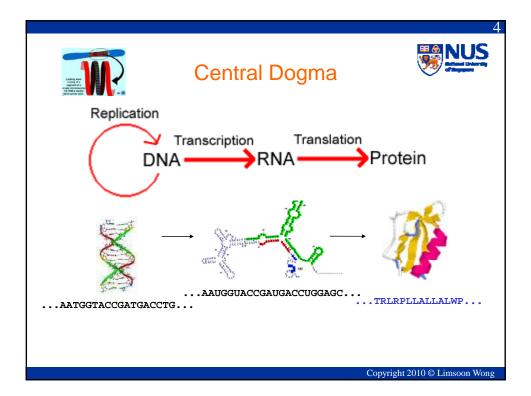
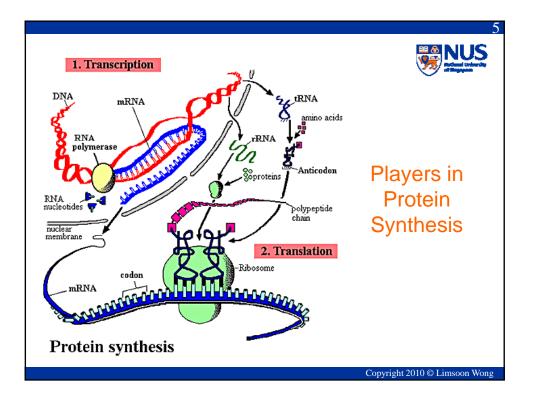
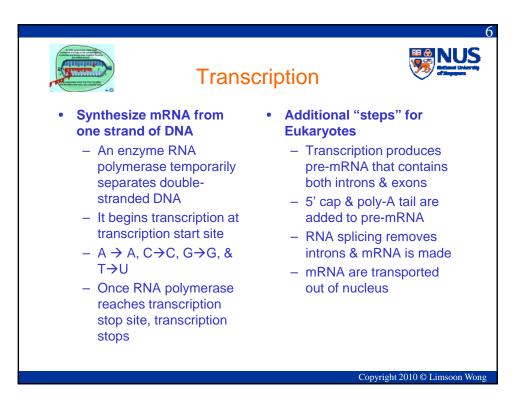
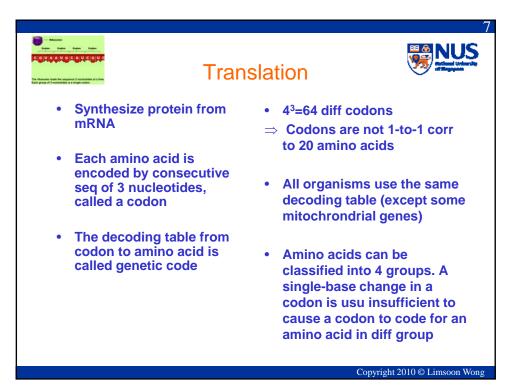

For written notes on this lecture, please read Chapters 4 and 7 of *The Practical Bioinformatician*, and Koh & Wong, "Recognition of Polyadenylation Sites from Arabidopsis Genomic Sequences", *Proc GIW 2007*, pages 73--82

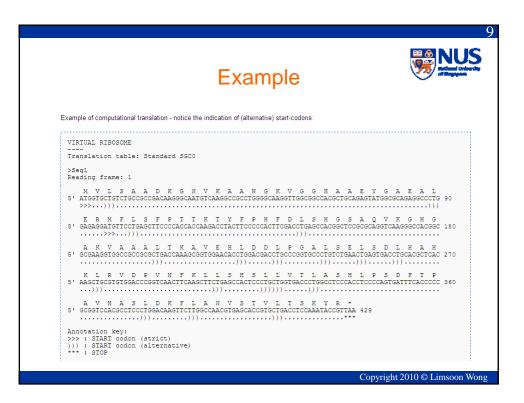

CS2220: Introduction to Computational Biology Lecture 3: Gene Feature Recognition


