For written notes on this lecture, please read chapter 14 of The Practical Bioinformatician,

CS2220: Introduction to Computational Biology Lecture 4: Gene Expression Analysis

> Limsoon Wong 4 February 2010

	A Sample Affymetrix GeneChip 🐯 NUS Data File (U95A)									
	00-0586-U	00-0586-U	00-0586-U	00-0586-U	00-0586-U	Descriptions				
	Positive	Negative	Pairs InAvg	Avg Diff	Abs Call					
AFFX-Murl	5	2	19	297.5	A	M16762 Mouse interleukin 2 (IL-2) gene, exon 4				
AFFX-Murl	3	2	19	554.2	A	M37897 Mouse interleukin 10 mRNA, complete cds				
AFFX-Murl	4	2	19	308.6	A	M25892 Mus musculus interleukin 4 (II-4) mRNA, comp				
AFFX-Murf	1	3	19	141	A	M83649 Mus musculus Fas antigen mRNA, complete				
AFFX-BioE	13	1	19	9340.6	Р	J04423 E coli bioB gene biotin synthetase (-5, -M, -3 r				
AFFX-BioE	15	0	19	12862.4	Р	J04423 E coli bioB gene biotin synthetase (-5, -M, -3 r				
AFFX-BioE	12	0	19	8716.5	Р	J04423 E coli bioB gene biotin synthetase (-5, -M, -3 r				
AFFX-BioC	17	0	19	25942.5	Р	J04423 E coli bioC protein (-5 and -3 represent transcr				
AFFX-BioC	16	0	20	28838.5	Р	J04423 E coli bioC protein (-5 and -3 represent transcr				
AFFX-BioD	17	0	19	25765.2	Р	J04423 E coli bioD gene dethiobiotin synthetase (-5 ar				
AFFX-BioD	19	0	20	140113.2	Р	J04423 E coli bioD gene dethiobiotin synthetase (-5 ar				
AFFX-Cre>	20	0	20	280036.6	P	XD3453 Bacteriophage P1 cre recombinase protein (-5				
AFFX-Cre>	20	0	20	401741.8	Р	XD3453 Bacteriophage P1 cre recombinase protein (-5				
AFFX-BioE	7	5	18	-483	A	J04423 E coli bioB gene biotin synthetase (-5, -M, -3 r				
AFFX-BioE	5	4	18	313.7	A	J04423 E coli bioB gene biotin synthetase (-5, -M, -3 r				
AFFX-BioE	7	6	20	-1016.2	A	J04423 E coli bioB gene biotin synthetase (-5, -M, -3 r				

NUS
Contraction of the local division of the loc

Copyright 2010 © Limsoon Won

Training and Testing Sets

Paired datasets	Ingredients	Training	Testing
T-ALL vs	OTHERS1 ={E2A-PBX1, TEL-AML1,	28 vs 187	15 vs 97
OTHERS1	BCR-ABL, Hyperdip>50, MLL, OTHERS}		
E2A-PBX1 vs	$OTHERS2 = \{ TEL-AML1, BCR-ABL$	18 vs 169	9 vs 88
OTHERS2	Hyperdip>50, MLL, OTHERS}		
TEL-AML1 vs	$OTHERS3 = \{BCR-ABL$	52 vs 117	$27 \ \mathrm{vs} \ 61$
OTHERS3	Hyperdip>50, MLL, OTHERS}		
BCR-ABL vs	$OTHERS4 = \{Hyperdip>50,$	9 vs 108	6 vs 55
OTHERS4	MLL, OTHERS}		
MLL vs	$OTHERS5 = {Hyperdip>50, OTHERS}$	14 vs 94	6 vs 49
OTHERS5			
Hyperdip>50 vs	$OTHERS = \{Hyperdip47-50, Pseudodip, $	42 vs 52	$22 \ \mathrm{vs} \ 27$
OTHERS	Hypodip, Normo}		

<page-header><image><section-header><page-header><section-header><image><list-item><list-item><list-item>

Signal Selection by $\chi 2$

The \mathcal{X}^2 value of a signal is defined as:

$$\mathcal{X}^2 = \sum_{i=1}^m \sum_{j=1}^k \frac{(A_{ij} - E_{ij})^2}{E_{ij}},$$

where m is the number of intervals, kthe number of classes, A_{ij} the number of samples in the *i*th interval, *j*th class, R_i the number of samples in the *i*th interval, C_j the number of samples in the *j*th class, N the total number of samples, and E_{ij} the expected frequency of A_{ij} ($E_{ij} = R_i * C_j/N$).

