CS2220: Introduction to Computational Biology
Lecture 2: Essence of Knowledge Discovery

Outline
e Overview of Supervised e Other Methods
Learning — K-Nearest Neighbour
— Decision Trees — Support Vector Machines
— Bayesian Approach
e Decision Trees Ensembles — Hidden Markov Models
— Bagging
- Cs4
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Overview of Supervised Learning

Computational Supervised Learninyg

* Also called classification

» Learn from past experience, and use the learned
knowledge to classify new data

* Knowledge learned by intelligent algorithms
* Examples:

— Clinical diagnosis for patients
— Cell type classification
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ERANUS
Data ===

» Classification application involves > 1 class of
data. E.g.,

— Normal vs disease cells for a diagnosis problem

« Training data is a set of instances (samples,
points) with known class labels

e Test datais a set of instances whose class labels
are to be predicted
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Y
_ _ TINUS
Typical Notations S
e Training data
{<X11 y1>1 <X21 y2>’ e <Xm’ ym>}

where x; are n-dimensional vectors

and y; are from a discrete space Y.

E.g., Y ={normal, disease}

 Test data
{{ul, ?),{u2,?), ..., {uk, ?),}
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Process

Training data: X

A classifier, a mapping, a hypothesis

f(U)
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Relational Representation E___lg
of Gene Expression Data

n features (order of 1000)
gene; gene, gene; gene, ... Qgene,

m Samples -
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| TS
Features (aka Attributes) -

« Categorical features
— color = {red, blue, green}

» Continuous or numerical features
— gene expression
— age
— blood pressure

e Discretization
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INUS
An Example =
Outlook Temp Humidity Windy] class
Sunny 75 70 true | Play
Sunny 80 90 true |Don’t
Sunny 85 85 false [Don’t
Sunny 02 95 true | Don’t
Sunny 69 70 false |Play
Overcast 72 90 true | Play
Overcast 83 78 false |Play
Overcast 64 65 true |Play
Overcast 81 75 false |Play
Rain 71 80 true | Don’t
Rain 65 70 true | Don’t
Rain 75 80 false |Play
Rain 68 80 false |Play
Rain 70 96 false |Play
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Overall Picture of E_lé
Supervised Learning

Labelled | Algorithms
i B

Biomedical Decision trees
Financial Emerging patterns
Government SVM

Scientific Neural networks

Classifiers (Medical Doctors)
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Evaluation of a Classifier

* Performance on independent blind test data

« K-fold cross validation: Given a dataset, divide it
into k even parts, k-1 of them are used for
training, and the rest one part treated as test data

« LOOCYV, a special case of K-fold CV

* Accuracy, error rate

» False positive rate, false negative rate, sensitivity,
specificity, precision
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Requirements of E_Eé
Biomedical Classification

* High accuracy/sensitivity/specificity/precision

* High comprehensibility
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ZINUS
Importance of Rule-Based I\/Ietho**""'"""""

» Systematic selection of a small number of
features used for the decision making

= Increase the comprehensibility of the knowledge
patterns

e C4.5 and CART are two commonly used rule
induction algorithms---a.k.a. decision tree
induction algorithms
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SoNUS
Structure of Decision Trees e

a1 / @ Root node
@ Internal nodes
> a2
@ g Leaf nodes

o Ifx;>a, & Xx,>a, thenit's A class
e C4.5, CART, two of the most widely used
< Easy interpretation, but accuracy generally unattractive
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rd
Every path from root
to a leaf forms a @g CED
decision rule é)
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B & u-lé

Brief History of Decision Trees ~ =

CLS (Hunt et al. 1966)--- cost driven
<

CART (Breiman et al. 1984) --- Gini Index

ID3 (Quinlan, 1986) --- Information-driven

C4.5 (Quinlan, 1993) --- Gain ratio + Pruning ideas

18
ENUS
A Simple Dataset -
QOutlook Temp Humidity Windy class
Sunny s 70 true | Play
Sunny 80 90 true | Don’t
Sunny 85 85 false [Don’t
Sunny 72 95 true |[Don’t
Sunny 69 70 false |Play
Overcast 7 90 true | Play
Overcast 83 78 false |Play
Overcast 64 65 true | Play
Overcast 81 s false |Play
Rain 71 80 true |Don’t
Rain 65 70 true |Don’t
Rain 75 80 false |Play
Rain 68 80 false |Play
Rain 70 96 false |Play
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ERANUS
A Decision Tree ===

suArmv/ \re}in

q overcast -
=75 false
= true
3

Py | o 3
z

2

e Construction of atree is equivalent to determination of the
root node of the tree and the root node of its sub-trees

