CS2220: Introduction to Computational Biology
Lecture 4: Gene Expression Analysis

Background on Microarrays
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Plan

« Microarray background

* Gene expression profile classification
« Gene expression profile clustering

¢ Normalization

« Extreme sample selection

¢ Intersection Analysis
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What is a Microarray?

« Contain large number of DNA molecules spotted
on glass slides, nylon membranes, or silicon
wafers

« Detect what genes are being expressed or found
in a cell of atissue sample

* Measure expression of thousands of genes
simultaneously
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. : : BINUS
Making Affymetrix GeneChip Array
quartz is washed to ensure uniform Light
hydroxylation across its surface and to {deprotection)
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GeneChip®
Microarray

Exercise: What is the other commonly used
type of microarray? How is that one different
from Affymetrix’s?
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Gene Expression Measurement@ﬂ_—?—g
by Affymetrix GeneChip Array

Biatin-labeled

Total ANA cDNA <Al
Reverse [ _ InViiro ga/
TSN MMM Transcripion < Transeription
e AAAR ™ - /s
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“
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Some Advice on NUS

Affymetrix Gene Chip Data

* Ignore AFFX genes
— These genes are control genes

* Ignore genes with “Abs Call” equal to “A” or “M”
— Measurement quality is suspect

e Upperbound 40000, lowerbound 100
— Accuracy of laser scanner

» Deal with missing values Exercise: Suggest 2 ways

to deal with missing value

Copyright 2010 © Limsoon Wong

NUS
Type of Gene Expression Datasets” =

= Gene-Conditions or Gene-Sample (numeric or discretized)
1000 - 100,000 columns,

Class Genel Genez | Genes Gened Genes Genet Gene?
sample1 | Cancer 1 o 1 1 1 o o
samplez | Cancer 1
100-500
rows

| ~Cancer

‘time & a)

=t m
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A Sample Affymetrix GeneChip @Eﬂ—lf_s.
Data File (U95A)

(00555 LIO0.058%. LK O0.058%5. LA 0.0585. L (1-0885- LK Descnptions
Posiive  Negstve  Pairs Indv Avg Of  Abs 38

AFF-Murl £ 2 19 278 A MIETE2 Mouse interlaukin 2 (IL-2) gene, exon 4
AFF-Mur 3 2 19 5542 A MITEIT Mouse i
AF F-Murd 4 2 19 A\E A M2 M
AF F - Murt 1 3 19 141 A MERAY Mu: 5
AFFi-Bwok 13 1 19 986 P 04423 E ol ko gy
AF P Bk 15 0 19 124 P J04433 E cob B gene ol syndl 5
AFF-BioE 12 o 19 8TE5P J04423 E coli bioB gene biobn syrthetase (5, -M,
AFFX-BiaC 17 o 19 288425 P 04423 E coli biok pratein (45 and -3 represent transc
0 18 o A MWEMBS P M04423 F coli bioC p (-5 and -3 represent transc:
17 0 19 X%Mes2 P 2423 E cob ol gene dethoboln syrdbetas
k] a 20 140132 P J04423 E coli bioD gene dethiokiotin syrthetase (5 ar
2 1] 2 200036 P 00453 Bactenophage P1 cre recombinate protein (5
20 1] A e Ee H3453 Bactenophage P1 crk recombi
7 El 18 -483 A 04423 E coh bnoB gene Enole synibetase (3,
g 4 13 NIT A J04423 E coli binB gene biotin syrthetase (5
AFF-BioE 7 B 20 10162 A J04423 E coli bioD gens biotin synthelase (5
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NUS
Type of Gene Expression Datasets” =

= Gene-Conditions or Gene-Sample (numeric or discretized)
1000 - 100,000 columns,

Class Genel | Gene2 | Genes | Gened | Genes | Genes | Gene?
Sample1 Cancer 012 13 17 10 32 078 01z
Sample2 Cancer 13

