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For written notes on this lecture, please read Chapters 4 and 7 of The Practical Bioinformatician, and
Koh & Wong, “Recognition of Polyadenylation Sites from Arabidopsis Genomic Sequences”,
Proc GIW 2007, pages 73--82

CS2220: Introduction to Computational Biology

Lecture 3: Gene Feature Recognitiong
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Some Relevant Biology
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Central Dogma
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...AATGGTACCGATGACCTG... ...TRLRPLLALLALWP...
...AAUGGUACCGAUGACCUGGAGC...
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Players in 
Protein 

Synthesis
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Transcription

• Synthesize mRNA from 
one strand of DNA

• Additional “steps” for 
Eukaryotes

– An enzyme RNA 
polymerase temporarily 
separates double-
stranded DNA

– It begins transcription at 
transcription start site

– A  A, CC, GG, & 
TU

– Transcription produces 
pre-mRNA that contains 
both introns & exons

– 5’ cap & poly-A tail are 
added to pre-mRNA

– RNA splicing removes 
introns & mRNA is made
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TU

– Once RNA polymerase 
reaches transcription 
stop site, transcription 
stops

– mRNA are transported 
out of nucleus
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Translation

• Synthesize protein from 
mRNA

• 43=64 diff codons

 Codons are not 1-to-1 corr 

• Each amino acid is 
encoded by consecutive 
seq of 3 nucleotides, 
called a codon

• The decoding table from 
codon to amino acid is 

to 20 amino acids

• All organisms use the same 
decoding table (except some 
mitochrondrial genes)

• Amino acids can be 
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called genetic code classified into 4 groups. A 
single-base change in a 
codon is usu insufficient to 
cause a codon to code for an 
amino acid in diff group

8

Genetic Code

• Start codon

– ATG (code for M)ATG (code for M)

• Stop codon

– TAA

– TAG

– TGA
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Example
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Recognition of 
Translation Initiation Sites

An introduction to the World’s simplest TIS 
recognition system
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Translation Initiation Site
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A Sample cDNA

299 HSU27655.1 CAT U27655 Homo sapiens

CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCATGGCTGAACACTGACTCCCAGCTGTG 80CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCATGGCTGAACACTGACTCCCAGCTGTG      80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA     160
GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA     240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT
............................................................      80
................................iEEEEEEEEEEEEEEEEEEEEEEEEEEE     160
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE     240
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
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• What makes the second ATG the TIS?
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Approach 

• Training data gathering

• Signal generationSignal generation

– k-grams, distance, domain know-how, ...

• Signal selection

– Entropy, 2, CFS, t-test, domain know-how...

• Signal integration

– SVM, ANN, PCL, CART, C4.5, kNN, ...

Copyright 2010 © Limsoon Wong

14

Training & Testing Data 

• Vertebrate dataset of Pedersen & Nielsen [ISMB’97]

• 3312 sequences3312 sequences

• 13503 ATG sites

• 3312 (24.5%) are TIS

• 10191 (75.5%) are non-TIS

• Use for 3-fold x-validation expts
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Signal Generation

• K-grams (ie., k consecutive letters)

– K = 1, 2, 3, 4, 5, …K  1, 2, 3, 4, 5, …

– Window size vs. fixed position

– Up-stream, downstream vs. any where in window

– In-frame vs. any frame

2.5

3
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Signal Generation: An Example

299 HSU27655.1 CAT U27655 Homo sapiens

CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCATGGCTGAACACTGACTCCCAGCTGTG 80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA 160

• Window = 100 bases

• In-frame, downstream

– GCT = 1, TTT = 1, ATG = 1…

A f d t

CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA 160
GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA     240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT

Exercise: Find the in-frame
downstream ATG
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• Any-frame, downstream

– GCT = 3, TTT = 2, ATG = 2…

• In-frame, upstream

– GCT = 2, TTT = 0, ATG = 0, ...