Exercise: What is the accuracy of this tree?
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SINUS
Outlook Temperature Humidity (Wind  PlayTennis
Sunny Hot High | Weak _
Outlook
ran R An
! Sunny | ||Overcast | |Rain Example
Source: Anthony Tung
e \
Humidity Yes wind
High Normal Strong Weak
4 \ / \
Yes No Yes
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ZINUS
Most Discriminatory Feature -"’“'-=-""

» Every feature can be used to partition the training
data

» If the partitions contain a pure class of training
instances, then this feature is most
discriminatory
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y ZINUS
Example of Partitions -
» Categorical feature

— Number of partitions of the training data is equal to
the number of values of this feature

e Numerical feature
— Two partitions
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Total 14 training
instances

A categorical feature is
partitioned based on its
number of possible values

Copyright 2010 © Limsoon Wong

<

e Outlook =
sunny

Outlook =
overcast

o Outlook =
rain

BE &
B>
Instance # | Outlook Temp| Humidity Windy! class
1 Sunny 7is 70 true |Play
2 Sunny 80 90 true |Don’t
3 Sunny 85 85 false |Don’t
4 Sunny iz 95 true |Don’t
5 Sunny 69 70 false |Play
6 Overcast 72 90 true |Play
7 Overcast 83 78 false |Play
8 Overcast 64 65 true |Play
9 Overcast 81 75 false |Play
10 Rain 7t 80 true |Don’t
11 Rain 65 70 true |Don’t
12 Rain 745 80 false |Play
13 Rain 68 80 false Play
14 Rain 70 96 false Play

iE

1,2,3,4,5
P,.D,D,D,P

10,11,12,13,14
D,D, P PP

12/28/2009
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= o s Temperature

__ 5,8,11,13,14
e Py <=70

PP, D,P P

szsawaazssasag
E
£
=
2

Total 14 training <
instances

A numerical feature is
generally partitioned by
choosing a “cutting point”
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EBANUS
Steps of Decision Tree Constructi"""""""'

e Select the “best” feature as the root node of the
whole tree

« Partition the dataset into subsets using this
feature so that the subsets are as “pure” as
possible

» After partition by this feature, select the best
feature (wrt the subset of training data) as the
root node of this sub-tree

* Recursively, until the partitions become pure or
almost pure

Copyright 2010 © Limsoon Wong
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ZINUS
, . B
Let's Construct a Decision Tree Together—
QOutlook Temp Humidity Windy] class
Sunny 3 70 true |Play
Sunny 80 920 true | Don’t
Sunny 85 85 false |Don’t
Sunny 72 95 true | Don’t
Sunny 69 70 false |Play
Overcast 77 90 true | Play
Overcast 83 78 false |Play
Overcast 64 65 true | Play
Overcast 81 75 false |Play
Rain 71 80 true | Don’t
Rain 65 70 true | Don’t
Rain 75 80 false |Play
Rain 68 80 false |Play
Rain 70 96 false |Play
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Three Measures to Evaluate E_._lg

Which Feature is Best
* Giniindex
* Information gain

* Information gain ratio
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EANUS
Gini Index ==

. Let U = {Ci, ..., Ci} be all the classes. Suppose we are currently at a node
and D is the set of those samples that have been moved to this node. Let f be a feature and d[f]
be the value of the feature f in a sample d. Let S be a range of values that the feature f can take.
Then the Gini index for f in D for the range § is defined as

- 2
gni?(s) =1- 3 (|{de D |deC; dif] € S}|)

Ciel DI

The purity of a split of the value range § of an attribute f by some split-point into subranges S,
and Ss is then defined as

. de D |d[f]e S .
gmx})(ﬁ \Sa) = 2 % * 9”’*!})(8)
S€{5:,53}
we choose the feature f and the split-point p that minimizes

gim}) (51 ,-Sé]. over all possible alternative features and split-points.

