CS2220: Introduction to Computational Biology
Lecture 3: Gene Feature Recognition
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Some Relevant Biology

Central Dogma

Replication

Transcription Translation

DNA s RN A s Pr0t IN

Su %_{ M
‘ﬁ:“* 1‘?5“ R
¥ . . AAUGGUACCGAUGACCUGGAGC . . .
- . .AATGGTACCGATGACCTG. . . - - - TRLRPLLALLALWP. . .
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NUS

Players in
Protein
Synthesis

Protein synthesis
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NUS
&=

Transcription

* Synthesize mRNA from e Additional “steps” for
one strand of DNA Eukaryotes

— An enzyme RNA — Transcription produces
polymerase temporarily pre-mRNA that contains
separates double- both introns & exons
stranded DNA — 5’ cap & poly-A tail are

— It begins transcription at added to pre-mRNA
transcription start site — RNA splicing removes

- A> A C>C,G>G, & introns & mMRNA is made
T>U — mRNA are transported

— Once RNA polymerase out of nucleus

reaches transcription
stop site, transcription
stops
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__________ Translation -

* Synthesize protein from e 43=64 diff codons

MRNA = Codons are not 1-to-1 corr

to 20 amino acids
e« Each amino acid is

encoded by consecutive )
seq of 3 nucleotides, e All organisms use the same

called a codon decoding table (except some
mitochrondrial genes)

* The decoding table from
codon to amino acid is « Amino acids can be
called genetic code classified into 4 groups. A
single-base change in a
codon is usu insufficient to
cause a codon to code for an
amino acid in diff group

Copyright 2010 © Limsoon Wong
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EANUS
Genetic Code ===

e Start codon

T C A [+]

- ATG (COde for M) TTT Phe [F] | TCT Ser [S] | TAT Tyr [¥] | TGT Cys [C] | T

p| TTCPRe[F] | TOC Ser[S] | TAC Tye [¥] | TGC Oy (] | €

TTALeu[L] | TCA Ser [3] | TAA Tor [end] | TGA Ter [end] | A
S d F| | TTGLeu[L] | TCG Ser [S] | TAG Ter [end] | TGG Trp [W] |G |T
L] i h
to p coaon r CTT Leu[L] | CCT Pro[P] | CAT His [H] CGT Arg[R] | T |1
_ TAA s c CTCLeu[L] | CCC Pro[P] | CAC His [H] CGC Arg [R] c|r
¢ CTALeu[L] | CCAPro[P] || CAAGK[Q] ||CGAArg[R] ||A il
TAG P CTGLen[L] | CCGPro[P] CAGGN[Q] | COGAR[R] |G |p
° ATT Tle [I] | ACT Thr [T] | AAT Asn [N] AGT Ser [5] T [®
_ TGA : A ATC Tle [I) | ACC Thr [T] || AAC Asn (1] || AGC Ser [3] C f
¢ |ATA D= [T | ACATh[T] | 444 Lys [E] | AGA Arg[R] | A |¢
i ATG Met [M] | ACG Thr [T] | AAG Lys (K] |AGG Arg[R] || G |1
: GTT Val[V] | GCT Ala[A] | GAT Asp[D] | GGT Gw[G] | T ;

@ GTC Vel [V] || GCC Ala [A] || GAC Asp [D] || GGC Gly [G] &

GTA Va[V] | GCA Ala[A]  GAA Gu [E] | GGAGH[G] | A

GTGVal [V] | GCG Ala[A] | GAG Glw [E] | GGG Gly [G] G
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Example

Example of computational translation - notice the indication of (alternative) start-codons:

VIRTUAL RIBOSOME

Translation table: Standard 3GCO

>Seql
Reading frame: 1

M v L 5 2R A DX OGNV K ARWGIEKVYV G G HAZRETGARESRL
5' ATGGETECTETCTECCECCEACARGEECARTETCARGECCECCTEEEECAREETI TEECEECCACECTECABAGTATEECECAGRGECCCTE 20
B T 1))

