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For written notes on this lecture, please read chapter 3 of The Practical Bioinformatician,

CS2220: Introduction to Computational Biology

Lecture 1: Essence of Knowledge Discovery

Limsoon Wong
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What is Data Mining?

Jonathan’s blocks
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Jonathan’s rules : Blue or Circle
Jessica’s rules : All the rest

Whose block 
is this?

Jessica’s blocks
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What is Data Mining?
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Question: Can you explain how?
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The Steps of Data Mining 

• Training data gathering

• Feature generation

– k-grams, colour, texture, domain know-how, ...

• Feature selection

E t 2 CFS t t t d i k h
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– Entropy, 2, CFS, t-test, domain know-how...

• Feature integration

– SVM, ANN, PCL, CART, C4.5, kNN, ...

Some classifiers / machine learning methods

What is Accuracy?
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What is Accuracy?
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Accuracy =
No. of correct predictions

No. of predictions

=
TP + TN

TP + TN + FP + FN
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Examples (Balanced Population)

classifier TP TN FP FN Accuracy
A 25 25 25 25 50%
B 50 25 25 0 75%
C 25 50 0 25 75%
D 37 37 13 13 74%
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• Clearly, B, C, D are all better than A

• Is B better than C, D?

• Is C better than B, D?

• Is D better than B, C?

D 37 37 13 13 74%

Accuracy may not
tell the whole story
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Examples (Unbalanced Population)

classifier TP TN FP FN Accuracy
A 25 75 75 25 50%
B 0 150 0 50 75%
C 50 0 150 0 25%
D 30 100 50 20 65%
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• Clearly, D is better than A

• Is B better than A, C, D?

D 30 100 50 20 65%

High accuracy is meaningless if population is unbalanced

Exercise: What is B’s 
Prediction strategy?
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What is Sensitivity (aka Recall)?
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Sensitivity =
No. of correct positive predictions

No. of positives

=
TP

TP + FN

wrt positives

Sometimes sensitivity wrt negatives is termed specificity

Exercise: Write down the formula for specificity
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What is Precision?

Copyright 2010 © Limsoon Wong

Precision =
No. of correct positive predictions

No. of positives predictions

=
TP

TP + FP

wrt positives
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Unbalanced Population Revisited

classifier TP TN FP FN Accuracy Sensitivity Precision
A 25 75 75 25 50% 50% 25%
B 0 150 0 50 75%
C 50 0 150 0 25%
D 30 100 50 20 65% 60% 38%
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• What are the sensitivity and precision of B and C?

• Is B better than A, C, D?

D 30 100 50 20 65% 60% 38%
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Abstract Model of a Classifier

• Given a test sample S

• Compute scores p(S), n(S)

• Predict S as negative if p(S) <  t * n(s)

• Predict S as positive  if p(S)  t * n(s)
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t is the decision threshold of the classifier

changing t affects the recall and precision,
and hence accuracy, of the classifier
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An Example
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Recall that …
• Predict S as negative if p(S) <  t * n(s)
• Predict S as positive  if p(S)  t * n(s)
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Precision-Recall Trade-off

• A predicts better than 
B if A has better recall 
and precision than B

• There is a trade-off 
between recall and 

• In some apps, once 
you reach satisfactory 
precision, you 
optimize for recall

• In some apps, once 
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precision
pp ,

you reach satisfactory 
recall, you optimize 
for precision

precision

Exercise: Why is there a trade
off betw recall and precision?
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Comparing Prediction Performance

• Accuracy is the obvious measure

– But it conveys the right intuition only when the 
positive and negative populations are roughly 
equal in size
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• Recall and precision together form a better 
measure

– But what do you do when A has better recall than 
B and B has better precision than A?