Exercise: What are the 
possible k-grams (k=3) in 
this sequence?
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Feature Generation - Summary

Raw Data

An ATG segment – positive sample
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A feature vector --- upstream/downstream inframe 3 grams
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Too Many Features

• For each value of k, there are 4k * 3 * 2 k-grams

• If we use k = 1, 2, 3, 4, 5, we have 24 + 96 + 384 + 
1536 + 6144 = 8184 features!

• This is too many for most machine learning 
algorithms
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Signal Selection (Basic Idea)

• Choose a signal w/ low intra-class distance

• Choose a signal w/ high inter-class distanceChoose a signal w/ high inter class distance
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Signal Selection (e.g., t-statistics)
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Signal Selection (e.g., MIT-correlation)
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Signal Selection (e.g., 2)
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Example

• Suppose you have a sample of 50 men and 50 
women and the following weight distribution is g g
observed:

obs exp (obs – exp)2/exp

HM 40 60*50/100=30 3.3

HW 20 60*50/100=30 3.3

LM 10 40*50/100=20 5 0

2=16.6
P = 0.00004, 
df = 1
So weight and 
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• Is weight a good attribute for distinguishing men 
from women?

LM 10 40 50/100=20 5.0

LW 30 40*50/100=20 5.0

g
sex are not indep

24

Signal Selection (e.g., CFS)

• Instead of scoring individual signals, how about 
scoring a group of signals as a whole?g g p g

• CFS

– Correlation-based Feature Selection

– A good group contains signals that are highly 
correlated with the class, and yet uncorrelated 
with each other
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with each other

Exercise: What is the main challenge in implementing CFS?
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Distributions of Two Example 3-Grams

2 = 1672.97447 2 = 0
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• Which is the better one?

26

Sample k-grams Selected by CFS
for Recognizing TIS

Kozak consensus
Leaky scanning

• Position –3

• in-frame upstream ATG

• in-frame downstream 

TAA TAG TGA

Kozak consensus

Stop codon
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– TAA, TAG, TGA, 

– CTG, GAC, GAG, and GCC

Codon bias?
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Signal Integration

• kNN

– Given a test sample, find the k training samplesGiven a test sample, find the k training samples 
that are most similar to it. Let the majority class 
win

• SVM

– Given a group of training samples from two 
classes determine a separating plane that
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classes, determine a separating plane that 
maximises the margin of error

• Naïve Bayes, ANN, C4.5, ...

28

Results (3-fold x-validation)

TP/(TP + FN) TN/(TN + FP) TP/(TP + FP) Accuracy

Naïve Bayes 84.3% 86.1% 66.3% 85.7%

Exercise: 
What is TP/(TP+FP)?
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SVM 73.9% 93.2% 77.9% 88.5%

Neural Network 77.6% 93.2% 78.8% 89.4%

Decision Tree 74.0% 94.4% 81.1% 89.4%
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Improvement by Voting

• Apply any 3 of Naïve Bayes, SVM, Neural 
Network, & Decision Tree. Decide by majorityy j y

TP/(TP + FN) TN/(TN + FP) TP/(TP + FP) Accuracy

NB+SVM+NN 79.2% 92.1% 76.5% 88.9%

NB+SVM+Tree 78.8% 92.0% 76.2% 88.8%

NB+NN+Tree 77.6% 94.5% 82.1% 90.4%
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SVM+NN+Tree 75.9% 94.3% 81.2% 89.8%

Best of 4 84.3% 94.4% 81.1% 89.4%

Worst of 4 73.9% 86.1% 66.3% 85.7%

30

Improvement by Scanning

• Apply Naïve Bayes or SVM left-to-right until first 
ATG predicted as positive. That’s the TISp p

• Naïve Bayes & SVM models were trained using 
TIS vs. Up-stream ATG

TP/(TP + FN) TN/(TN + FP) TP/(TP + FP) Accuracy

NB 84.3% 86.1% 66.3% 85.7%
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SVM 73.9% 93.2% 77.9% 88.5%