> Limsoon Wong 28 January 2010

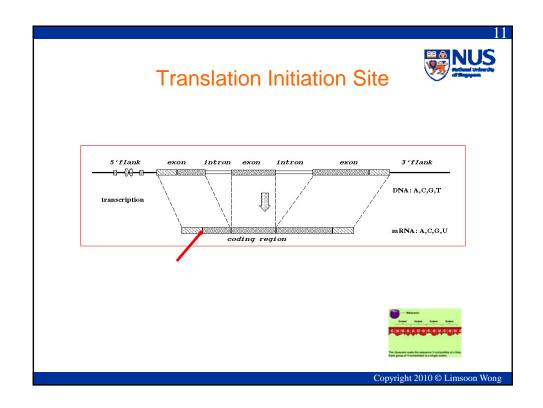


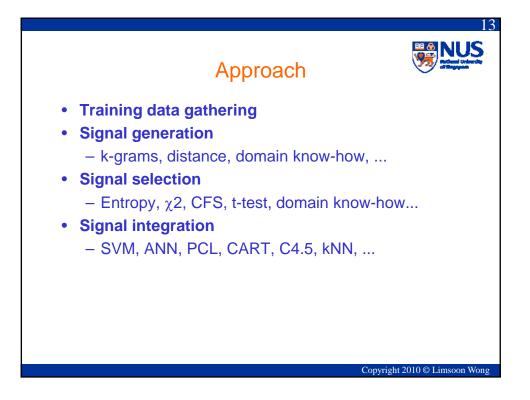


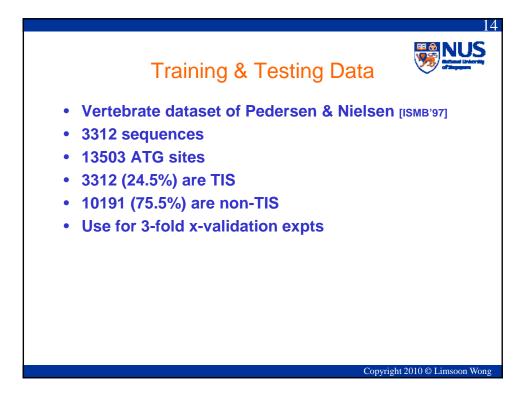



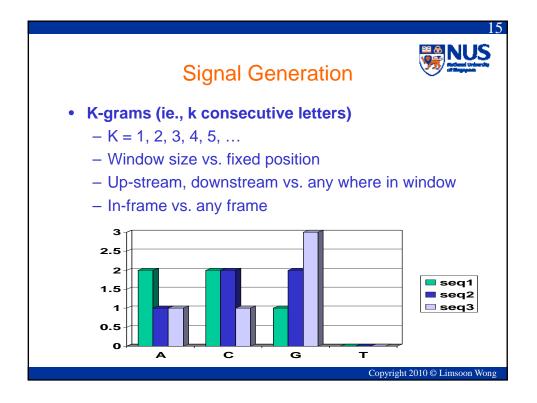


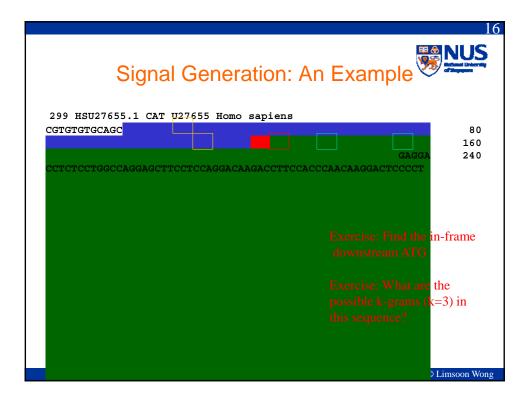



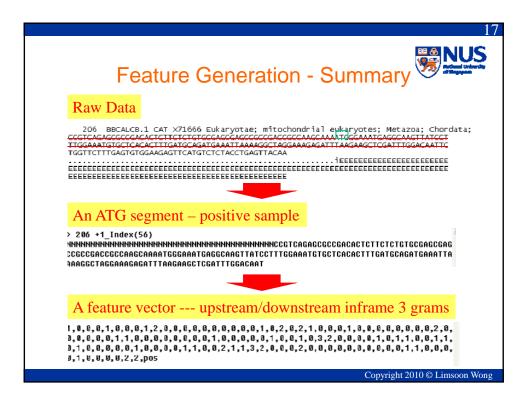


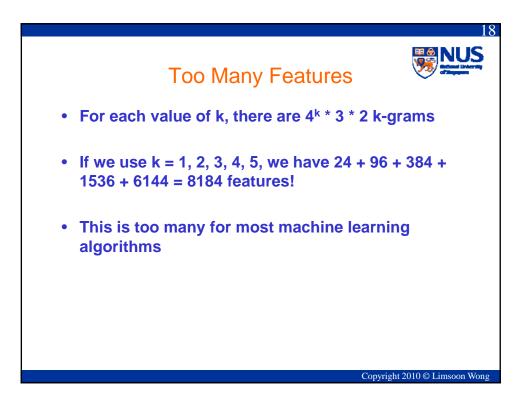


| Gene                  | etic               | c Cod                                                         | le                                                            |                                                                   |                                                          | U                |
|-----------------------|--------------------|---------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|------------------|
| Start codon           | 2                  |                                                               | Second Po                                                     | sition of Codon                                                   |                                                          |                  |
| – ATG (code for M)    | Т                  | T<br>TTT Phe [F]<br>TTC Phe [F]<br>TTA Leu [L]<br>TTG Leu [L] | C<br>TCT Ser [S]<br>TCC Ser [S]<br>TCA Ser [S]<br>TCG Ser [S] | A<br>TAT Tyr [Y]<br>TAC Tyr [Y]<br>TAA Ter [end]<br>TAG Ter [end] |                                                          | T<br>C<br>A<br>G |
| • Stop codon<br>– TAA | i<br>r<br>s<br>t C | CTT Leu [L]<br>CTC Leu [L]<br>CTA Leu [L]<br>CTG Leu [L]      | CCT Pro [P]<br>CCC Pro [P]<br>CCA Pro [P]<br>CCG Pro [P]      | CAT His [H]<br>CAC His [H]<br>CAA Gln [Q]<br>CAG Gln [Q]          | CGT Arg [R]<br>CGC Arg [R]<br>CGA Arg [R]<br>CGG Arg [R] | T<br>C<br>A<br>G |
| – TAG<br>– TGA        | o<br>s<br>i A<br>t | ATT De [I]<br>ATC De [I]<br>ATA De [T]<br>ATG Met [M]         | ACT Thr [T]<br>ACC Thr [T]<br>ACA Thr [T]<br>ACG Thr [T]      | AAT Asn [N]<br>AAC Asn [N]<br>AAA T.ys [K]<br>AAG Lys [K]         | AGT Ser [S]<br>AGC Ser [S]<br>AGA Arg [R]<br>AGG Arg [R] | T<br>C<br>A<br>G |
|                       | n<br>G             | GTT Val [V]<br>GTC Val [V]<br>GTA Val [V]<br>GTG Val [V]      | GCT Ala [A]<br>GCC Ala [A]<br>GCA Ala [A]<br>GCG Ala [A]      | GAT Asp [D]<br>GAC Asp [D]<br>GAA Ghu [E]<br>GAG Ghu [E]          | GGT Gly [G]<br>GGC Gly [G]<br>GGA Gly [G]<br>GGG Gly [G] | T<br>C<br>A<br>G |

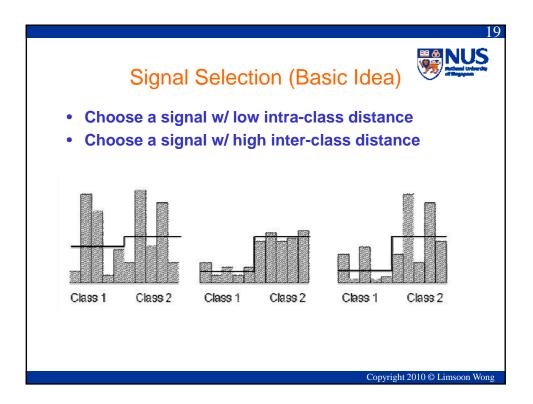


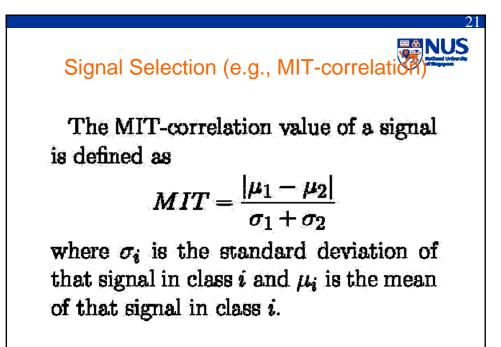


| A Sample cDNA                                                                                            | 12<br>NUS |
|----------------------------------------------------------------------------------------------------------|-----------|
| 299 HSU27655.1 CAT U27655 Homo sapiens                                                                   |           |
| CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCC                                                                        | 80        |
| CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGC                                                                         | 160       |
| GGAGGCAG AGAAGAGGGAG GCCTTGG <mark>AGGA</mark> AGGGAAGGGGCCTGGTGCCGAGGA                                  | 240       |
| CCTCTCCT <mark>GGC</mark> CAGGAGCTTCC <mark>TCC</mark> AGGACAA <mark>GACC</mark> TTCCACCCAACAAGGACTCCCCT |           |
| · · · · · · · · · · · · · · · · · · ·                                                                    | 80        |
| ······                                                                                                   | 160       |
| EEEEEEEE <mark>RER</mark> EEEEEEEEEEEEEEEEEEEEEEEEEE                                                     | 240       |
| • W t makes t secon ATG the TIS?                                                                         |           |
| Copyright 2010 © Li                                                                                      |           |