E RM F L 5 F P TTIEKT Y F P HTFDIL S35 HG S A Q V KGH G
GAGAGGATGTTCCTGAGCTTCCCCACCACCRAGACCTACTTCCCCCACTTCGACCTGAGCCACGGCTCCGCGCAGGTCRAGGGCCACGGE 180

2]

GCGARGGTEECCECCECECTEACCARAGCGET GERACACCTGEACGACCTECCCEETECCCTETCTGAACTGAGTIBACCTGCACGCTCAC 270
.................. P T B T O o N B B S T T

K L. R VD P V N F KL L 353 HS35 L L Vv. T LA S3 HTILUZP 3 DFT P
AAGCTECCTGTGEACCCEETCARCTTCARGCTICTGAGCCACTCCCTGCTGETCACCCTGECCTCCCACCTCCCCAGTEATTICACCCEC 360
FE TP (EE PIDII) wenens B0 e e e s

n

n

A vV HAS5LDZXTFLANTY STV VLTIS5HXTYR *
5' GCEETCCACGCCICCCTGEACARGITCTIGECCARCEGTGAGCACCGTIGCTGACCTCCARATACCGTTAR 429
............... IR S S RS § § I

Bnnotation key:
>>> : START codon (strict)

))) @ START codon (altermative)
ST O

3 A XKV A A ALTI K AVYVEU HRTLT DU DT LUZPSGH ATLSETLSUDTULEH®BZAZEH

Recognition of
Translation Initiation Sites




5 filank exon intron exon intron exon 3rfilank
) | |
s
Y o | bid / DNA:ACGT
transcription \\ L | g ya
\ Yl I /
Y | [ /
il |7 ’
! &) L 7
[RSERP SRS Y S RRRERS) mRNA: A, C.G,U
coding region

ElBiuA AU o|Enueaudg
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EBINUS
A Sample cDNA ===

299 HSU27655.1 CAT U27655 Homo sapiens
CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCC] GCTGAACACTGACTCCCAGCTGTG 80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGC| CTTTTGGCTGTCAGGGCAGCTGTA 160
AGGGAAGGGGCCTGGTGCCGAGGA 240
TTCCACCCAACAAGGACTCCCCT

.................................................. 80
.......................... EEEEEEEEEEEEEEEEEEEEEEEE 160
EEEEEEEEEEE EEEEEEEEEEEEEEEEEEEEEEEE 240

EEEEEEEEEEE EEEEEEEEEEEEEEEEEEEEEEE

t makes t TG the TIS?
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ZINUS

rttems Urdoaii
Py g

Approach

Training data gathering

Signal generation

— k-grams, distance, domain know-how, ...
Signal selection

— Entropy, %2, CFS, t-test, domain know-how...
Signal integration

— SVM, ANN, PCL, CART, C4.5, kNN, ...

Copyright 2010 © Limsoon Wong

EBINUS
Training & Testing Data w*

* Vertebrate dataset of Pedersen & Nielsen [isvwB'97]
* 3312 sequences

* 13503 ATG sites

» 3312 (24.5%) are TIS

» 10191 (75.5%) are non-TIS

» Use for 3-fold x-validation expts

Copyright 2010 © Limsoon Wong



NS

oy

Signal Generation

» K-grams (ie., k consecutive letters)
-K=1,2,3,4,5, ...
— Window size vs. fixed position
— Up-stream, downstream vs. any where in window
— In-frame vs. any frame

3,

2.5+
2,

1.5 H seql
) B seq?2
14 O seq3

0.5+
074

A C G T

Copyright 2010 © Limsoon Wong

ZBNUS
Signal Generation: An Examplew"

299 HSU27655.1 CAT U27655 Homo sapiens
CGTGTGTGCAGC L 80

160
240

the

> Limsoon Wong



| NS
Feature Generation - Summary ===

Raw Data

aryotes; Metazoa; Chordata

........................................................ i1EEEEEEEEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

- =

An ATG segment — positive sample

> 286 +1_Index(56)

HHHHHNHHHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNC CG TCAGAGCGCCGACACTCTTCTCTGTGCGAGCGAG

CCGCCGACCECCARGCAAAATGEGAAATGAGGCAAGTTATCCTTTEGAAATGTECTCACACTTTGATGCAGATGAAATTA
T 17T TCGATTT T

e

A feature vector --- upstream/downstream inframe 3 grams

Copyright 2010 © Limsoon Wong

ZINUS
Too Many Features -

e For each value of k, there are 4 * 3 * 2 k-grams

e [fweusek=1,2,3,4,5,we have 24 + 96 + 384 +
1536 + 6144 = 8184 features!