100-500

rows ~Cancer
SampleN ~Cancer

|9A8) Uoissaidxa

‘time = a) ]
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NUS
Application: Disease Subtype Diagnosts=

genes

samples

0000
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Application: Treatment Prognosis

genes

samples

0000000000000 00000 'R
000000000000000000 ™
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genes

conditions

Q0@ \ormal
000000000000000000 0

Which group of genes are the drug affecting on?
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Childhood ALL

* Major subtypes: T-ALL, * The subtypes look similar
E2A-PBX, TEL-AML, BCR-
ABL, MLL genome
rearrangements,
Hyperdiploid>50

i SN . T
< Diff subtypes respond
differently to same Tx
« Qver-intensive Tx « Conventional diagnosis

— Development of
secondary cancers

— Reduction of IQ
Under-intensiveTx
— Relapse

— Immunophenotyping
— Cytogenetics
— Molecular diagnostics

* Unavailable in most

ASEAN countries
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|
NUS
Type of Gene Expression Datasets” “=

= Gene-Conditions or Gene-Sample (numeric or discretized)
1000 - 100,000 columns,

Gemet e oo Joemes oo Jowmes | oot
Condt o FERRN Y o 2 o o
Con2 e
100-500
rows
=
= Gene-Time = Gene-Sample-Time
- . ‘.th_ﬁ‘
P T

i

 |9A8] uoissaldxa
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Gene Expression Profile Classification

Mission

« Conventional risk assignment procedure requires
difficult expensive tests and collective judgement
of multiple specialists

* Generally available only in major advanced
hospitals

= Can we have a single-test easy-to-use platform
instead?
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Single-Test Platform of

Copyright 2010 ©

imsoon Wong

7y
_— FINUS
Subtype Diagnosis by PCL -
e Gene expression data collection
* Gene selection by x2

» Classifier training by emerging pattern

learning-methods)-

* Apply classifier for diagnosis of future cases by
PCL
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@NUS
Training and Testing Sets -
Poind delassds  Degradicls

Troiuing  Tesling

T-ALL vs DTHERS m{E2A-PREL, TEL-AMLL we 187 15 ws 97
OTHERS1 CHALIL. Rgootic-gie Il it

E2A-"BXL vs  OTHERSS = {IEL-13ILL BCR-38L I8vs 102 Pvsdl
OTHERS2 Hapudipodl MILL, ATHERSS

TEL-ABML] vs  onnpess — 0k am F2ws 1IT 2T wes il
OTHERSS Hypauslipodil, MLL, HTHERSY

BCOR-ABL vs GIHNERSS m Mypoadipe3t, Bvs I8 6wl
COTHERS] SILL, OTHERS

MIL ws OINERH = Mypalpe-dk OTHEDG; Jdws @ Gws 49
CYTHERSS

Hypendip:>30 v OTHERS = {(isosfpf 3 Posinliy, 42 wa 52 22 wn 27
OTHERS Igproig. Thuuwf
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Overall Strategy _—

S

« For each subtype, select « For each subtype, select

genes to develop
classification model for
diagnosing that subtype

genes to develop
prediction model for
prognosis of that subtype
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Childhood ALL Subtype
Diagnosis Workflow

T-ALL? |"‘— AS e
e B
™ [y

s

A tree-structured
diagnostic
workflow was
recommended by
our doctor
collaborator
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@NUS
Signal Selection Basic Idea -

e Choose a signal w/ low intra-class distance
* Choose asignal w/ high inter-class distance

=]

Chess | Cless 2 Clsai Cless 2 Clss T Clegs2
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Signal Selection by y2
The &2 value of a signal is defined as:

w2 ® kb - Ey)?
i=1=1  Ey

where m is the number of intervals, &
the number of classes, A;; the number
of samples in the éth interval, jth class,
Ry the number of samples in the éth in-
terval, Cj the number of samples in the
4th class, N the total number of sam-
d E;; the expected frequency of

ples, an
Ayj (B = i+ G/ N).
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@NUS
Examples -
Patterns Frequency (P) Frequency(N)
{9, 36} 38 instances 0
{9, 23} 38 0
{4,9} 38 0
{9, 14} 38 0 ; ;
{69} 38 Easy interpretation
{7,21} 0 36
{7,11} 0 35
{7,43} 0 35
{7,39} 0 34
{24, 29} 0 34
Reference number 9: the expression of gene 37720_at > 215
Reference number 36: the expression of gene 38028_at < 12
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@NUS
PCL Learning -