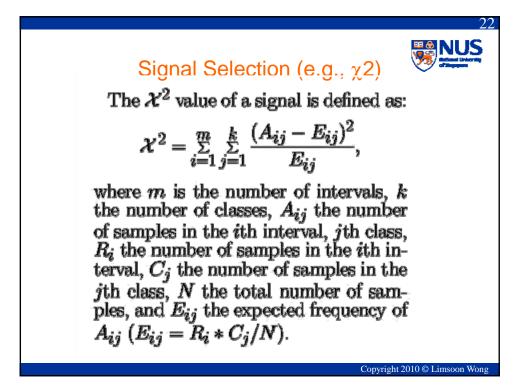


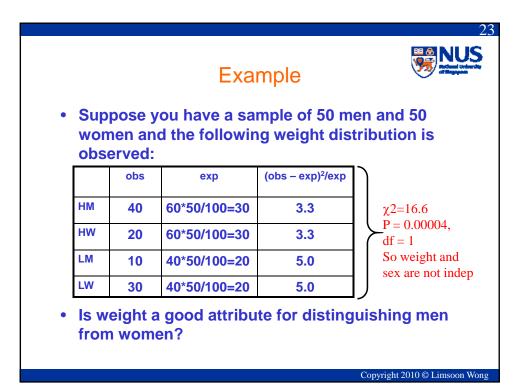



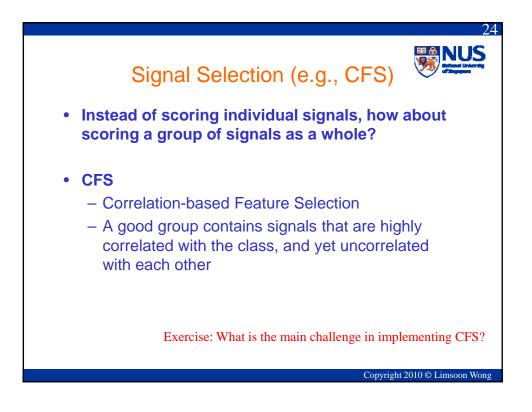


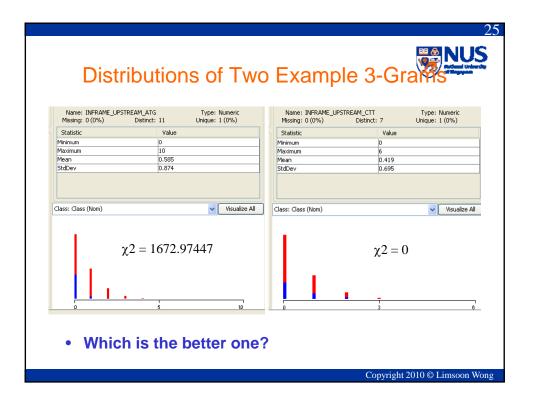


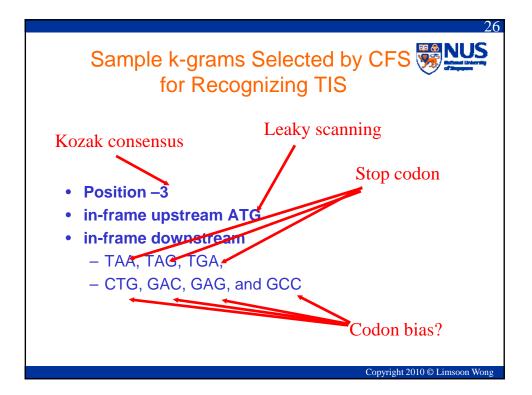



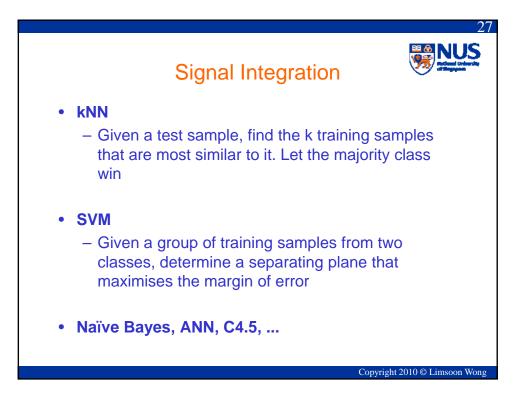





Signal Selection (e.g., t-statistics)  
The t-stats of a signal is defined as  


$$t = \frac{|\mu_1 - \mu_2|}{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}}$$
where  $\sigma_i^2$  is the variance of that signal  
in class  $i$ ,  $\mu_i$  is the mean of that signal  
in class  $i$ , and  $n_i$  is the size of class  $i$ .