* This is too many for most machine learning
algorithms

Copyright 2010 © Limsoon Wong



| | | NS
Signal Selection (Basic Idea) —

* Choose a signal w/low intra-class distance
* Choose a signal w/ high inter-class distance

Class 1 Class2 Class 1 Class2 Class 1 Class 2

Copyright 2010 © Limsoon Wong

!E'Hé
Signal Selection (e.g., t-statistics)~ =

The t-stats of a signal is defined as

_ | — el
{(ot/n1) + (07/no)
where o7 is the variance of that signal

in class ¢, 4 is the mean of that signal
in clags ¢, and n; is the size of class 1.

t

Copyright 2010 © Limsoon Wong
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Signal Selection (e.g., MIT-correlati $7

The MIT-correlation value of 2 signal
is defined as

MIT=M
o1+ a9

where ¢; i8 the standard devistion of
that signal in class ¢ and p; is the mean
of that signal in class i.

Copyright 2010 © Limsoon Wong

SINUS
Signal Selection (e.q., v2) =
The A2 value of a signal is defined as:
2
2 _ (Aij — Bij)
X _Eljg By

where m is the number of intervals, k
the number of classes, A;; the number
of samples in the #th interval, jth class,
R; the number of samples in the éth in-
terval, C; the number of samples in the
gth class, N the total number of sam-
ples, and E;; the expected frequency of
Aij (Egj = R; » Cy/N).

Copyright 2010 © Limsoon Wong




ZANUS
H‘lﬁm
Example -

* Suppose you have a sample of 50 men and 50
women and the following weight distribution is
observed:

obs exp (obs —exp)?/exp )
HM 40 |60*50/100=30 3.3 %2=16.6
P = 0.00004,
HW 20 | 60*50/100=30 33 df =1
LM 10 | 40*50/100=20 5.0 So weight and
sex are not indep
LW 30 |40*50/100=20 5.0 )

* Is weight a good attribute for distinguishing men

from women?

Copyright 2010 © Limsoon Wong

| | ENUS
Signal Selection (e.g., CFS) -

* Instead of scoring individual signals, how about
scoring a group of signals as a whole?

e CFS
— Correlation-based Feature Selection

— A good group contains signals that are highly
correlated with the class, and yet uncorrelated
with each other

Exercise: What is the main challenge in implementing CFS?

Copyright 2010 © Limsoon Wong
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Distributions of Two Example 3-Gr

Mame: INFRAME_UPSTREAM_ATG

Type: Mumeric

Mame: INFRAME_UPSTREAM_CTT

Type: Mumeric

Missing: 0 (D% Distinct: 11 Unique! 1 0% Missing: 0 {0%:) Distinct: 7 Unique: 1 (0%}
Statistic Value Statistic Walue
Minimum 0 Minimum 0
Mairmurn 10 Maxirnurm 6
Mean 0.585 Mean 0.419
StdDewv 0.874 StdDev 0.695
Class: Class (Mo} A4 |[ Visualize Al ] |CI=ss: Class (Mom) v ‘ Yisualize Al
. I 1 -
T 1 T T
1] 10 i} L]

« Which is the better one?

Copyright 2010 © Limsoon Wong
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Sample k-grams Selected by CFS !E',___lié
for Recognizing TIS

Leaky scannin
Kozak consensus y g

Stop codon
» Position -3

* in-frame upstream AT
* in-frame do
— TAAT TAGT TGA;
— CTG, GAC, GAG, and GCC

\

Codon bias?