Top-Ranked EPs in Top-Ranked EPs in

Positive class Negative class
EP,P (90%) EP,N (100%)
EP," (86%) EP,N (95%)
EP, P (68%) EP,N (80%)
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@NUS
Emerging Patterns _—

* An emerging pattern is a set of conditions
— usually involving several features
— that most members of a class satisfy
— but none or few of the other class satisfy

e Ajumping emerging pattern is an emerging
pattern that
— some members of a class satisfy
— but no members of the other class satisfy

e We use only jumping emerging patterns
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NUS
PCL: Prediction by Collective Likelihsgd
» Lei EPY,..., EPF be the mosi genersl EPs of DF

im deseending onder of support.
« Suppose the test sample T these most gen-
eral EPs of ¥ (in d ding order of support}

Epf,gp‘:'..,IEpg
» Use & top-ranked most general EPs of D and DY
Diefine the score of T in the DT closs as
_ & frequency(EPL)
soore(T; 1) ..Z—l Sregquency(EFY)
® Ditto for soore(T, DY),

« If soore(T, DV) > score(T, DY), then T is class P.
Otherwise it is class N.

@NUS
PCL Testing -

Most freq EP of pos class
in the test sample

Score? =EP,” [ EP," + ... + ER"' | EP?

Most freq EP of pos class

Similarly,
ScoreN=EP N'/EP N+ ... + EPN/EPN
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NUS
Accuracy of PCL (vs. other classifiets)*

Testing Data Error mate of different models
©Ls SVM NB PCL
T-ALL s (¥ITHERS1 01 00 00 ]
EZA-PBX1 v OTHERS2 o 6D D0 D
TEL-AMLI +s QTHERS3 Lt 01 Dl 10
BUL-ABL »s (JIHERS2 ) 30 12 20
MLL vs OTHEBSS L 00 00 1]

Hyperdiploxl>30 vs OTHERS 246 02 02 Ol

Totzl Frmes 14 L] E:] 4

The classifiers are all applied to the 20 genes selected
by 2 at each level of the tree
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Multidimensional Scaling Plot @y_.'._u..s.
for Subtype Diagnosis

Obtained by performing PCA on the 20 genes chosen for each level
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@NUS
Childhood ALL Treatment Cost "=

e Treatment for childhood ALL over 2 yrs
— Intermediate intensity: US$60k
— Low intensity: US$36k
— High intensity: US$72k

e Treatment for relapse: US$150k

* Cost for side-effects: Unquantified
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Understandability of PCL

e E.g., for T-ALL vs. OTHERS, one ideally
discriminatory gene 38319_at was found,
inducing these 2 EPs

{gene_38319_an@(—00, 15975.6)} and
{gene_38319_an @[15975.6, +00)].

e These give us the diagnostic rule

If the expression of 38 319_at is less than 15975.6, then
this ALL sample must be a T-ALL.
Otherwise it must be a subtype in OTHERSI.
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@NUS
Childhood ALL Cure Rates -

cambodia 5 5% eLrS reAs - Conventional risk
5 assignment procedure
hadand 209 requires difficult
expensive tests and
W% collective judgement of
ishonesia 2N multiple specialists
50%
75% Not available in less
ain =
advanced ASEAN
0% 50% 108%  countries
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Current Situation @y_.'._u..s.
(2000 new cases/yr in ASEAN)

Over intensive for 50% of
Childhood ALL patients, thus more side
Patients Profile effects
CHgh
10%