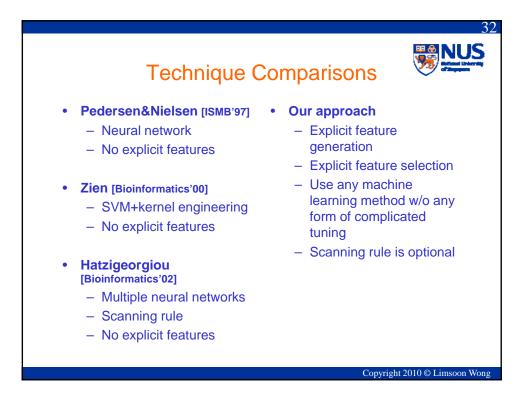



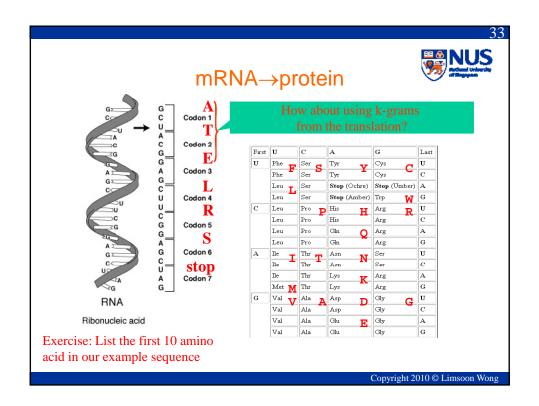


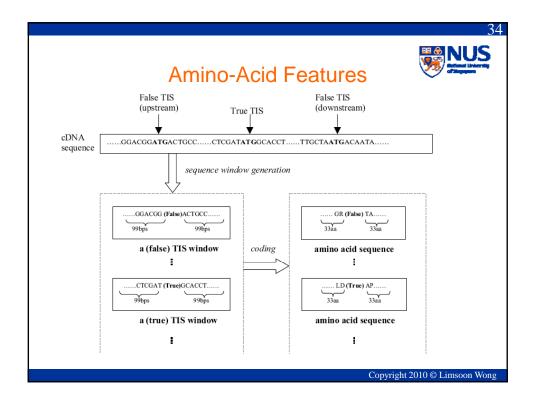




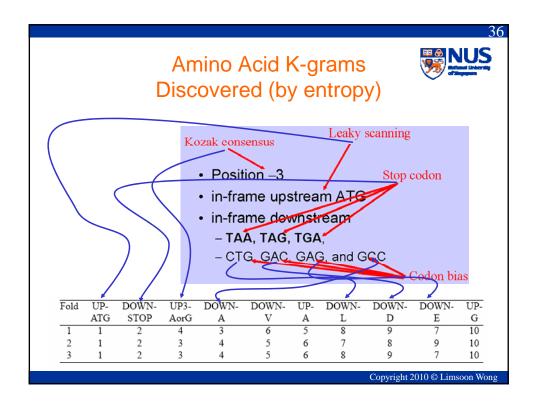


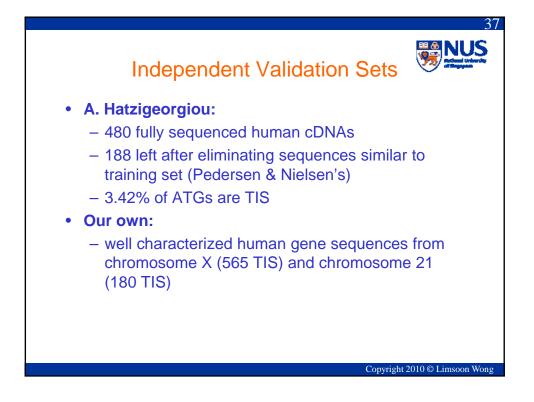





|                  | r            |                 |                    | )                             |
|------------------|--------------|-----------------|--------------------|-------------------------------|
|                  | -            |                 | dicted<br>negative |                               |
|                  |              | IP FN           |                    |                               |
|                  | -            | P TN            |                    | Exercise:<br>What is TP/(TP+F |
|                  |              |                 |                    |                               |
|                  | TP/(TP + FN) | TN/(TN + FP)    | TP/(TP + F         | P) Accuracy                   |
| Naïve Bayes      | 84.3%        | 86.1%           | 66.3%              | 85.7%                         |
| SVM              | 73.9%        | 93.2%           | 77.9%              | 88.5%                         |
| Neural Network   | 77.6%        | 93.2%           | 78.8%              | 89.4%                         |
| reducin rectwork | //.0/0       | <i>) 3.2</i> /0 | 10.070             | 07.170                        |

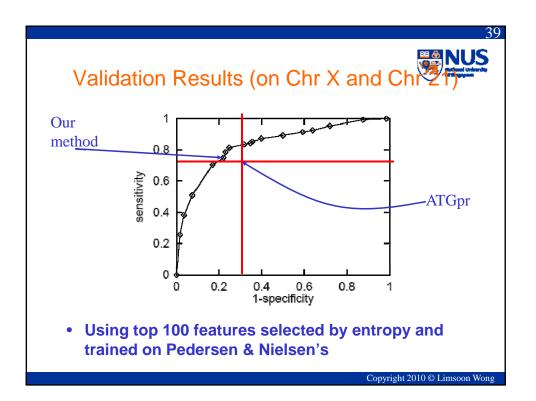

| I                       | mproven      | nent by V    | /oting                   | <b>7</b> |
|-------------------------|--------------|--------------|--------------------------|----------|
| Apply any<br>Network, & |              |              | M, Neural<br>de by majoi | rity     |
|                         | TP/(TP + FN) | TN/(TN + FP) | TP/(TP + FP)             | Accuracy |
| NB+SVM+NN               | 79.2%        | 92.1%        | 76.5%                    | 88.9%    |
| NB+SVM+Tree             | 78.8%        | 92.0%        | 76.2%                    | 88.8%    |
| NB+NN+Tree              | 77.6%        | 94.5%        | 82.1%                    | 90.4%    |
| SVM+NN+Tree             | 75.9%        | 94.3%        | 81.2%                    | 89.8%    |
| Best of 4               | 84.3%        | 94.4%        | 81.1%                    | 89.4%    |
|                         | 73.9%        | 86.1%        | 66.3%                    | 85.7%    |

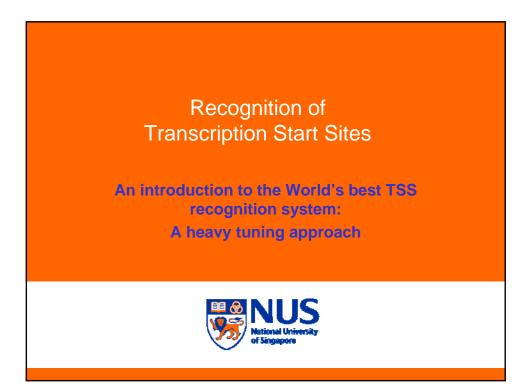
| l         | mprovem               | ent by Sc                      | anning                      |                   |
|-----------|-----------------------|--------------------------------|-----------------------------|-------------------|
|           |                       | or SVM left-t<br>ositive. That | o-right until<br>'s the TIS | l first           |
|           |                       |                                | e trained us                | sing              |
| TIS vs. U | p-stream A            | 10                             |                             |                   |
| 115 VS. U | TP/(TP + FN)          |                                | TP/(TP + FP)                | Accuracy          |
| NB        |                       |                                | TP/(TP + FP)<br>66.3%       | Accuracy<br>85.7% |
|           | TP/(TP + FN)          | TN/(TN + FP)                   | · · · ·                     | ·                 |
| NB        | TP/(TP + FN)<br>84.3% | TN/(TN + FP)<br>86.1%          | 66.3%                       | 85.7%             |

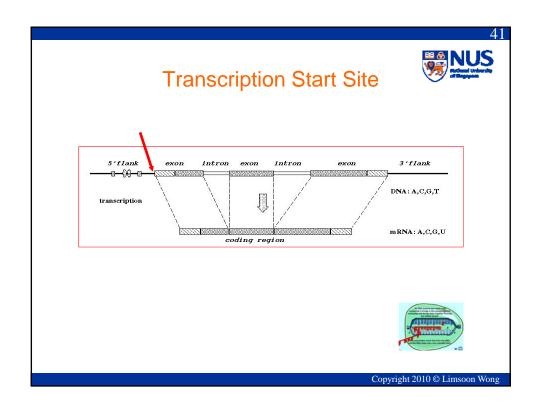

| Р                | erforman     | ce Compa     | arisons      | di Segun |
|------------------|--------------|--------------|--------------|----------|
|                  | TP/(TP + FN) | TN/(TN + FP) | TP/(TP + FP) | Accuracy |
| NB               | 84.3%        | 86.1%        | 66.3%        | 85.7%    |
| Decision Tree    | 74.0%        | 94.4%        | 81.1%        | 89.4%    |
| NB+NN+Tree       | 77.6%        | 94.5%        | 82.1%        | 90.4%    |
| SVM+Scanning     | 88.5%        | 96.3%        | 88.6%        | 94.4%*   |
| Pedersen&Nielsen | 78%          | 87%          | -            | 85%      |
| Zien             | 69.9%        | 94.1%        | -            | 88.1%    |
| Hatzigeorgiou    | -            | -            | -            | 94%*     |