Gini index can be thought of as the expected value of the ratio of the diff of two arbitrary
specimens to the mean value of all specimens. Thus the closer it is to 1, the closer you are to the
expected “background distribution” of that feature. Conversely, the closer it is to 0, the more
“unexpected” the feature is.
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NUS
ko

RR _ diff of two arbitrary specimen in S
gini (S) - mean specimen in S
prob(getting two specimen of diff classin S)

prob(getting specimen of someclassin S)

> prob(getting specimen of class i in S)=* prob(getting specimen of class jin S)
i#]j

1

= 1—2 prob(getting specimen of classiin S)?

—1— Z (|{a‘€D | d ey d[f]eSH)z

Ciel DI

Gini index can be thought of as the expected value of the ratio of the diff of two arbitrary
specimens to the mean value of all specimens. Thus the closer it is to 1, the closer you are to the
expected “background distribution” of that feature. Conversely, the closer it is to 0, the more
“unexpected” the feature is.
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ZINUS
. . BRIy
Gini Index of Outlook -
Outlook Temp Humidity Windy class
Sunny 7570 true | Play
Sunny 80 90 tue (Dom’t  ...po_,_ 5 (HdEDIdEC df€ S}
Sunny 85 85 fasse |Dont ! ?zu( D] )
Sunny 72 95 true | Don’t
Sunny 69 70 false |Play
Overcast 72 90 true | Play
Overcast 83 78 false | Play Gni?(8,%) = ¥ W.qmmg)
Overcast 64 65 true | Play ’ selsns) 12l .
Overcast 81 75 false | Play
Rain 71 80 true | Don’t
Rain 65 70 true | Don’t
Rain 75 80 false |Play
Rain 68 80 false | Play
Rain 70 %6 false |Play
e gini(Sunny) =1 —(2/5)? - (3/5)?=0.48
e gini(Overcast) =1 - (4/4)2—-(0/5)2=0
« gini(Rain) = 1 — (3/5)2 — (2/5)2 = 0.48
e gini(Outlook) =5/14*0.48 + 4/14*0 + 5/14 * 0.48 = 0.34
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PNUS
Characteristics of C4.5/CART Trees =

* Single coverage of training data (elegance)

» Divide-and-conquer splitting strategy

* Fragmentation problem = Locally reliable but
globally insignificant rules

Copyright 2010 © Limsoon Wong
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Example Use of Decision Tree Methods: Proteomics
Approaches to Biomarker Discovery

* In prostate and bladder cancers (Adam et al.
Proteomics, 2001)

* In serum samples to detect breast cancer (Zhang
et al. Clinical Chemistry, 2002)

* In serum samples to detect ovarian cancer
(Petricoin et al. Lancet; Li & Rao, PAKDD 2004)

Copyright 2010 © Limsoon Wong

Decision Tree Ensembles
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EANUS
N

of Srgepmrs

Motivating Example

* hy, h,, h;areindep classifiers w/ accuracy = 60%
» C,, C,aretheonly classes
tis atestinstancein C;
h(t) = argmaXxcci,czy [{hj €{hy, hy, hg} | hi(t) = C}|
Then prob(h(t) =C,)
= prob(h,(t)=C; & hy(t)=C, & h5(t)=Cy) +
prob(h,(t)=C, & h,(t)=C, & h,(t)=C,) +
prob(h,(t)=C, & h,(t)=C, & h,(t)=C,) +
prob(h,()=C, & h,()=C, & hy(t)=C,)
=60% * 60% * 60% + 60% * 60% * 40% +
60% * 40% * 60% + 40% * 60% * 60% = 64.8%

Copyright 2010 © Limsoon Wong

TINUS
Bagging ===

« Proposed by Breiman (1996)

» Also called Bootstrap aggregating

 Make use of randomness injected to training data

Copyright 2010 © Limsoon Wong
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Main ldeas

Original training set -

e
"
8

. ‘e
¢ . »
.

: *, Draw 100 samples
R N *s,with replacement
. *

Copyright 2010 © Limsoon Wong
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INUS
Decision Making by Bagging -""'"--""*

‘Given a new test sample T
bagged(T) = argmaxe, eyl {l € H | Bi(T) = 4|

where U = {Cy, ..., Cy}

Exercise: What does the above formula mean?
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ZINUS
CS4 ==
« Proposed by Li et al (2003)

¢ CS4: Cascading and Sharing for decision trees

e Doesn’'t make use of randomness

Copyright 2010 © Limsoon Wong
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EERNUS
Main Ideas W=
........................ ey

_.@®

— @\' tree-1
@ e

total k trees < tree-2

Selection of root nodes is in a cascading manner!