Copyright 2010 © Limsoon Wong



ZINUS

rttems Urdoaii
Py g

Signal Integration

* kNN

— Given a test sample, find the k training samples
that are most similar to it. Let the majority class
win

« SVM

— Given a group of training samples from two
classes, determine a separating plane that
maximises the margin of error

* Nailve Bayes, ANN, C4.5, ...

Copyright 2010 © Limsoon Wong

NS
Results (3-fold x-validation) =

predicted |predicted
as positive |as negative
positive | TP FN
negative | FP TN

Exercise:
What is TP/(TP+FP)?

TP/(TP+FN) TN/(TN+FP)  TP/(TP + FP) Accuracy

Naive Bayes 84.3% 86.1% 66.3% 85.7%
SVM 73.9% 93.2% 77.9% 88.5%
Neural Network  77.6% 93.2% 78.8% 89.4%
Decision Tree 74.0% 94.4% 81.1% 89.4%

Copyright 2010 © Limsoon Wong



| 9 NUS
Improvement by Voting =

* Apply any 3 of Naive Bayes, SVM, Neural
Network, & Decision Tree. Decide by majority

TP/(TP +FN) TN/(TN+FP) TP/(TP+FP)  Accuracy

NB+SVM+NN 79.2% 92.1% 76.5% 88.9%
NB+SVM+Tree 78.8% 92.0% 76.2% 88.8%
NB+NN+Tree 77.6% 94.5% 82.1% 90.4%
SVM+NN+Tree 75.9% 94.3% 81.2% 89.8%
Best of 4 84.3% 94.4% 81.1% 89.4%
Worst of 4 73.9% 86.1% 66.3% 85.7%

Copyright 2010 © Limsoon Wong

EANUS
-n-nn--n

et

Improvement by Scanning

* Apply Naive Bayes or SVM left-to-right until first
ATG predicted as positive. That's the TIS

* Naive Bayes & SVM models were trained using
TIS vs. Up-stream ATG

TP/(TP+FN) TN/(TN+FP) TP/(TP+FP)  Accuracy

NB 84.3% 86.1% 66.3% 85.7%
SVM 73.9% 93.2% 77.9% 88.5%
NB+Scanning 87.3% 96.1% 87.9% 93.9%
SVM+Scanning  88.5% 96.3% 88.6% 94.4%

Copyright 2010 © Limsoon Wong



CAINUS
Performance Comparisons m-—*

TP/(TP+FN) TN/(TN+FP) TP/(TP+FP)  Accuracy

NB 84.3% 86.1% 66.3% 85.7%
Decision Tree 74.0% 94.4% 81.1% 89.4%
NB+NN+Tree 77.6% 94.5% 82.1% 90.4%
SVM+Scanning 88.5% 96.3% 88.6% 94.4%*
Pedersen&Nielsen  78% 87% - 85%
Zien 69.9% 94.1% - 88.1%
Hatzigeorgiou - - - 94%*

* result not directly comparable

Copyright 2010 © Limsoon Wong

EANUS
-n-nn--n

et

Technique Comparisons

» Pedersené&Nielsen [IsmB'97]  Our approach

— Neural network — Explicit feature
— No explicit features generation
— Explicit feature selection
e Zien [Bioinformatics’00] — Use any machine

learning method w/o any
form of complicated
tuning

— Scanning rule is optional

— SVM-+kernel engineering
— No explicit features

* Hatzigeorgiou
[Bioinformatics’'02]

— Multiple neural networks
— Scanning rule
— No explicit features

Copyright 2010 © Limsoon Wong
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&
c Codon 1
u_|
A= T
c Codon 2
G_| E First |1 o A G
G U [Phe [ [fer o |Tor VAEES C
é Codon 3 Phe = |Ser  |Ter U oy =
o= L Lew | [ser Stop (Ochre) | Stop (Umber)
u Codon 4 Leu Ser Stop (Amber) | Trp W
u_| R C Leu Pro  P|His H A= R
c Leu Pro His Arg
G Codon 5 L S o o
G| S - o Q -
AT Leu Pro Gln Arg
G Codon 6 A le g [Thr = |Asn | |Ser
ﬁ= stop e = [T = |den T [er
A Codon 7 e Thr Lys K |42
G_| Met ||| |Thr Lys Arg
G (Val \/[ala AlAsp D |st G
Val Ala Asp Gly
Ribonucleic acid Val Ala Giu E [ov
Val Ala Gl Gly