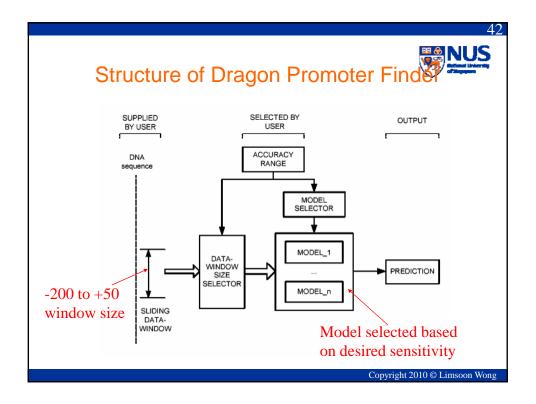


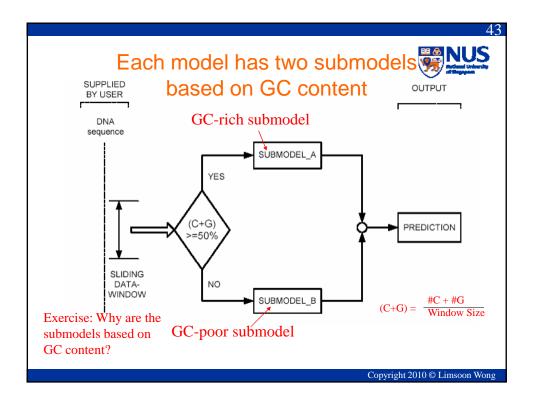


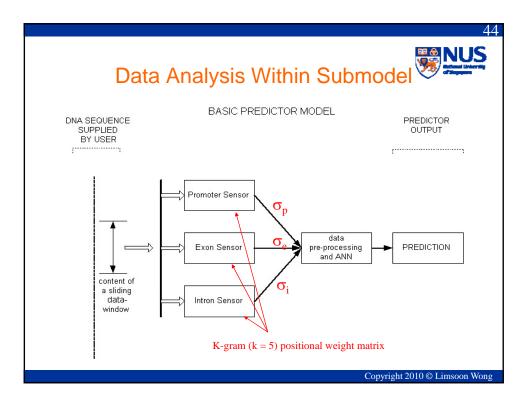



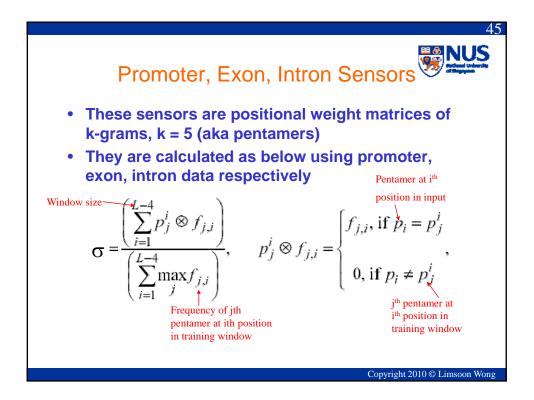


| Amino-Acid                                                             |                                                                             | Appende vinder generation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inferentiation<br>inf | -              |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Features                                                               |                                                                             | 1 1 1<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)<br>(characterized)                |                |
| New feature                                                            | e space (total of 927 fe                                                    | atures + class lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oel)           |
| 42 1-gram amino<br>acid patterns                                       | 882 2-gram amino<br>acid patterns                                           | 3 bio-know-<br>ledge patterns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | class<br>label |
| UP-A, UP-R,<br>,UP-N, DOWN-<br>A, DOWN-R,,<br>DOWN-N<br>(numeric type) | UP-AA, UP-AR,,<br>UP-NN, DOWN-AA,<br>DOWN-AR,,<br>DOWN-NN<br>(numeric type) | DOWN4-G<br>UP3-AorG,<br>UP-ATG<br>(boolean type,<br>Y or N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | True,<br>False |
|                                                                        | Frequency as val                                                            | lues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| 1, 3, 5, 0, 4,                                                         | 6, 2, 7, 0, 5,                                                              | N, N, N,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | False          |
| 1                                                                      | I                                                                           | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1              |
| 6, 5, 7, 9, 0,<br>i                                                    | 2, 0, 3, 10, 0,                                                             | Y, Y, Y,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | True           |



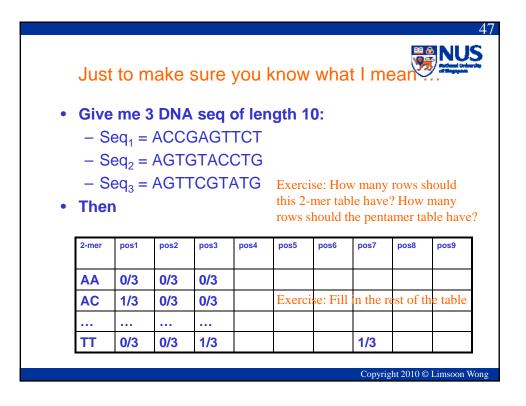



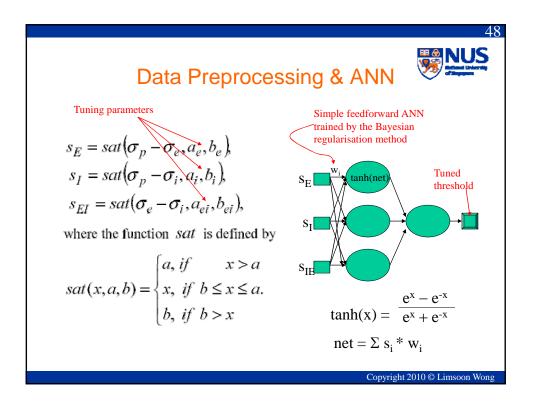


| Algorithm      | Sensitivity | Specificity                | Precision | Accuracy |
|----------------|-------------|----------------------------|-----------|----------|
| SVMs(linear)   | 96.28%      | 89.15%                     | 25.31%    | 89.42%   |
| SVMs(quad)     | 94.14%      | 90.13%                     | 26.70%    | 90.28%   |
| Ensemble Trees | 92.02%      | 92.71%                     | 32.52%    | 92.68%   |
|                |             | res selecte<br>n & Nielsen |           | py and   |