So let us look at some alternate measures ….
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F-Measure (Used in Info Extraction)

• Take the harmonic mean of recall and precision

F =
2 * recall * precision

recall + precision
(wrt positives)
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classifier TP TN FP FN Accuracy F-measure
A 25 75 75 25 50% 33%
B 0 150 0 50 75% undefined
C 50 0 150 0 25% 40%
D 30 100 50 20 65% 46%

Does not accord with intuition:
C predicts everything as +ve, but still rated better than A
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Adjusted Accuracy

• Weigh by the importance of the classes

Adjusted accuracy =  * Sensitivity  * Specificity+

where  +  = 1
t i ll  0 5
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classifier TP TN FP FN Accuracy Adj Accuracy
A 25 75 75 25 50% 50%
B 0 150 0 50 75% 50%
C 50 0 150 0 25% 50%
D 30 100 50 20 65% 63%

typically,  =  = 0.5

But people can’t always agree on values for , 
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ROC Curves

• By changing t, we get a 
range of sensitivities and 
specificities of a classifier

• A predicts better than B if 
A has better sensitivities

• Then the larger the area 
under the ROC curve, the 
better
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A has better sensitivities 
than B at most specificities

• Leads to ROC curve that 
plots sensitivity vs. (1 –
specificity)

1 – specificityExercise: Draw a typical curve 
of sensitivity vs specificity
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What is Cross Validation?
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Construction of a Classifier

Build Classifier
Training
samples

Classifier
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Apply Classifier
Test

instance
Prediction
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Estimate Accuracy: Wrong Way

Apply 
Predictions

Build 
Classifier

Training
samples

Classifier
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Classifier
Predictions

Estimate
Accuracy

Accuracy

Exercise: Why is this way of estimating accuracy wrong?
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Recall ...

• Given a test sample S

• Compute scores p(S), n(S)

…the abstract model of a classifier
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• Predict S as negative if p(S) < t * n(s)

• Predict S as positive  if p(S)  t * n(s)

t is the decision threshold of the classifier
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K-Nearest Neighbour Classifier (k-NN)

• Given a sample S, find the k observations Si in 
the known data that are “closest” to it, and 
average their responses

• Assume S is well approximated by its neighbours
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p(S) =  1
Si Nk(S)  DP

n(S) =  1
Si Nk(S)  DN

where Nk(S) is the neighbourhood of S
defined by the k nearest samples to it.

Assume distance between samples is Euclidean distance for now
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Neighborhood

5 of class

3 of class

Illustration of kNN (k=8)
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Image credit: Zaki
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Estimate Accuracy: Wrong Way

Apply 
Predictions

Build 
1-NN

Training
samples

1-NN
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1-NN
Predictions

Estimate
Accuracy

100%
Accuracy

For sure k-NN (k = 1) has 100% accuracy in the
“accuracy estimation” procedure above. But does
this accuracy generalize to new test instances?

Exercise: 
Why does 1-NN
has 100% accuracy 
under this scenario?
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Estimate Accuracy: Right Way

Apply 
Predictions

Build 
Classifier

Training
samples

Classifier

Testing

Copyright 2010 © Limsoon Wong

Testing samples are NOT to be used 
during “Build Classifier”

Classifier
Predictions

Estimate
Accuracy

Accuracy

samples
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How Many Training and 
Testing Samples?

• No fixed ratio between training and testing 
samples; but typically 2:1 ratio

• Proportion of instances of different classes in 
testing samples should be similar to proportion in
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testing samples should be similar to proportion in 
training samples

• What if there are insufficient samples to reserve 
1/3 for testing?

• Ans: Cross validation 
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Cross Validation

• Divide samples 
into k roughly 
equal parts 

• Each part has 
similar proportion

2.Train 3.Train 4.Train 5.Train 1.Test 

2.Test 3.Train 4.Train 5.Train 1.Train 

2 T i 3 T t 4 T i 5 T i1 T i
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similar proportion 
of samples from 
different classes

• Use each part to 
test other parts

• Total up accuracy

2.Train 3.Test 4.Train 5.Train 1.Train 

2.Train 3.Train 4.Test 5.Train 1.Train 

2.Train 3.Train 4.Train 5.Test 1.Train 
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How Many Fold?