Exercise: List the first 10 amino
acid in our example sequence

Copyright 2010 © Limsoon Wong

Amino-Acid Features

False TIS
(upstream) True TIS (downstream)

v v v

False TIS

3
ZINUS
95 s

cDNA
sequence

...... GGACGGATGACTGCC. .. .CTCGATATGGCACCT..... . TTGCTAATGACAATA.. ...

sequence window generation

~..GGACGG (False)ACTGCC...... |+ & [ GR (False) TA

99bps 99bps 33aa 33aa

a (false) TIS window coding amino acid sequence

. CTCGAT (True)GCACCT. .. LD(True) AP
—

bps 99bps 33aa 33aa

a (true) TIS window amino acid sequence

Copyright 2010 © Limsoon Wong




Amino-Acid
Features

New feature space (total of 927 features + class label)

42 1-gram amino 882 2-gram amino 3 bio-know- class
acid patterns acid patterns ledge patterns label
UP-A, UP-R, UP-AA, UP-AR, ..., DOWNA4-G True,
o UP-N, DOWN- UP-NN, DOWN-AA, UP3-AorG, False
A, DOWN-R, ..., DOWN-AR, ..., UP-ATG
DOWN-N DOWN-NN (boolean type,
(numeric type) (numeric type) Y or N)
Frequency as values
1,3,50,4, ... 6,2, 7,05, ... N,N,N False
6,5790,.. 2,0,3,10,0, ... Y, Y, Y True

Copyright 2010 © Limsoon Wong
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ZANUS
-_m

Amino Acid K-grams
Discovered (by entropy)

Leaky scanning

/ Stop codon

Kozak consensus

Aﬂh -3

* in-frame upstream

» in-frame
- TAA, TAG, TGA®
=@ AC, GAG, and GQC
n bias

Fold UP- DOWN- UP3- DOWN- DOWN- UP- DOWN- DOWN- DOWN- UP-
ATG  STOP  AorG A v A L D E G
1 1 2 3 3 6 5 8 9 7 10
2 1 2 3 4 5 6 7 8 9 10
3 1 2 3 4 5 6 8 9 7 10
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TINUS
Independent Validation Sets m-—*

* A. Hatzigeorgiou:
— 480 fully sequenced human cDNAs
— 188 left after eliminating sequences similar to
training set (Pedersen & Nielsen’s)
— 3.42% of ATGs are TIS
e Our own:
— well characterized human gene sequences from

chromosome X (565 TIS) and chromosome 21
(180 TIS)

Copyright 2010 © Limsoon Wong

FINUS
Validation Results (on Hatzigeorgiot=sy=—

Algorithm Sensitivity  Specificity  Precision  Accuracy
SVMs(linear) 96.28% §89.15%  2831%  §942%
SVMs(quad) 94.14%  90.13%  26.70%  90.28%
Ensemble Trees  92.02%  9271%  3252%  92.68%

T &0 BT BN e Mo e

— Using top 100 features selected by entropy and
trained on Pedersen & Nielsen’s dataset

Copyright 2010 © Limsoon Wong
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Our 1 . T
method NP

(>
co

0.4

0 1 1 1 1

| ___ATGpr

V] 0.2 04 0.6 08
1-specificity

» Using top 100 features selected by entropy and

trained on Pedersen & Nielsen’s

Copyright 2010 © Limsoon Wong

Recognition of
Transcription Start Sites

20



gNUS
Transcription Start Site

57 flank \ exaon intron exon intron exon 3rflank

Y /
| L /
mmmmmm mRNA: A,C,G,U

coding region
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TINUS
Structure of Dragon Promoter Find&f ==

SUPPLIED SELECTED BY OUTPUT
BY USER USER
| — I | 1
DNA ACCURACY
sequence RANGE
MODEL
SELECTOR

v Y

MODEL_1
¥ DATA
WINDOW o
" = :D | PREDICTION

200t0 +50 | ¥ __ serEeTeR ==t

window size | stoine

LTS Model selected based
on desired sensitivity
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43

Each model has two submodels.b'_lu.]_.

ey based on GC content outRUT

1 —
DNA GC-rich submodel

sequence \

X
SUBMODEL_A

I 3
PREDICTION
B
SLIDING
DATA-
WHNEHO Y SUBMODEL_B — #C + #G
— (C+6) = Window Size

Exercise: Why are the
submodels based on ~ GC-poor submodel

GC content?