® =
= inter W%

40%

« Under intensive for 10% of
patients, thus more relapse

* US$120m (US$60k * 2000)
for intermediate intensity tx
¢ US$30m (US$150k * 2000 *
10%) for relapse tx
Total US$150m/yr plus un-
quantified costs for dealing
with side effects

« Intermediate intensity
conventionally applied in
less advanced ASEAN
countries
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| NS
Using Our Platform _—
« Low intensity applied to e US$36m (US$36k * 2000 *

50% of patients 50%) for low intensity

< Intermediate intensity to * US$48m (US$60k * 2000 *
40% of patients 40%) for intermediate

« High intensity to 10% of intensity
patients ¢ US$14.4m (US$72k * 2000 *

10%) for high intensity

= Reduced side effects

= Reduced relapse * Total US$98.4m/yr

= 75-80% cure rates = Save US$51.6m/yr
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Gene Expression Profile Clustering

@NUS
Hierarchical Clustering -

* Assign each item to its own cluster
— If there are N items initially, we get N clusters,
each containing just one item
e Find the “most similar” pair of clusters, merge
them into a single cluster, so we now have one
less cluster
— “Similarity” is often defined using
» Single linkage
« Complete linkage
« Average linkage
* Repeat previous step until all items are clustered
into a single cluster of size N
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A Nice Ending...

e Asian Innovation
Gold Award 2003
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@NUS
Is there a new subtype? -

Genes
selected
by %2

« Hierarchical
clustering of
gene expression
profiles reveals a
novel subtype of
childhood ALL

New subtype
Exercise: Name and describe discovered
one bi-clustering method
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NUS
Single, Complete, & Average Linkage=—

s dr,s)y=minldiselx,,.x, )

—— —

) e, sy = max(aisi(x,, 5, ))

Single linkage defines distance Complete linkage defines distance
betw two clusters as min distance betw two clusters as max distance betw
betw them them

Exercise: Give definition of “average linkage”

Image source: UCL Microcore Website
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Normalization

In such a case, batch effect may be _EI_U_S_
severe... to the extent that you can
predict the batch that each sample
comes! =

Image credit: Dong Difeng

= Need normalization to correct for batch effect

. . o
Sometimes, a gene expression study
may involve batches of data collected
over a long period of time...

Time Span of Gene Expression Profiles

Image credit: Dong Difeng
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Approaches to Normalization

e Aim of ¢ Xform data so that
normalization: distribution of
Reduce Variance pl’Obe intensities iS

w/o increasing bias ~ same on all arrays
—Eg. (x-w/o

e Scaling method

— Intensities are scaled * Quantll_e )
so that each array normalization
has same ave value

— E.g., Affymetrix’s
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Quantite Normalization

« Given narrays of length p, | -
form X of size p x n where | \
each array is a column

¢ Sort each column of X to
glve XSO[[

* Take means across rows
of Xg,,; @and assign this
mean to each elem in the
row to get X'g,

e Get X,ormaiizeqg DY @rranging | « Implemented in some

each column of X'y, to microarray s/w, e.g.,
have same ordering as X EXPANDER
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Selection of Patient Samples and Genes
for Disease Prognosis




_ _ @NUS
Gene Expression Profile =

+ Clinical Data
= Outcome Prediction

e Univariate & multivariate Cox survival analysis
(Beer et al 2002, Rosenwald et al 2002)

e Fuzzy neural network (ando et al 2002)

» Partial least squares regression (park et al 2002)

* Weighted voting algorithm (shipp et al 2002)

e Geneindex and “reference gene” (Lesianc et al 2003)
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 ENuS
Extreme Sample Selection -
Short-term Survivors v.s. Long-term Survivors

Short-term survivors
who died within a short

Long-term survivors
who were alive after a

period long follow-up time
F(T)<c,and E(T) =1 FM=>c,

T: sample
F(T): follow-up time
E(T): status (1:unfavorable; 0: favorable)
¢, and c,: thresholds of survival time
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@NUS
Risk Score Construction -