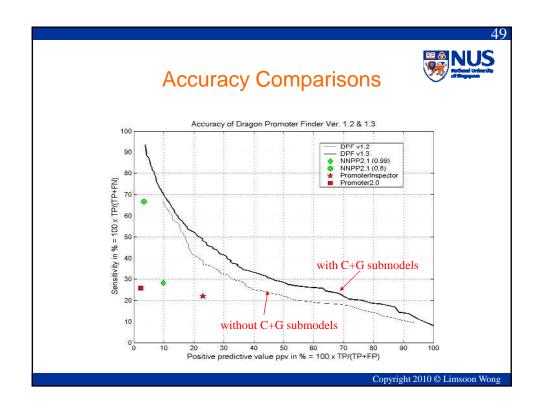


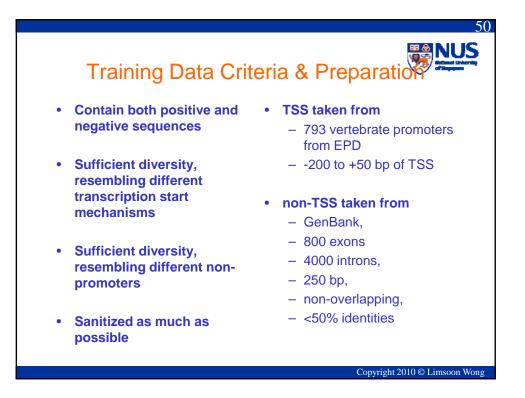



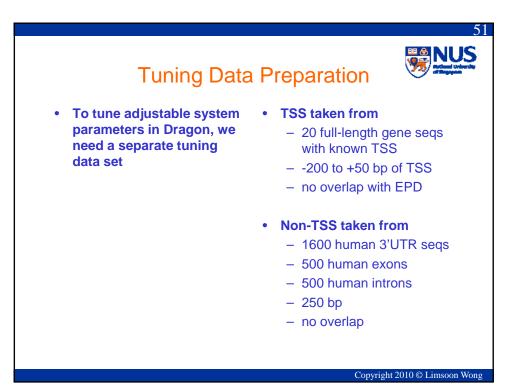


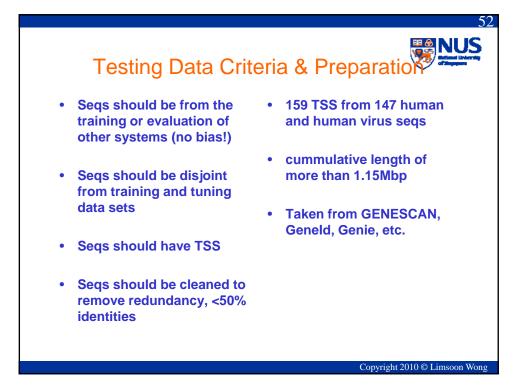



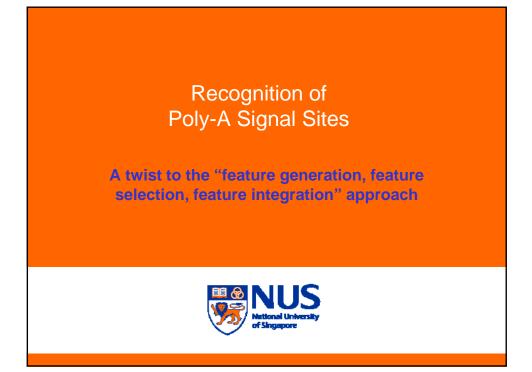



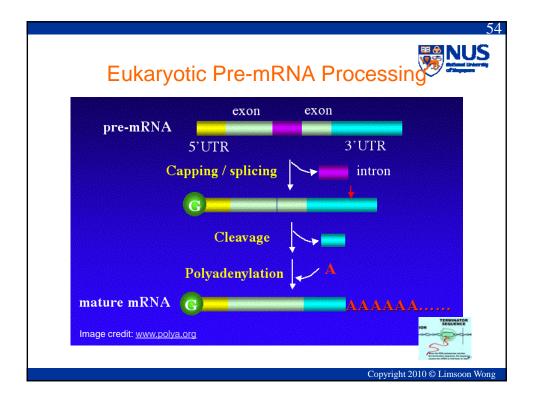





|       | Just | to ma | ake s | sure y | you kr  | าอพ ง    | vhat     | l me    | an        | NUS   |
|-------|------|-------|-------|--------|---------|----------|----------|---------|-----------|-------|
| •     | Give | me 3  |       | sen (  | of leng | th 10    |          |         |           |       |
|       |      |       |       | GAGT   | -       |          | •        |         |           |       |
|       |      |       |       | TAC    |         |          |          |         |           |       |
|       |      |       |       |        |         |          |          |         |           |       |
|       |      | .0    | AGTI  | CGTA   | AIG     |          |          |         |           |       |
| •     | Then |       |       |        |         |          |          |         |           |       |
| 1-mer | pos1 | pos2  | pos3  | pos4   | pos5    | pos6     | pos7     | pos8    | pos9      | pos10 |
| Α     | 3/3  | 0/3   | 0/3   |        |         |          |          |         |           |       |
| С     | 0/3  | 1/3   | 1/3   |        | Exerc   | ise: Fil | l in the | rest of | the table |       |
| G     | 0/3  | 2/3   | 0/3   |        |         |          |          |         |           |       |
|       | 0/3  | 0/3   | 2/3   |        |         |          |          |         |           |       |
| Т     |      |       |       |        |         |          |          |         |           |       |