Copyright 2010 © Limsoon Wong

ZINUS
Data Analysis Within Submodeln“"'

EASIC PREDICTOR MODEL

DMA SEQUEMCE PREDICTOR
SUPPLIED QOUTPUT
BY USER

g Promoter Sensor
= \

—— =3 Exm Sensur\‘
Y

content of \

a sliding
data- "4 Intron Sensor

window

.._|

data
pre-processing  —el  PREDICTION
and ANM

K-gram (k = 5) positional weight matrix

Copyright 2010 © Limsoon Wong
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CEANUS
Promoter, Exon, Intron Sensorsw

* These sensors are positional weight matrices of
k-grams, k =5 (aka pentamers)

* They are calculated as below using promoter,
exon, intron data respectively Pentamer at it

position in input

Window size -4 . ’ \'
sz;®fffj [ if pi=p
_i=l

= {H J Pi®f, = ,

D maxf;; 0.if p; = p;
i=1 7 '
Frequency of jth
pentamer at ith position
in training window

jt pentamer at
ith position in
training window

Copyright 2010 © Limsoon Wong
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FINUS
Just to make sure you know what | meansZ. =

» Give me 3 DNA seq of length 10:
— Seq, = ACCGAGTTCT
— Seq, = AGTGTACCTG
— Seq; = AGTTCGTATG

* Then
1-mer posl pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10
A 3/3 [0/3 |0/3
C 0/3 |1/3 |1/3 Exergise: Fil] in the fest of the tablg
G 0/3 |[2/3 |0/3
T 0/3 [0/3 |2/3

Copyright 2010 © Limsoon Wong
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Just to make sure you know what | mean

» Give me 3 DNA seq of length 10:
— Seq, = ACCGAGTTCT
— Seq, = AGTGTACCTG

— Seq; = AGTTCGTATG  Exercise: How many rows should
« Then this 2-mer table have? How many
rows should the pentamer table have?

2-mer posl pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9

AA |0/3 |0/3 |0/3
AC [1/3 |0/3 |0/3 Exercise: Fill |n the rest of the table

TT |0/3 |0/3 |[1/3 1/3

Copyright 2010 © Limsoon Wong
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=INUS

Uy

Data Preprocessing & ANN Y=

Tuning parameters Simple feedforward ANN

rained by the Bayesian
b ), regularisation method
ere
) g
s Sg

SEI = S(}f(ﬂ"; - O},aﬁfgﬁgf )5

Tuned
thresho|d

where the function saf is defined by

a,if  x>a S,
sat(x,a,by=<x, if hb<x<a. eX _ gX
b, if b>x tanh(x) = exyex
net=2%s,* w;

Copyright 2010 © Limsoon Wong
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INUS
Accuracy Comparisons =
Accuracy of Dragon Promoter Finder Ver. 1.2 & 1.3
100 - . - - - - . - -
| [— DFFviz
%0 i | — DPFv13
: NNPFE2.1 (0.99)
NNPP2.1 (0.8}
_ eop Promotarispactor [~
= Promoter2.0
[T T T
a 7ok :
E [ ]
o
&0
>
o
=3
‘IT 50 -
L
£ a0 :
= .
= : ;
= = , - b
(5] T g
w without C+G submodels
o i i i i i ; i i i
[ 10 20 30 0 50 60 70 80 80 100
Positive predictive value ppy in % = 100 x TRHTP+FF)
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SANUS
Training Data Criteria & Preparatio®” =