	Example	es 🔊
Patterns	Frequency (P)	Frequency(N)
{9, 36}	38 instances	0
{9, 23}	38	0
{4, 9}	38	0
{9, 14}	38	0 Easy interpretation
<i>{</i> 6 <i>,</i> 9 <i>}</i>	38	0
{7, 21}	0	36
{7, 11}	0	35
{7, 43}	0	35
{7, 39}	0	34
{24, 29}	0	34
eference nur eference nur	nber 9: the expression nber 36: the expression	the of gene 37720_at > 215 on of gene $38028_{at} \le 12$

Accuracy of PCL (vs. other classifiers)

	C4.5	SVM	NB	PCL
T-ALL vs OTHERS1	0:1	0:0	0:0	0:0
E2A-PBX1 vs OTHERS2	0:0	0:0	0:0	0:0
TEL-AML1 vs OTHERS3	1:1	0:1	0:1	1:0
BCR-ABL vs OTHERS4	2:0	3:0	1:4	2:0
MLL vs OTHERS5	0:1	0:0	0:0	0:0
Hyperdiploid>50 vs OTHERS	2:6	0:2	0:2	0:1
Total Errors	14	6	8	4

by χ^2 at each level of the tree

Application	Data set	Sta	Total	
	-	Dead	Alive	
DLBCL	Original	88	72	160
	Informative	47+1(*)	25	73

Copyright 2010 © Limsoon Wong

Copyright 2010 © Limsoon We

Effectiveness of ERCOF

Table 5.32: A summary of the total winning times (including tie cases) of each classifier (under different feature selection methods) across the 20 validation tests on the six gene expression profiles and one proteomic data set. The number with bold font in each row indicates the feature selection method that owns most winning times for the relevant classifier. In the brackets, there is the total number of misclassified samples across the same 20 validation tests. Similarly, the figure with bold font in the brackets in each row is the minimum number of total misclassified samples among feature selection methods for the classifier.

Classifier	All	All-entropy	Mean-entropy		Top-numbe	er-entropy		ERCOF
				20	50	100	200	-
SVM	4(100)	9(52)	11(48)	6(76)	6(74)	11(52)	11(59)	16(38)
3-NN	1(187)	5(87)	8(77)	6(88)	4(81)	6(77)	5(73)	12(61)
Bagging	7(123)	5(117)	8(115)	11(123)	11(122)	7(122)	9(114)	8(112)
AdaBoostM1	5(191)	8(181)	8(166)	11(138)	10(144)	10(157)	9(162)	10(154)
RandomForests	0(228)	5(111)	5(93)	6(96)	7(83)	8(96)	5(90)	9(80)
CS4	5(87)	6(77)	6(76)	7(101)	10(81)	9(74)	8(74)	12(66)
Total wins	22	38	46	47	48	51	47	67

Copyright 2010 © Limsoon Wong

References

- E.-J. Yeoh et al., "Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling", *Cancer Cell*, 1:133--143, 2002
- H. Liu, J. Li, L. Wong. Use of Extreme Patient Samples for Outcome Prediction from Gene Expression Data. *Bioinformatics*, 21(16):3377--3384, 2005.
- L.D. Miller et al., "Optimal gene expression analysis by microarrays", *Cancer Cell* 2:353--361, 2002
- J. Li, L. Wong, "Techniques for Analysis of Gene Expression", *The Practical Bioinformatician*, Chapter 14, pages 319–346, WSPC, 2004
- D. Soh, D. Dong, Y. Guo, L. Wong. "Enabling More Sophisticated Gene Expression Analysis for Understanding Diseases and Optimizing Treatments". ACM SIGKDD Explorations, 9(1):3--14, 2007