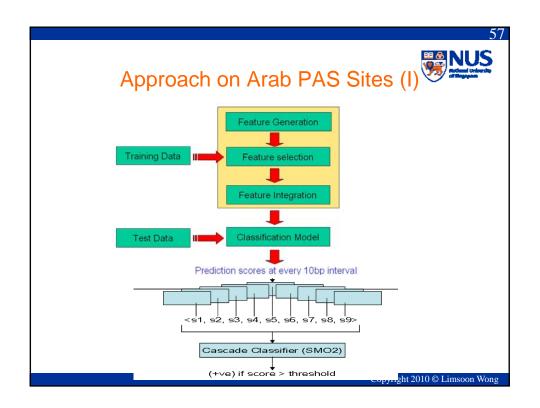


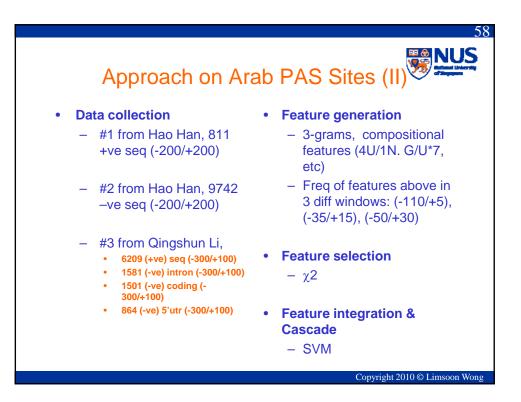



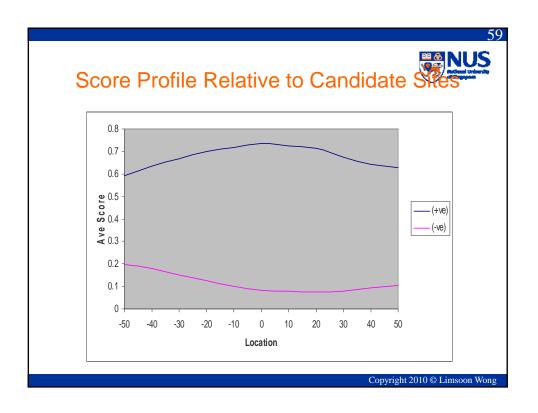





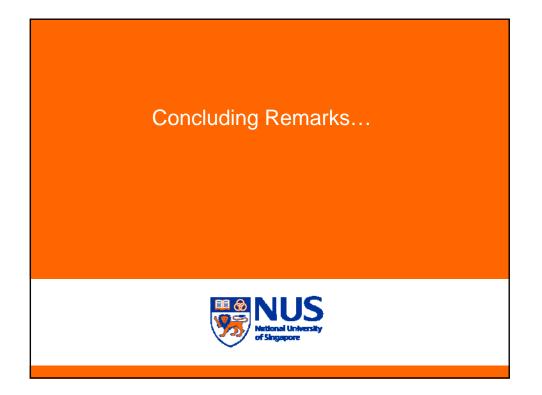


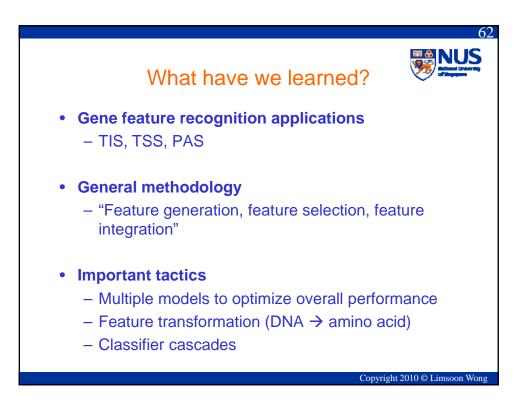



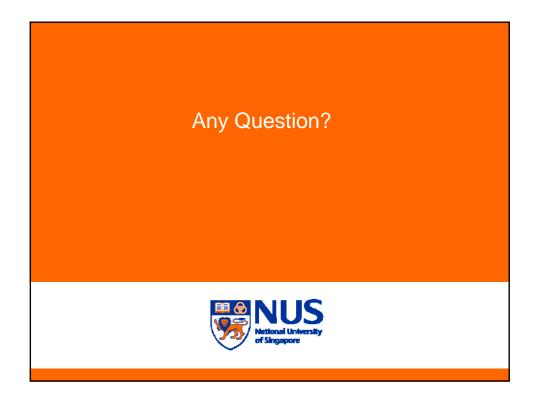



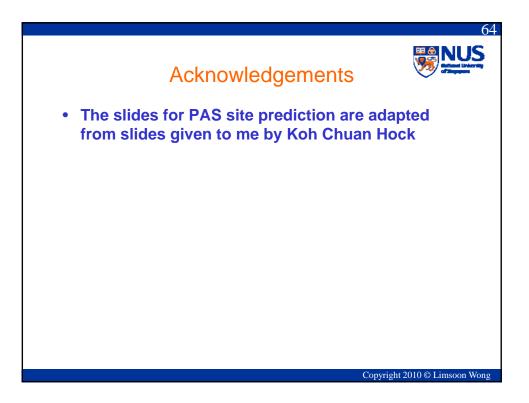



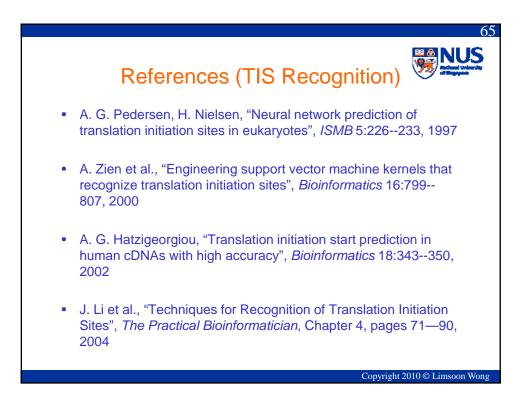

| Poly-A           | Signal                  | s in l      | Human                                      | (Gauthere                    | t et al., 20                                          |
|------------------|-------------------------|-------------|--------------------------------------------|------------------------------|-------------------------------------------------------|
| Table 2. Most Si | gnificant Hexamers      | -           | ents: Clustered He                         | amers                        |                                                       |
| Hexamer          | Observed<br>(expected)* | %<br>sites  | طو                                         | Position<br>average ± SD     | Location                                              |
| алиала           | 3286 (317)              | 58.2        | ō                                          | -16 + 4.7                    | $\begin{array}{c} -45 \\ 500 \\ 0 \\ 150 \end{array}$ |
| AUUAAA<br>AGUAAA | 843 (112)<br>156 (32)   | 14.9<br>2.7 | 0<br>6 × 10 <sup>-57</sup>                 | -17 ± 5.3<br>-16 ± 5.9       |                                                       |
| UAUAAA           | 180 (53)                | 3.2         | 4 × 10-45                                  | -18 ± 7.8                    |                                                       |
| CAUAAA<br>GAUAAA | 76 (23)<br>72 (21)      | 1.3         | $1 \times 10^{-16}$<br>$2 \times 10^{-16}$ | -17 ± 5.9<br>-18 ± 6.9       |                                                       |
| AAUAUA           | 96 (33)                 | 1.7         | 2 × 10 <sup>-</sup> "                      | -18 ± 6.9                    |                                                       |
| AAUACA<br>AAUAGA | 70 (16)<br>43 (14)      | 1.2         | $5 \times 10^{-23}$<br>$1 \times 10^{-9}$  | -18 ± 8.7<br>-18 ± 6.3       |                                                       |
| AAAAAG           | 49 (11)                 | 0.8         | $5 \times 10^{-17}$                        | -18 ± 8.9                    |                                                       |
| ACUAAA           | 36 (11)                 | 0.6         | $1 \times 10^{-26}$<br>$9 \times 10^{-26}$ | -17 ± 8.1                    |                                                       |
| AAUGAA           | 49 (10)                 | 0.8         | $4\times 10^{-16}$                         | $-20 \pm 10$                 |                                                       |
| UUUAAA           | 69 (20)<br>29 (5)       | 1.2<br>0.5  | $3 \times 10^{-16}$<br>$8 \times 10^{-12}$ | $-17 \pm 12$<br>$-20 \pm 10$ |                                                       |
| GGGGCU           | 22 (3)                  | 0.3         | $9 \times 10^{-12}$                        | - 24 ± 13                    |                                                       |
|                  |                         |             |                                            |                              | Copyright 2010 © Limsoon Wo                           |