Copyright 2010 © Limsoon Wong
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ZAONUS
Decision Making by CS4 «-""'-—-"‘"'

ruled”, rule™, -+ rule;’”,

neg neg neg
rule; ", ruley™, - rule;,
k1
Score?®(T) = Zcovemge(rulefos)
i=1
ko
Score™(T) = Zcovemge(rule?eg)
i=1

Not equal voting

Copyright 2010 © Limsoon Wong
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TINUS
Summary of Ensemble Classifier""'"""""'

not be correct
when

applied to
AdaBoost.M1 training data

Exercise: Describe the 3 decision tree
ensemble classifiers not explained in this ppt

Copyright 2010 © Limsoon Wong
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Other Machine Learning Approaches

Outline

» K-Nearest Neighbour
Support Vector Machines
* Bayesian Approach
Hidden Markov Models

Exercise: Name and describe one other
commonly used machine learning method

Copyright 2010 © Limsoon Wong
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K-Nearest Neighbours

How kNN Works

¢ Given a new case ¢ A common “distance”
measure betw samples x

¢ Find k “nearest” andy is

neighbours, i.e., k most
similar points in the \/Ef(f[f] —ylfh?

training data set

where f ranges over
e Assign new case to the features of the samples
same class to which most
of these neighbours
belong

Exercise: What does the formula above mean?

Copyright 2010 © Limsoon Wong
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ZINUS
l_-_-'

of Srgepmrs

lllustration of kNN (k=8)

Neighborhood

5 of class ©
3 of class 4+

-0

Image credit: Zaki
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SANUS
Some Issues -
e Simple to implement

* But need to compare new case against all training
cases

= May be slow during prediction

* No need to train
* But need to design distance measure properly
= May need expert for this

e Can’t explain prediction outcome
= Can’t provide a model of the data

Copyright 2010 © Limsoon Wong
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Example Use of kNN: Segmentation of E....}_J..é
White Lesion Matter in MRI

* Anbeek et al, Neurolmage
21:1037-1044, 2004

e Use kNN to automated
segmentation of white
matter lesions in cranial MR
images

* Rely on info from T1-
weighted, inversion
recovery, proton density-
weighted, T2-weighted, &

Fig. 3. Classification of a patient with moderate lesion load. (A) FLAIR

fl u | d attenu at|0 n | nvers | on image, (B) manual segmentation, (C) probability map, (D) segmentations
derived from probability map with different thresholds: black: probability

recovery scans (P) = 0, blue: 0=P<0.3, green: 0.3<P<0.5, yellow: 05<P <08, red:
08<P=l

Copyright 2010 © Limsoon Wong
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- - E&
example Use of kin: Ovarian Cancer Diagn s

Based on SELDI Proteomic Data

« Lietal, Bioinformatics
20:1638-1640, 2004

e Use kNN to diagnose
ovarian cancers using
proteomic spectra

&5 -

percentage of eorreet prediction

H H H | L | | L |
 Data set is from Petricoin 80 m m = m i

0
et al., Lancet 359:572-577, Munrber of top ranked m/z Tatios
2002

Fig. 1. Minimum, median and maximum of percentages of correct
prediction as a function of the number of top-ranked m/z ratios in
50 independent partitions into learning and validation sets.
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Example Use of khh: Prediction of Compoun 5 =
Signature Based on Gene Expr Profiles

¢ Hamadeh et al, Toxicological
Sciences 67:232-240, 2002

i

e Store gene expression
profiles corr to biological
responses to exposures to

known compounds whose &*

toxicological and

pathological endpoints are

well characterized e'ipducers

¢ Use kNN to infer effects of S S T VLI
unknown compound based 5g§§é§§
Fits
g &

ion
g

Peroxisome prolifefatdrs “

§

Fold Induction/Rej
Log, (Treated/Control)
&

8

§

on gene expr profiles
induced by it
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Support Vector Machines
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EANUS
Basic Idea ===

