# CS2220: Intro to Computational Biology **Course Briefing**

**Limsoon Wong** 



# Recommended "Pre-requisites"

- CS1020 Data Structures and Algorithms I
- CS2020 Data Structures and Algorithms II
- LSM1101 Biochemistry and Biomolecules
- LSM1102 Molecular Genetics

# **Objectives**



- Develop flexible and logical problem solving skill
- · Understand bioinformatics problems
- Appreciate techniques and approaches to bioinformatics
- To achieve goals above, we expose students to case studies spanning gene feature recognition, gene expression and proteomic analysis, gene finding, sequence homology interpretation, phylogeny analysis, etc.

# Contents of Course Overview



- Time Table
- Course Syllabus
- Course Homepage
- Teaching Style
- Project, Assignments, Exams
- Readings
- **Assessment**
- . Quick Overview of Themes and Applications of **Bioinformatics**

# Time Table



- Lecture
  - Thursday 12:00nn 2:00pm, COM1-202
- Tutorial
  - ??day ?:00pm ?:00pm, COM1-???
- Email
  - wongls@comp.nus.edu.sg
- - Any time; just make appt to make sure I am in

# Course Syllabus



- · Intro to Bioinformatics
- **Essence of Knowledge** Discovery
- **Gene Feature Recognition** from Genomic DNA

- Gene Expression Analysis

- Essence of Seq Comparison
- Seq Homology Interpretation
- Gene Finding
  - Overview of gene GRAIL Handling of frame
  - **Phylogenetic Trees**
- Some hot current topics like
- PPI, miRNA, etc.

# Course Homepage



- IVLE
  - https://ivle.nus.edu.sg/lms/public/list\_course\_publi c.aspx?code=cs2220&acadyear=2010%2f2011
- · Lecture Slides & etc
  - http://www.comp.nus.edu.sg/~wongls/courses/cs2 220/2010b

# **Teaching Style**



- · Bioinformatics is a broad area
- · Need to learn a lot of material by yourself
  - Reading books
  - Reading papers
  - Practice on the web
- · Don't expect to be told everything

# Assignments, Project, & Exam



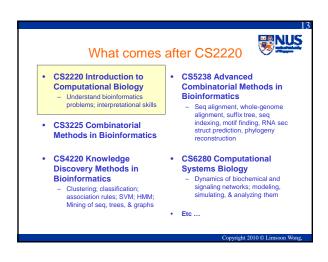
- Assignments
  - Probably 3-4 assignments
  - Some are simple programming assignments
- - Based on a case study in the class
  - 8-10 pages of report / ppt slides expected
- - 1 final open-book exam

# Be Honest

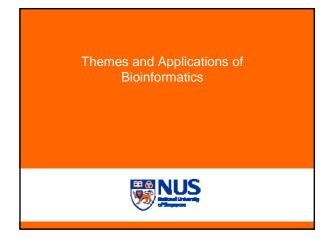


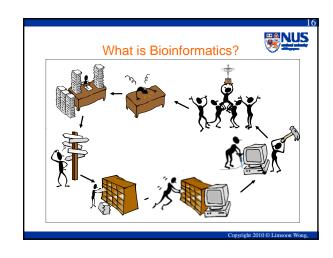
- Exam
  - Absence w/o good cause results in ZERO mark
  - Cheating results in ZERO mark
- · Discussion on assignments is allowed
- · Blatant plagiarism is not allowed
  - Offender gets ZERO mark for assignment or exam
  - Penalty applies to those who copied AND those who allowed their assignments to be copied

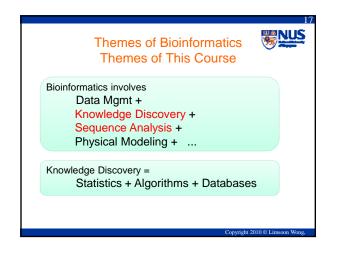
# **Background Readings**

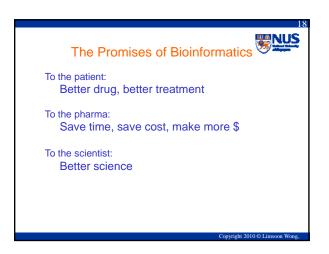


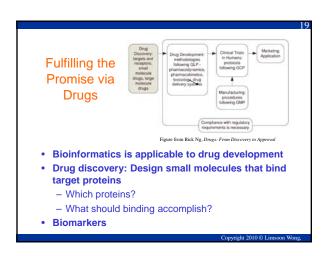

- Limsoon Wong, The Practical Bioinformatician, WSPC, 2004
- Wing-Kin Sung, Algorithms in Bioinformatics: A Practical Introduction, CRC, 2010
- · Marketa Zvelebil and Jeremy Baum, **Understanding Bioinformatics, Garland, 2007**