NB+Scanning 87.3% 96.1% 87.9% 93.9%

SVM+Scanning 88.5% 96.3% 88.6% 94.4%
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Performance Comparisons

TP/(TP + FN) TN/(TN + FP) TP/(TP + FP) Accuracy

NB 84.3% 86.1% 66.3% 85.7%

Decision Tree 74.0% 94.4% 81.1% 89.4%

NB+NN+Tree 77.6% 94.5% 82.1% 90.4%

SVM+Scanning 88.5% 96.3% 88.6% 94.4%*
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Pedersen&Nielsen 78% 87% - 85%

Zien 69.9% 94.1% - 88.1%

Hatzigeorgiou - - - 94%*

* result not directly comparable

32

Technique Comparisons

• Pedersen&Nielsen [ISMB’97]

– Neural network

• Our approach

– Explicit feature 

– No explicit features

• Zien [Bioinformatics’00]

– SVM+kernel engineering

– No explicit features

H t i i

generation

– Explicit feature selection

– Use any machine 
learning method w/o any 
form of complicated 
tuning

– Scanning rule is optional
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• Hatzigeorgiou 
[Bioinformatics’02]

– Multiple neural networks

– Scanning rule

– No explicit features
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mRNAprotein
A

T
How about using k-grams 

from the translation?

F

L

I

S

P

T

Y

H

Q

N

C

W
R

E

L

R

S

stop
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M
V A

K

D

E

G

stop

Exercise: List the first 10 amino
acid in our example sequence

34

Amino-Acid Features

Copyright 2010 © Limsoon Wong
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Amino-Acid 
Features
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Amino Acid K-grams 
Discovered (by entropy) 

Copyright 2010 © Limsoon Wong
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Independent Validation Sets

• A. Hatzigeorgiou:

– 480 fully sequenced human cDNAs480 fully sequenced human cDNAs

– 188 left after eliminating sequences similar to 
training set (Pedersen & Nielsen’s)

– 3.42% of ATGs are TIS

• Our own:

– well characterized human gene sequences from 
( S)
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chromosome X (565 TIS) and chromosome 21 
(180 TIS)

38

Validation Results (on Hatzigeorgiou’s)

– Using top 100 features selected  by entropy and 
trained on Pedersen & Nielsen’s dataset
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trained on Pedersen & Nielsen s dataset
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Our
method

Validation Results (on Chr X and Chr 21)

ATGpr

method

Copyright 2010 © Limsoon Wong

• Using top 100 features selected by entropy and 
trained on Pedersen & Nielsen’s

Recognition of 
Transcription Start Sitesp

An introduction to the World’s best TSS 
recognition system: 

A heavy tuning approach
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Transcription Start Site
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Structure of Dragon Promoter Finder

Copyright 2010 © Limsoon Wong

-200 to +50
window size

Model selected based 
on desired sensitivity
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Each model has two submodels 
based on GC content

GC-rich submodel
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GC-poor submodel

(C+G) =
#C + #G
Window SizeExercise: Why are the

submodels based on 
GC content?

44

Data Analysis Within Submodel

p

e
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K-gram (k = 5) positional weight matrix

i
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Promoter, Exon, Intron Sensors

• These sensors are positional weight matrices of 
k-grams, k = 5 (aka pentamers)g ( p )

• They are calculated as below using promoter, 
exon, intron data respectively Pentamer at ith

position in inputWindow size


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jth pentamer at
ith position in 
training window

Frequency of jth
pentamer at ith position
in training window

46

Just to make sure you know what I mean …

• Give me 3 DNA seq of length 10:

– Seq1 = ACCGAGTTCTSeq1  ACCGAGTTCT

– Seq2 = AGTGTACCTG

– Seq3 = AGTTCGTATG

• Then

1-mer pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10
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A 3/3 0/3 0/3

C 0/3 1/3 1/3

G 0/3 2/3 0/3

T 0/3 0/3 2/3

Exercise: Fill in the rest of the table
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Just to make sure you know what I mean …

• Give me 3 DNA seq of length 10:

– Seq1 = ACCGAGTTCTSeq1  ACCGAGTTCT

– Seq2 = AGTGTACCTG

– Seq3 = AGTTCGTATG

• Then

2-mer pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9

Exercise: How many rows should 
this 2-mer table have? How many 
rows should the pentamer table have?
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AA 0/3 0/3 0/3

AC 1/3 0/3 0/3

… … … …

TT 0/3 0/3 1/3 1/3

Exercise: Fill in the rest of the table

48

Data Preprocessing & ANN
Tuning parameters Simple feedforward ANN 

trained by the Bayesian 
regularisation method

s

sI

sE tanh(net)

g

wi Tuned
threshold
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tanh(x) =
ex  e-x

ex  e-x

sIE

net =  si * wi
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Accuracy Comparisons

with C+G submodels
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without C+G submodels

with C+G submodels

50

Training Data Criteria & Preparation

• Contain both positive and 
negative sequences

• TSS taken from

– 793 vertebrate promoters 

• Sufficient diversity, 
resembling different 
transcription start 
mechanisms

• Sufficient diversity, 

from EPD

– -200 to +50 bp of TSS

• non-TSS taken from 

– GenBank, 

– 800 exons 

4000 introns
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resembling different non-
promoters

• Sanitized as much as 
possible

– 4000 introns, 

– 250 bp, 

– non-overlapping, 

– <50% identities
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Tuning Data Preparation

• To tune adjustable system 
parameters in Dragon, we 

d t t i

• TSS taken from 

– 20 full-length gene seqs 
need a separate tuning 
data set

with known TSS

– -200 to +50 bp of TSS

– no overlap with EPD

• Non-TSS taken from

– 1600 human 3’UTR seqs

500 human exons
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– 500 human exons

– 500 human introns

– 250 bp

– no overlap
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Testing Data Criteria & Preparation

• Seqs should be from the 
training or evaluation of 

th t ( bi !)

• 159 TSS from 147 human 
and human virus seqs

other systems (no bias!)

• Seqs should be disjoint 
from training and tuning 
data sets

• Seqs should have TSS

• cummulative length of 
more than 1.15Mbp

• Taken from GENESCAN, 
GeneId, Genie, etc.
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• Seqs should be cleaned to 
remove redundancy, <50% 
identities
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Recognition of 
Poly-A Signal Sitesy g

A twist to the “feature generation, feature 
selection, feature integration” approach

54

Eukaryotic Pre-mRNA Processing
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Image credit: www.polya.org
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Poly-A Signals in Human (Gautheret et al., 2000)
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Poly-A Signals in Arabidopsis

In contrast to human, PAS in Arab is 
highly degenerate. E.g., only 10% of 

Arab PAS is AAUAAA!
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Arab PAS is AAUAAA!
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Approach on Arab PAS Sites (I)
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Approach on Arab PAS Sites (II)

• Data collection

– #1 from Hao Han, 811 

• Feature generation

– 3-grams,  compositional 
+ve seq (-200/+200)

– #2 from Hao Han, 9742 
–ve seq (-200/+200)

– #3 from Qingshun Li,
• 6209 (+ve) seq (-300/+100)

features (4U/1N. G/U*7, 
etc)

– Freq of features above in 
3 diff windows: (-110/+5), 
(-35/+15), (-50/+30) 

• Feature selection
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• 1581 (-ve) intron (-300/+100)

• 1501 (-ve) coding (-
300/+100)

• 864 (-ve) 5’utr (-300/+100)

– 2

• Feature integration & 
Cascade

– SVM
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Score Profile Relative to Candidate Sites
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Validation Results
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Concluding Remarks…

62

What have we learned?

• Gene feature recognition applications

– TIS, TSS, PASTIS, TSS, PAS

• General methodology

– “Feature generation, feature selection, feature 
integration”
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• Important tactics

– Multiple models to optimize overall performance

– Feature transformation (DNA  amino acid)

– Classifier cascades
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Any Question?

64
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