Image credit: Zien

(a) Linear separation not possible w/o errors
(b) Better separation by nonlinear surfaces in input space

(c ) Nonlinear surface corr to linear surface in feature space.
Map from input to feature space by “kernel” function @

= “Linear learning machine” + kernel function as classifier

Copyright 2010 © Limsoon Wong

SANUS
Linear Learning Machines S

* Hyperplane separating the x’s and o’s points is
given by (WeX) + b = 0, with (WeX) = EjW[j]*X[j]
= Decision function is [Im(X) = sign((WeX) + b))

Copyright 2010 © Limsoon Wong
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EBINUS
Linear Learning Machines "_"":'""

* Solution is a linear combination of training points
X, with labels Y,

WIIT = Zou Y X il
with ay, >0, and Y, = %1
= IIm(X) = sign(Z, o, *Y * (X, *X) + b)

1

“data” appears only in dot product!

Copyright 2010 © Limsoon Wong

ERANUS
Kernel Function B

o lIm(X) = sign(Z, o, *Y,* (X, 2X) + b)

o svm(X) = sign(Z, 0, *Y * (OX,*» ®X) + b)
= svm(X) = sign(Z, o, *Y, * K(X,,X) + b)
where K(X,,X) = (©X,* ®X)

Copyright 2010 © Limsoon Wong
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_ TINUS
Kernel Function =
o svm(X) = sign(Z, o, *Y * K(X,,X) + b)
= K(A,B) can be computed w/o computing ®

* In fact replace it w/ lots of more “powerful”
kernels besides (A * B). E.g.,

— K(A,B) = (A« B)
— K(A,B) = exp(~ || A B|]2/ (2*5)), ...

Copyright 2010 © Limsoon Wong

EBINUS

How SVM Works G===
o svm(X) = sign(Z, o, *Y,* K(X,,X) + b)
» To find ay is a quadratic programming problem

max: 2o, — 0.5* %, X, o *ay, Y XY K (X, Xp)

subject to: X, a,*Y, =0

and for all o, C 2 o 20
« To find b, estimate by averaging

Y = Zyay Yk K (X, Xi)

for all o, 20

Copyright 2010 © Limsoon Wong
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Example Use of svm: Prediction of Proten'NUS
Protein Interaction Sites From Sequences

Koike et al, Protein
Engineering Design &
Selection 17:165-173, 2004

Identification of protein-
protein interaction sites is
impt for mutant design &
prediction of protein-
protein networks

Interaction sites were 3
predICted here USIng SVM & Legend: green=TP, white=TN, yellow=FN, red=FP
prOfi |es Of A: human macrophage migration inhibitory factor
Seq . enti a| |y/s pat|a| |y B & C: the binding proteins
neighbouring residues

Example Use of SVM: Prediction of GeneNUS
Function From Gene Expression

Brown et al., PNAS 91:262-267,
2000

Use SVM to identify sets of §
genes w/ a c’mon function

based on their expression g
profiles z

Use SVM to predict

. 4 s N . PR

functional roles of alpha W ok he rocod
. Hmw&u

un Ch araCterlzed yeaSt Fig. 1.  Expression profile of YPLO37C compared with the MYGD class of

i cytoplasmic ribosomal protelns, YPLO37C s classifled as aribs Inbythe

ORFS b ased on th elr SVMs but is not included in the class by MYGD. The figure shows the expression

1 1 profile for YPLO3ZC, along with standard deviation bars for the class of cytaplas-

ex p ression p rOfI I €s mic ribosomal proteins. Ticks along the x axis represent the beginnings of exper-

Imental series.

12/28/2009
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example Use of sv: Recognition of 9
Protein Translation Initiation Sites

R sty
af Srgepre

5 flank exan intron exon intron exon 3rflank
E—{ RS SRR GRERE s ; ECRE R AR
Z N | } i //
i 5 } } b4 S DNA:A,CGT
transeription p N [ o
N N | | /
\ y o ‘
Y el [ 4
i N } } 2 i
| 5 5
ARSERS ENETER R AR RN mRNA: A,C,G,U
coding region

T

e Zien et al., Bioinformatics 16:799-807, 2000

e Use SVM to recognize protein translation initiation sites from
genomic sequences