# Assessment



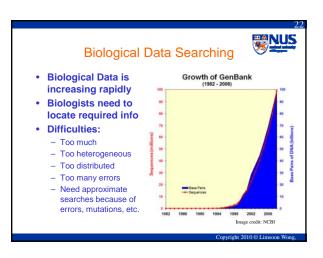


- Continuous Assessment: 50%
- Final Exam: 50%

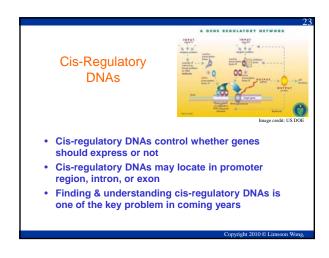


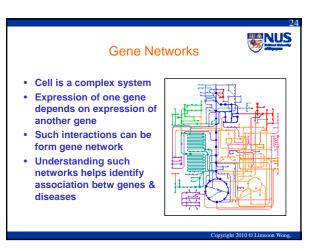



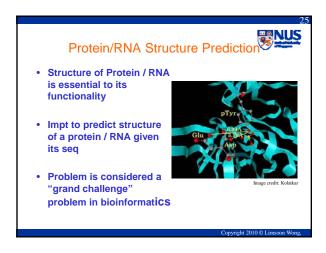


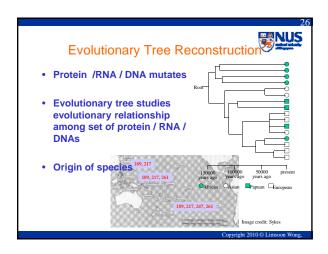


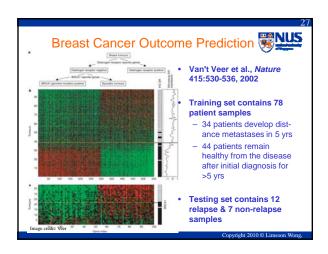



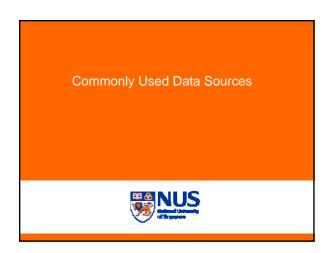



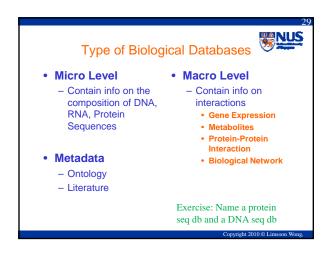



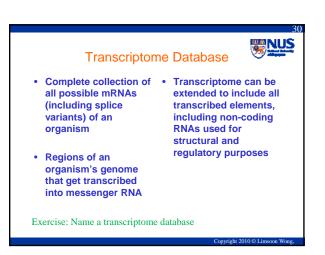


# 


# Some Bioinformatics Problems Biological Data Searching Biological Data Integration Gene/Promoter finding Cis-regulatory DNA Gene/Protein Network Protein/RNA Structure Prediction Evolutionary Tree reconstruction Infer Protein Function Disease Diagnosis Disease Prognosis Disease Treatment Optimization, ...














# Gene Expression Databases



- being expressed or found in a cell of a tissue sample
- Detect what genes are Single-gene analysis
  - Northern Blot
  - In Situ Hybridization
  - RT-PCR
  - · Many genes: High throughput arrays
    - cDNA Microarray
    - Affymetrix GeneChip® Microarray

Exercise: Name a gene expression database

# Metabolites Database



- A metabolite is an organic compound that is a starting material in, an intermediate in, or an end product of metabolism
- Metabolites dataset are also generated from mass spectrometry which measure the mass the these simple molecules. thus allowing us to estimate what are the metabolites in a tissue

### Starting metabolites

- Small, of simple structure, absorbe organism as food

  E.g., vitamins and amino acids

# • Intermediary metabolites

- The most common metabolities May be synthesized from other metabolities, or broken down into simpler compounds, often with the release of chemical energy E.g., glucose

## End products of metabolism

- Final result of the breakdown metabolites Excreted from the organism w further change E.g., urea, carbon dioxide

# Protein-Protein Interaction Databases

- · Proteins are true workhorses
  - Lots of cell's activities are performed thru PPI, e.g., message passing, gene regulation, etc.
- Function of a protein depends on proteins it interacts with
- · Methods for generating PPI db
  - biochemical purifications, Y2H, synthetic lethals, in silico predictions, mRNAco-expression
- · Contain many false positives & false negatives

Exercise: Name a PPI database

# Any Question?



# Acknowledgements



- · Most of the slides used in this lecture are based on original slides created by
  - Ken Sung
  - Anthony Tung
- · But you should blame me for any errors

# References



- S.K. Ng, "Molecular Biology for the Practical Bioinformatician", The Practical Bioinformatician, Chapter 1, pages 1-30, WSPC, 2004
- · DOE HGP Primer, http://www.ornl.gov/sci/techresources/Human\_Ge nome/publicat/primer/index.shtml
- · Lots of useful videos. http://www.as.wvu.edu/~dray/Bio\_219.html