| P                 | oly-A S                 | Signa      | ls in A                 | rabidop                  | sis 🐺 NUS                                |
|-------------------|-------------------------|------------|-------------------------|--------------------------|------------------------------------------|
|                   |                         |            |                         |                          |                                          |
| Table 2. Most Sig | -                       | -          | ents: Clustered He      |                          |                                          |
| Hexamer           | Observed<br>(expected)* | %<br>sites | рь                      | Position<br>average ± SD | Location <sup>c</sup>                    |
|                   |                         |            |                         |                          | -45 <sup>-35</sup> -25 <sup>-15</sup> -5 |
| AAUAAA            | 3286 (317)              | 58.2       | 0                       | $-16 \pm 4.7$            | 500                                      |
|                   |                         | 14.9       | 0                       | -17 ± 5.3                | 150                                      |
| AUUAAA            | 843 (112)               |            | -                       |                          | 30                                       |
| AGUAAA            | 156 (32)                | 2.7        | 6 × 10 <sup>-57</sup>   | -16 ± 5.9                | 30                                       |
| UAUAAA            | 180 (53)                | 3.2        | 4 × 10-45               | $-18 \pm 7.8$            | 0                                        |
| CAUAAA            | 76 (23)                 | 1.3        | $1 \times 10^{-16}$     | -17 ± 5.9                | 10                                       |
| GAUAAA            | 72                      |            |                         |                          | 10                                       |
| AAUAUA            | », In                   | contra     | ist to hun              | ian, PAS in              | Arab is                                  |
| AAUACA            |                         |            |                         |                          |                                          |
| AAUAGA            |                         | gniy do    | egenerate               | •. E.g., only            |                                          |
|                   |                         | A          | ah PAS i                | s AAUAAA                 | · · · · · · · · · · · · · · · · · · ·    |
| AAAAAG            | 49                      |            |                         |                          | 10                                       |
| ACUAAA            | 36 (11)                 | 0.6        | $1 \times 10^{-\infty}$ | -17 ± 8.1                | °                                        |
| AAGAAA            | 62 (10)                 | 1.1        | $9 \times 10^{-26}$     | - 19 + 11                |                                          |
|                   |                         |            |                         |                          | 10 -                                     |
| AAUGAA            | 49 (10)                 | 0.8        | $4 \times 10^{-16}$     | $-20 \pm 10$             | 10                                       |
| UUUAAA            | 69 (20)                 | 1.2        | 3 × 10-18               | $-17 \pm 12$             |                                          |
| AAAACA            | 29 (5)                  | 0.5        | $8 \times 10^{-12}$     | $-20 \pm 10$             |                                          |
| GGGGCU            | 22 (3)                  | 0.3        | $9 \times 10^{-12}$     | $-24 \pm 13$             | 10                                       |
|                   |                         |            |                         |                          |                                          |





|                                                                                           | Vali                                                                  | datio                                                            | n Res                                                               | sults                                                          |                                                                            |                                                 |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|
| SN 0                                                                                      | SN                                                                    | 10 1                                                             | SM                                                                  | 10 2                                                           | PAS                                                                        | S 1.0                                           |
| Control<br>Sequences                                                                      | SN & SP                                                               | Threshold                                                        | SN & SP                                                             | Threshold                                                      | SN & SP                                                                    | Threshold                                       |
| CDS                                                                                       | 90%                                                                   | 0.26                                                             | 94%                                                                 | 0.24                                                           | 95%                                                                        | 3.7                                             |
| 5'UTR                                                                                     | 79%                                                                   | 0.42                                                             | 85%                                                                 | 0.49                                                           | 78%                                                                        | 5.5                                             |
| Intron                                                                                    | 64%                                                                   | 0.59                                                             | 71%                                                                 | 0.67                                                           | 63%                                                                        | 6.3                                             |
| SN_10                                                                                     | SM                                                                    | 10 1                                                             | SM                                                                  | 10 2                                                           | PAS                                                                        | SS 1.0                                          |
|                                                                                           |                                                                       |                                                                  |                                                                     |                                                                |                                                                            |                                                 |
| SN_10<br>Control<br>Sequences                                                             | SN & SP                                                               | IO 1<br>Threshold                                                | SM<br>SN & SP                                                       | IO 2<br>Threshold                                              | PAS<br>SN & SP                                                             |                                                 |
| Control                                                                                   |                                                                       |                                                                  |                                                                     |                                                                |                                                                            |                                                 |
| Control<br>Sequences                                                                      | SN & SP                                                               | Threshold                                                        | SN & SP                                                             | Threshold                                                      | SN & SP                                                                    | Threshold                                       |
| Control<br>Sequences<br>CDS                                                               | SN & SP<br>94%                                                        | Threshold<br>0.36                                                | SN & SP<br>96%                                                      | Threshold<br>0.31                                              | SN & SP<br>96%                                                             | Threshold<br>4                                  |
| Control<br>Sequences<br>CDS<br>5'UTR<br>Intron                                            | SN & SP<br>94%<br>86%                                                 | Threshold<br>0.36<br>0.53<br>0.68                                | SN & SP<br>96%<br>89%<br>77%                                        | Threshold<br>0.31<br>0.6<br>0.77                               | SN & SP<br>96%<br>81%<br>67%                                               | Threshold<br>4<br>5.7<br>6.6<br>0.              |
| Control<br>Sequences<br>CDS<br>S'UTR<br>Intron<br>Table                                   | SN & SP<br>94%<br>86%<br>73%<br>3. Equal-error-re                     | Threshold<br>0.36<br>0.53<br>0.68                                | SN & SP<br>96%<br>89%<br>77%<br>MO1, SMO                            | Threshold<br>0.31<br>0.6<br>0.77                               | SN & SP<br>96%<br>81%<br>67%<br>1.0 for SN_3                               | Threshold<br>4<br>5.7<br>6.6<br>0.              |
| Control<br>Sequences<br>CDS<br>5'UTR<br>Intron<br>Table:<br>SN 30<br>Control              | SN & SP<br>94%<br>86%<br>73%<br>3, Equal-error-re<br>SMO 1            | Threshold<br>0.36<br>0.53<br>0.68<br>te points of S              | SN & SP<br>96%<br>89%<br>77%<br>MO1, SMO<br><b>SMO 2</b>            | Threshold<br>0.31<br>0.6<br>0.77<br>2, and PASS :              | SN & SP<br>96%<br>81%<br>67%<br>1.0 for SN_3<br><b>PASS 1.0</b>            | Threshold<br>4<br>5.7<br>6.6<br>0.              |
| Control<br>Sequences<br>CDS<br>5'UTR<br>Intron<br>Table:<br>SN_30<br>Control<br>Sequences | SN & SP<br>94%<br>86%<br>73%<br>3, Equal-error-re<br>SMO 1<br>SN & SP | Threshold<br>0.36<br>0.53<br>0.68<br>te points of S<br>Threshold | SN & SP<br>96%<br>89%<br>77%<br>MO1, SMO<br><b>SMO 2</b><br>SN & SP | Threshold<br>0.31<br>0.6<br>0.77<br>2, and PASS :<br>Threshold | SN & SP<br>96%<br>81%<br>67%<br>1.0 for SN_3<br><b>PASS 1.0</b><br>SN & SP | Threshold<br>4<br>5.7<br>6.6<br>0.<br>Threshold |