¢ Raw data set is same as Liu & Wong, JBCB 1:139-168, 2003

Copyright 2010 © Limsoon Wong
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EEINUS
Bayes Theorem ==
P(d P
Perd) = £ “;)(:;] (2)

e P(h) = prior prob that hypothesis h holds
e P(d|h) = prob of observing data d given h holds
e P(h|d) = posterior prob that h holds given observed data d

Copyright 2010 © Limsoon Wong
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EANUS
u--m--w

eTEngEea

Bayesian Approach

 Let Hbe all possible classes. Given a test
instance w/ feature vector {f, =v,, ..., f, = v}, the
most probable classification is given by
arg]naxhjeffp(hjlfl =t™M,.-- ,.fﬂ = vﬂ}
* Using Bayes Theorem, rewrites to

P(fi=v1,...,fn = vnlh;) 5 P(hy)
ATEMAXy, . c i Plfi=v1,....fn=1vn)

* Since denominator is independent of h;, this
simplifies to
argmaxhjeHP(fl =U,..., fa= 'Unlhj) *P(h‘])

Copyright 2010 © Limsoon Wong
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NUS
e

- An Example
Training samples
. @ . Number of GREEN objects —
o" : ° : : '..:o.. » Frior probabhty for GRAEN = Toial numbsr af abjecis - 40/60
AR A Mumber of RED objects
® e o0 oe umber o b _
.: -:°.- PR N ¢ Frior probabiliy for RED = Total number of ahjects - 20/60
ole% ®e ® g

A testing instance X

Number of GREEN in the vicinity af £ 1/40

Likelihood of X given GREEN =
Total number of GREEN cases

Likelihood of X given RED = Num;;i;;‘:fjiii?;;;:gz:fX = 3 / 20
FPosterior probabibity of X being GREEN = We Classify X as R ED
Frior probability of GREEN x Likelihood of X given GREEN . . -
a1 since its class membership
6 40 60 H H
Faosterior probability af X being RED = aCh I eves the IargeSt pOSterlor
Frior probability of RED ¥ Likelhoad af X given RED probabl I |ty
2.3 1
"B 20 0

Source:

Copyright 2010 © Limsoon Wong
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INUS
Naive Bayes G-

But estimating P(f,=v,, ..., f,=v,|h;) accurately may
not be feasible unless training data set is
sufficiently large

+ “Solved” by assuming f,, ..., f, are conditionally
independent of each other

e Then argmaxy, e g P(fi =w1,..., fo = vnlly) = P(hy)
= argmaxy g HP(.& = wilh;) = P(h;)

« where P(h;) and P(fi=v|h;) can often be estimated
reliably from typical training data set

Exercise: How do you estimate P(h;) and P(f=v;|h;)?

Copyright 2010 © Limsoon Wong
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Abstractly, the probability model for a classifier is a conditional model
p(C|F,..., F,)
over a dependent class variable C with @ small number of outcomes or classes, conditional on several feature variables 7, through & The

problem is that if the number of features w is large or when a feature can take on a large number of values, then basing such a model on
probability tables is infeasible. WWe therefore reforrmulate the model to make it rmore tractable

Using Bayes'theorem, we write
_p(@) p(F,.. . FC)
Ty Y o

In practice we are only interested in the numerator of that fraction, since the denominator does not depend on © and the values of the features
F, are given, 5o that the denominator is effectively constant. The numerator is equivalent to the joint probability model

p(C Fy,. . F)
which can be rewritten as follows, using repeated applications of the definition of conditional probability:
pC Fy,. . Fy)
=p(C) p(R, ..., F|C)
=p(C) p(R|C) p(Fz, . .., F4|C, F1)
= p(C) p(F1|C) p(F|C, FY) p(Fs, ..., F|C, i, Fy)
= p(C) p(F1|C) p(Fa|C, 1) p(Fa|C, Fr, Fa) p(Fy, - .., FR|C, By, Fa, Fy)

and so forth. Now the "naive” conditional independence assumplions come into play: assume that each feature 7, is conditionally independent
of every other feature E far j ?é 1. This means that

p(F|C, Fy) = p(F|C)
and 50 the joint model can be expressed as

p(C, B, .. E) = p(C) p(F1|C) p(F|C) p(F5|C) ---
=p(C) [[p(EID).