» Contain both positive and e TSStaken from

negative sequences — 793 vertebrate promoters
from EPD
» Sufficient diversity, — -200to +50 bp of TSS

resembling different
transcription start

i e non-TSS taken from
mechanisms

— GenBank,
— 800 exons

» Sufficient diversity, 4000 introns

resembling different non-

promoters — 250 bp,
— non-overlapping,
+ Sanitized as much as — <50% identities
possible

Copyright 2010 © Limsoon Wong
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| | g NUS
Tuning Data Preparation =

e To tune adjustable system « TSS taken from

parameters in Dragon, we — 20 full-length gene seqs
need a separate tuning with known TSS
data set

— -200to +50 bp of TSS
— no overlap with EPD

* Non-TSS taken from
— 1600 human 3'UTR seqgs
500 human exons
500 human introns
250 bp
no overlap

Copyright 2010 © Limsoon Wong

FINUS
Testing Data Criteria & Preparation” =

* Seqs should be from the e 159 TSS from 147 human
training or evaluation of and human virus seqs
other systems (no bias!)

e cummulative length of
* Seqs should be disjoint more than 1.15Mbp
from training and tuning

data sets o Taken from GENESCAN,

Geneld, Genie, etc.
* Seqs should have TSS

* Seqs should be cleaned to
remove redundancy, <50%
identities

Copyright 2010 © Limsoon Wong
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Recognition of
Poly-A Signal Sites

exon cxon
pre-mRNA [ ' :

5’UTR 3'UTR

Capping / splicing l\r intron

G s
Cleavage J'\.,.m
Polyadenylation l,/
mature mRNA '@

Image credit: www.polya.org

5

4

Copyright 2010 © Limsoon Wong
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Poly-A Signals in Human (Gautheretet al., 2095)
Talde Z. Most Signficant Hexamers in 37 Fraomenis: Clustered Hezamers
Observed =8 Positien
Hexamer (expected)” sites p= average = Location®
o0 _a5 2% 5577 ¢
AATTARD 3286 (3173 58.2 o —1& = 4.7 Tof i 3
1.0 7 T T g T
ATUTARR 243 (112) 14.0 o —17 = 5.3 oL >N i
a0 [~
ACUARD 156 (323 2.7 & 2 1057 —1& = 5.9 0 o ‘ - J
a0 [T
TAUTARD 180 (53) 2.2 4 = 1o—aE —1& = 7.8 o E . : j
1wk T o ]
CAULDRD Te (223 1.3 1 o= 1ot —17 = 59 o -
1w - -
SAULDRD 72 21) 1.2 2= 10 —18 + 6.2 g o “
10 ]
ADRUAUR @6 (32) 1.7 2 =10 —18 = &9 o i ”I
ARMITACH 70 (163 1.2 5 =103 -15 £ &7 13 L andh .
ARDTAGAE 43 (14) 0.7 1 =107 -18 + &3 13 bk |
ARARRG 40 011y 0s 551017 18+ 80 B Y R
10 ]
ACUARR 26 (113 o.& 1= 10" —17 = 8.1 o - ...
10 F ]
ABRGCGHADID 62 (10} 1.1 9 = 10 3® —19 = 11 o pre— —.I.‘L
10 |- 1
AAUCAD 49 (100 o8 4 = 107" —20 = 10 ol s -
IDF .
VUUUAAR S 20y 1= HE =liEE Lz Ol o aabaas ol
IDF -
ARRAMCH 29(5) o.s 8 10712 —20 %10 Ol eae e mada. .|
10[ ]
GGGGCT 223 o.3 9 x 10-12 —24 =13 (V] P

Copyright 2010 © Limsoon Wong

E8 &

Poly-A Signals in Arabidopsis !}"___:_lé

Taldz 2. Most Significant Hexamers in ¥ Fracmenis: Clustered Hesamers

CObrerved ) Position

Hexamer (expected) stes p= average = 5D Location®
_a5 2% 357" ¢
E00 F E
ARATTARRD 3286 (317) ig.2 o —1& £ 4.7 ofF ‘ E
1.0 7 T T T ]
ATUUTARD 843 (1123 140 o —17 = 53 0 ‘ .
a0 [ T
ACUARD 156 (323 2.7 & 2 1057 —1& = 5.9 0 o ‘ - J
a0 [T
TTALTAR D T80 (53 32 4 = To—as —l& = 7.8 o E . : j
10 T
CAULDRD Te (223 1.3 1 o= 1ot —17 = 59

