding is done 
experimentally, not computationally.

• Technological advances in experimental methods 
have changed the playing field.

• Similar computational approaches are used for 
other gene annotation or sequence analysis 
goals.

• This case provided nice examples of data mining 
(supervised machine learning) and dynamic 
programming in use.



Transcription Factor 
Binding Site Prediction
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Transcription Factor

• TFs bind DNA with high affinity and specificity
– Specificity doesn’t mean a single continguous 

unique sequence.   
– Preferred motif often encoded by position weight 

matrix (PWM)
– Other determinants of binding: context, cofactor, 

epigenetics, etc., cannot infer from sequence.
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Naïve TFBS prediction

• Build a model (an information representation, 
such as a PWM) for the binding site preference.
– Find previously observed binding sites or over-represented 

motifs in target genes.

• Predict binding sites anywhere a match is found.
– Regardless of threshold, sensitivity/specificity not very good.
– How could we estimate the significance of predictions?

• Using homology we can get much better 
predictions.   
– Homologous proteins often have homologous transcriptional 

regulation.  Functional binding sites are more conserved 
than other parts of the homologous sequence. 

– How could we estimate the significance of predictions?
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CSC Method
Phylogenetic Verification

• Identify candidate motifs (MSMs) for the TF in each species 
using a very permissive threshold.

• Identify neutral intergenic regions for the species and build 
a statistical model of the their evolutionary divergence.

• When considering whether {motif-α in species-a, motif-β in 
species-b, ...} are functional binding sites for the TF, 
– Compute the best motif for the common ancestor
– Pose the null hypothesis that they’re not functional sites, and 

therefore they diverged from the common ancestor like 
neutral intergenic regions.

– Test whether the motifs are much more conserved across 
species than expected for neutral intergenic regions.  This 
gives the significance.
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Summary of 
CSC’s Phylogenetic Verification

• If you use homology to predict what’s the binding 
site, then you can’t use homology again to 
evaluate your confidence.

• This is not the same but similar to an earlier idea:
Recall from data mining that we must keep the 
test data separate from the training data
– Use the training data to build the model and make 

the predictions
– Use the test data to judge the quality of the model-

building methods.



Any Question?
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Tutorial

Clarifying previous concepts
Protein Structure Optimization
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Let’s set up a simple example

• Start with the protein in some conformation
– For simplicity, choose fully extended poly-ALA.
– Set (x,y,z) for each atom.  Ignore water. 

• Define an ultra-simple potential function
– Enforce covalent bond geometry.   How?
– Prohibit steric overlap (Lennard-Jones)
– What’s the potential energy of this protein?

• Simulate the forces and motions (i.e., Molecular 
Dynamics)
– What would happen?
– What if we add electrostatics to the potential function?
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Molecular Dynamics

• The forces are too complex for an analytical 
solution.  Must solve numerically by taking tiny 
steps and recomputing the new forces
– What’s wrong with taking big steps?
– What’s wrong with taking tiny steps?  Nothing…

• Instead of simulating the forces and computing a 
trajectory, can we just solve for the optimum 
point of the potential function?
– What is the difference between these approaches?
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Protein Structure Optimization

• What would happen using a local optimizer like 
gradient descent or hill-climbing?

• What would  happen using a genetic algorithm?
• What would  happen using simulated annealing?

– Generate a random step in the neighborhood.  
– Choose what the temperatures will be (annealing schedule)
– If a random step causes better energy, take the step.  If a 

random step causes worse energy, use the Bolzmann 
probability distribution to decide whether to take it.

– During initial steps with high temperature, the Bolzmann 
probability distribution is very flat.  

– During the later steps with low temperature, the Bolzmann 
probability distribution is very peaky.
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Summary: structure optimization 

• Certain problems are very approachable
– Simulating short trajectories where extensive 

water not important
– Local optimization to “relax” a structure 

• Certain types of problems are common but not 
easy
– Global optimization 

For example, to find structures that are consistent 
with experimental measurements.
If we have a larger amount of experimental data, does 
that make the global optimization problem easier or 
harder?
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