Source: Wikipedia

i=1

Copyright 2010 © Limsoon Wong
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Independence vs E___'-_!é
Conditional Independence
* Independence: P(A,B) =P(A) * P(B)
* Conditional Independence: P(A,B|C) = P(A|C) * P(B|C)
* Indep does not imply conditional indep

— Consider tossing a fair coin twice
* Ais event of getting head in 1st toss
* B is event of getting head in 2nd toss
» Cis event of getting exactly one head

Then A={HT, HH}, B={HH, TH} and C={HT, TH}
P(A,B|C) =P({HH}|C)=0

P(A|C) = P(A,C)/P(C) =P({HT})/P(C)=(1/4)/(1/2) =1/2
Similarly, P(B|C) =1/2
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Macromolecular Crystallization

Hennessy et al., Acta Cryst
D56:817-827, 2000

Xtallization of proteins
requires search of expt
settings to find right
conditions for diffraction-
quality xtals

BMCD is a db of known
xtallization conditions

Use Bayes to determine
prob of success of a set of
expt conditions based on
BMCD

Figure 1

Crystallization parameter dependency graph. The graph represents the
parameters included in the calculation of the estimated probability of
success and their dependencies. A connecting are from pH to buffer
indicates that the probability distribution for the buffer may depend on
the value of the pH. The lack of a connecting are between two parameters
reflects conditional independence (the probability distribution for a
parameter is independent of the value of the other parameter).
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What is a HMM -

« HMM is a stochastic

generative model for a,
sequences a,

* Defined by model ‘ ‘
parameters

— finite set of states S
— finite alphabet A

— transition prob matrix T
— emission prob matrix E
* Move from state to state

according to T while emitting
symbols according to E

Copyright 2010 © Limsoon Wong
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The Order of a HMM ——

* In nth order HMM, T & E depend on all n previous
states

* E.g., for 1st order HMM, given emissions X = X;, X,
..., & states S=s,, S,, ..., the prob of this seq is

Prob{X,8) = ['[ Prob(gs;) = ['[ Efgi|s) w F($imq, 5)
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Using HMM ==

* Given the model parameters, compute the
probability of a particular output sequence. Solved
by the forward algorithm

* Given the model parameters, find the most likely
sequence of (hidden) states which could have
generated a given output sequence. Solved by the
Viterbi algorithm

* Given an output sequence, find the most likely set
of state transition and output probabilities. Solved
by the Baum-Welch algorithm

Exercise: Describe these algorithms

Copyright 2010 © Limsoon Wong
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Example: Dishonest Casino -
e Casino has two dices: e Game:
— Fair dice — You bet $1
« P()=1/6,i=1..6 — You roll
— Loaded dice — Casino rolls
* P()=1/10,i=1.5 — Highest number wins $2
« P(i)=1/2,i=6
) ) ] e Question: Suppose we
» Casino switches betw fair played 2 games, and the
& loaded die with prob 1/2. sequence of rolls was 1, 6,
Initially, dice is always fair 2, 6. Were we likely to have
been cheated?
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“Visualization” of Dishonest Casing” =

12
1/2 1/2
1/2
Emission Matrix Transition Matrix
E(1|Fair)= 1/6 E1|loaded)= 1/10  T(Loaded,loaded)= 1/2
H2|Fair)= 1/6 E2|Loaded)= 1/10  T(Loaded,Fair)= 1/2
E3|Fair)= 1/6 H3|Loaded)= 1/10  T{Fair,Fair)= 1/2
H4|Fair)= 1/86 H4|Loaded)= 1/10 T(Fair,Loaded) = 1/2

ES|Fair)= 1/6  HS|Loaded)= 1/10 T(?,Fainp = 1.0
E6|Fair)= 1/€  H6|Loaded)= 1/2 T(?Loaded)= 0.0

Copyright 2010 © Limsoon Wong

1,6,2,6? 95 U
We were probably cheated...