GAUARR 72 " — L - ‘gl-_'_'_'_-_ﬁ("'*.
AAUAUA » In contrast to human, PAS in Arab is _JAa |

7o H
anoaca  ~  highly degenerate. E.g., only 10% of -ssl.

ARAAAG " Arab PAS is AAUAAAI

Y

o o TRy
ACURRAR 26 (112 o0& 1 10-% —17 = 8.1 OI - M.

10 ]
MM 62 (10} 1.1 9 = 10 3® —19 = 11 o -— —.I.‘L

10 |- 1
AATCAD 49 10} os 4 % 10— —20 = 10 ol aa i

10
UUUARAR &9 (20) 1.2 3 3 10— —17 =12 ol

1_—_
ID[: " R

ARRAMCH 29¢5) o.s 8 x 10712 —20 %10 Ol et e . |
E-..._A..L..—.—_.L

GGGGCU 22 (2 0.3 9 x 10-12 —z24 =13 o




S5/

- GINUS
Approach on Arab PAS Sites ()~ ==

_u—»*

I}
[ Festre megration |

8
S s EESE

Prediction scores at every 10bp interval
¥

<s1, s2, s3, s4, s5, s6, s7, s8, =9=
| |

|Cascade Classifier (SMO2) i

{(+ve) if score = threshold
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» Data collection » Feature generation
— #1 from Hao Han, 811 — 3-grams, compositional
+ve seq (-200/+200) features (4U/1N. G/U*7,
etc)
— #2 from Hao Han, 9742 — Freq of features above in
—ve seq (-200/+200) 3 diff windows: (-110/+5),

(-35/+15), (-50/+30)

— #3 from Qingshun Li, _
« 6209 (+ve) seq (-300/+100) * Feature selection

1581 (-ve) intron (-300/+100) _ Xz
1501 (-ve) coding (-
300/+100)
864 (-ve) S'utr (-300/+100) + Feature integration &
Cascade
- SVM
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SN_0 SMO 1 SMO 2 PASS 1.0
Caontrol SN & 3F | Threshold | 3N &3P | Threshold | 3N & 3F | Threshold
Sequences
CD3 0% 0.26 D4% 0.24 05% 37
5'UTR T9% 0.42 B5% 0.49 TE% 5.5
Intron 64% 0.59 T1% 0.67 63% 6.3

Tahle 2. Equal-error-rate points of BMO1, BMOZ, and PASE 10 for 3N_10.
SN_10 SMO 1 SMO 2 PASS 10
Control SN & BF | Threshold | 8N &3P | Threshold | 3N & 3P | Threshold
Sequences
CD3 D4% 0.34 DE% 0.31 D6% 4
SUTE 8% 0.53 9% 0.6 B1% 37
Intron T3% 0.68 TT% 0.77 67% 6.6

Tahle 3, Equal-error-rate points of 3MO1, BMO2, and PASE 10 for 3N_30.
SN_30 SMO 1 SMO 2 PASS10
Caontrol SN & 3P | Threshold | SN &3P | Threshold | 3N & 3F | Threshold
Sequences
CDE 7% 0.44 D7% 0.37 7% 43
5'UTR 0% 0.62 D2% 0.67 B4% 6.2
Intron TO% 0.75 B3% 0.81 7% 6.8
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Concluding Remarks...

What have we learned?

* Gene feature recognition applications
— TIS, TSS, PAS

* General methodology

— “Feature generation, feature selection, feature
integration”

* Important tactics
— Multiple models to optimize overall performance
— Feature transformation (DNA - amino acid)
— Classifier cascades
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Any Question?

Acknowledgements

* The slides for PAS site prediction are adapted
from slides given to me by Koh Chuan Hock
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