• If samples are divided 
into k parts, we call 
this k-fold cross 
validation

• Choose k so that 

– the k-fold cross 
validation accuracy 
does not change 
much from k-1 foldcy
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– each part within the k-
fold cross validation 
has similar accuracy

• k = 5 or 10 are popular 
choices for k

Size of training set

A
cc

ur
ac
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Bias and Variance
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Source: Freedman et al., Statistics, Norton, 1998
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Bias-Variance Decomposition

• Suppose classifiers Cj and 
Ck were trained on 
different sets Sj and Sk of 
1000 samples each

• Then Cj and Ck might have

• Let Y = f(X) be what C is 
trying to predict

• The expected squared 
error at a test instance x, 
averaging over all such
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Then Cj and Ck might have 
different accuracy

• What is the expected 
accuracy of a classifier C 
trained this way?

averaging over all such 
training samples, is 

E[C(x) – f(x)]2

= E[C(x) – E[C(x)]]2

+ [E[C(x)] - f(x)]2 

Variance: 
how much our 
estimate C(x) will
vary across the 
different training
sets

Bias:
how far is our ave 
prediction E[C(x)] 
from the truth
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Proof of Bias-Variance Decomposition

• E [C(x) – f(x)]2

 E [C(x) – E[C(x)] + E [C(x)] – f(x)]2

 E [(C(x) – E[C(x)])2 + (E[C(x)] – f(x))2 – 2 (C(x) – E[C(x)]) (E[C(x)] – f(x))]

 E [C(x) – E[C(x)]]2 + E [E[C(x)] – f(x)]2 – 2 E (C(x) – E[C(x)]) (E[C(x)] – f(x))

 E [C(x) – E[C(x)]]2 + (E[C(x)] – f(x))2 – 2 (E[C(x)] – E[C(x)]) (E[C(x)] – f(x))
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 E [C(x) – E[C(x)]]2 + (E[C(x)] – f(x))2

Variance: 
how much our 
estimate C(x) will
vary across the 
different training
sets

Bias:
how far is our ave 
prediction E[C(x)] 
from the truth
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ur
ac

y 

Bias-Variance Trade-Off

• In k-fold cross 
validation, 
– small k tends to 

under estimate 
accuracy (i e large
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Size of training set

A
cc

u accuracy (i.e., large 
bias downwards)

– Large k has smaller 
bias, but can have 
high variance

Curse of Dimensionality
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Neighborhood

5 of class

3 of class

Recall kNN …

1st
di

m
en

si
on
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Image credit: Zaki

2nd dimension
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Curse of Dimensionality

• How much of each 
dimension is needed to 
cover a proportion r of 
total sample space?

• Calculate by ep(r) = r1/p

• So, to cover 10% of a 15-D 
space, need 85% of each 
dimension! 

0 9
1
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0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

p=3 p=6 p=9 p=12 p=15

r=0.01

r=0.1

Exercise: Why ep(r) = r1/p?
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Consequence of the Curse

• Suppose the number of samples given to us in 
the total sample space is fixed

• Let the dimension increase
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• Then the distance of the k nearest neighbours of 
any point increases

• Then the k nearest neighbours are less and less 
useful for prediction, and can confuse the k-NN 
classifier

What is Feature Selection?
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Tackling the Curse

• Given a sample space of p dimensions

• It is possible that some dimensions are irrelevant

N d t fi d t t th di i
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• Need to find ways to separate those dimensions 
(aka features) that are relevant (aka signals) from 
those that are irrelevant (aka noise)
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Signal Selection (Basic Idea)

• Choose a feature w/ low intra-class distance

• Choose a feature w/ high inter-class distance
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Exercise: Name 2 well-known signal selection statistics
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Signal Selection (e.g., t-statistics)
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Self-fulfilling Oracle

• Construct artificial 
dataset with 100 
samples, each with 
100,000 randomly 
generated features 

• Evaluate accuracy by 
cross validation using 
the 20 selected 
features
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and randomly 
assigned class labels

• Select 20 features 
with the best t-
statistics (or other 
methods)

• The resulting 
accuracy can be ~90%

• But the true accuracy 
should be 50%, as the 
data were derived 
randomly
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What Went Wrong?

• The 20 features were selected from whole dataset

• Information in the held-out testing samples has 
thus been “leaked” to the training process

• The correct way is to re select the 20 features at
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• The correct way is to re-select the 20 features at 
each fold; better still, use a totally new set of 
samples for testing

Concluding Remarks
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What have we learned?

• Methodology of data mining

– Feature generation, feature selection, feature 
integration

• Evaluation of classifiers
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• Evaluation of classifiers

– Accuracy, sensitivity, precision

– Cross validation

• Curse of dimensionality

– Feature selection concept

– Self-fulfilling oracle

Any Questions?
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