Probf X, § = Fair, Falr, Fair, Fair) = BE(1|Fair) «T(?, Falr] s
E(§|Fatr) « T'(Fatr, Fatr] &
E(2Fair) « T(Fatr, Fatr] «
E(§|Fair) « T(Fatr, Fatr)
1 1 1 1 1 1 1
= Eiﬁiiﬁgiﬁiiﬁgiﬁiﬁaglﬁ E
= 9.6451 510"

ProbiX. & = Falr. Foaded; Fatr, Loaded) EQ1|Fair) « T(?. Falr) s
E(f| Loaded) » T(Fatr, Loaded) &
E(2] Fair s F(Eoaded, Fafr) =

E(6| Eoaded) » T'(Fatr, Eoaded)
= gl ===
= 3.08064 10~
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Example Use of ium: Protein Families Modefig—

- Baldi et al., PNAS 91:1059-
1063, 1994

e HMM s used to model
families of biological
sequences, such as
kinases, globins, &
immunoglobulins

« Bateman et al., NAR 32:D138-
D141, 2004

s Fic. 1. HMM architecture. § and E are the start and end states.
¢ HMMis used to model Sequence of main states m is the backbone. Side states d; (resp. 7))

6190 families Of protein correspond to deletions (resp. insertions).
domains in Pfam
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Example Use of HMM: Gene F|nd|ng E-__“_lé

in Bacterial Genomes

e Borodovsky et al., NAR
23:3554-3562, 1995

’I,ﬁ -
3 a :‘é
+ Investigated statistical ol va oPa 3
L]
features of 3 classes (wrt ' o, Toe %:i;% ki
level of codon usage bias) o e wee . %.E LI
of E. coli genes Bld . ?"";
= E g 98, % a L
g e ol
Ll o an o =1
q R e
* HMM for nucleotide oa o
sequences of each class o | 9"*%. LI B
was developed R
7 T T

Figuare 4. Distnbution of GeneMark gores for 126 new gencs. The 5 anis
represgiis. the, saare gosnpited by (RI5_BCG] program. ¥ ants poppesepis e
seore computed by Gi4 ) program. The, quadons x < 04, ¥ <4 i
emiDi¥ siace @ threshold of (4 was applied.
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Concluding Remarks...

What have we learned?

e Decision Trees

* Decision Trees Ensembles

— Bagging
- CS4

» Other Methods
— K-Nearest Neighbour
— Support Vector Machines
— Bayesian Approach
— Hidden Markov Models

Copyright 2010 © Limsoon Wong
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* Weka is a collection of machine learning
algorithms for data mining tasks. The algorithms
can either be applied directly to a dataset or
called from your own Java code. Weka contains
tools for data pre-processing, classification,
regression, clustering, association rules, and
visualization.

Exercise: Download a copy of WEKA. What are the names
of classifiers in WEKA that correspond to C4.5 and SVM?

Copyright 2010 © Limsoon Wong

12/28/2009

41



12/28/2009

SINUS
Acknowledgements -

* Most of the slides used in this ppt came from a
tutorial that | gave with Jinyan Li at the 8th
European Conference on Principles and Practice
of Knowledge Discovery in Databases, Pisa, Italy,
20-24 September 2004

 The dishonest casino example came from slides |
inherited from Ken Sung

 The “indep vs conditional indep” example came
from Kwok Pui Choi

Copyright 2010 © Limsoon Wong

86|
TINUS
References B

e L. Breiman, et al. Classification and Regression Trees.
Wadsworth and Brooks, 1984

e L. Breiman, Bagging predictors, Machine Learning, 24:123--
140, 1996

e L. Breiman, Random forests, Machine Learning, 45:5-32, 2001

¢ J. R. Quinlan, Induction of decision trees, Machine Learning,
1:81--106, 1986

¢ J. R. Quinlan, C4.5: Program for Machine Learning. Morgan
Kaufmann, 1993

e C. Gini, Measurement of inequality of incomes, The Economic
Journal, 31:124--126, 1921

e Jinyan Li et al., Data Mining Techniques for the Practical
Bioinformatician, The Practical Bioinformatician, Chapter 3,
pages 35—70, WSPC, 2004

Copyright 2010 © Limsoon Wong

42



12/28/2009

ERANUS
References ===

e Y. Freund, et al. Experiments with a new boosting algorithm, ICML
1996, pages 148--156

e T. G. Dietterich, An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and
randomization, Machine Learning, 40:139--157, 2000

e J. Li, et al. Ensembles of cascading trees, ICDM 2003, pages
585—588

* Naive Bayesian Classification, Wikipedia,

e Hidden Markov Model, Wikipedia,

Copyright 2010 © Limsoon Wong

43