Linear Kernel SVM regression function

G(T)=X.a,yK(T,x()) +b

T: test sample, x(i): support vector,
y;: class label (1: short-term survivors; -1: long-term survivors)

Transformation function (posterior probability)

S(T)=1+%G(T’ (S(T)e(0.1)

S(T): risk score of sample T
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“extreme”
sample
selection

e H A i
i Stogk Btk SVM scorieg H m1mum-u|u| i

| [rewnapan s e |
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' Entropy- |
Based Rank e
+Sum Test & ikt
Correlation
Filtering
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@NUS
Diffuse Large B-Cell Lymphoma~"=—

« DLBClymphomais the < Intl Prognostic Index (IPI)
most common type of — age, “Eastern Cooperative
lymphoma in adults Oncology Group” Performance

status, tumor stage, lactate
dehydrogenase level, sites of

« Can be cured by extranodal disease, ...

anthracycline-based
chemotherapy in 35 to 40
percent of patients

= DLBC lymphoma
comprises several
diseases that differ in
responsiveness to
chemotherapy

« Not very good for stratifying
DLBC lymphoma patients for
therapeutic trials

= Use gene-expression
profiles to predict outcome
of chemotherapy?
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Rosenwald et al.. NEJM 2002 Knowledge Discovery from Gen@LUS
’ Expression of “Extreme” Samples
« 240 data samples e
— 160 in preliminary group e —_—
. . . “extreme” | E
— 80 in validation group sample \
— each sample described by 7399 microarray selection: i =
features <1lyrvs>8yfs f'“'-m-'-*-* e <_ Tt s
* Rosenwald et al.’s approach ,...?....,....
— identify gene: Cox proportional-hazards model /L
— cluster identified genes into four gene signatures knowledge ‘m......m G o
. discovery
— calculate for each sample an outcome-predictor from gene \T e e I
score expression ‘ -
— divide patients into quartiles according to score Tis long-term if S(T) <o3 v aphon e curves
Tis short-term if S(T) > 0.7~
I — -1 |
NUS NUS
Discussions: Sample Selection === Discussions: Gene ldentification>~"="
Gene selection DLBCL
Application Data set Status Total Original 4937(*)
Dead | Alive
Ph | 132(2.7%
DLBCL Original 88 72 160 ase ¢ 9
Informative 47+1(%) 25 73 Phase Il 84(1.7%)
Number of samples in original data and selected informative training set. ’\iu'mber of genes left after featu"_e filtering for each phase.
(*): Number of samples whose corresponding patient was dead at the end ) number of genes after removing th_ose genes who were
of follow-up time, but selected as a long-term survivor. absent in more than 10% of the experiments.
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E E 1
H
: s
% = == high risk
5 ] lowrisk
o
00 25 sa 75 100 s0 75 100
Follow-up (years) Follow-up (years)
(A) IPI low, (B) IPI intermediate,
p-value of log-rank test: < 0.0001 p-value = 0.0063 p-value = 0.0003

Risk score thresholds: 0.7, 0.3
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= high risk
A low risk

Percent survival
Percent survival

/

00 25 s 78 100 o0 25 S0 76 100
Follow-up (years) Follow-up (years)

(AY W/o sample selection (p =0.38)

No clear difference on the overall survival of the 80 samples in the validation
group of DLBCL study, if no training sample selection conducted
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Beyond Disease Diagnosis & Prognosis

Gene Regulatory Circuits

e
¢ Genes are “connected” Weoei e e
in “circuit” or network

« Exprofageneina |
network depends on 7
expr of some other for—
genes in the network

« Can we “reconstruct”
the gene network from
gene expression and 4
other data?

v

13

Source: Miltenyi Biotec
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(B) With sample selection (p=0.009)

About the Inventor: Huiging Liu %

e Huiqing Liu

— PhD, NUS, 2004

— Currently Senior
Scientist at Centocor

— Asian Innovation
Gold Award 2003

— New Jersey Cancer
Research Award for
Scientific Excellence
2008

— Gallo Prize 2008
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Beyond Classification of
Gene Expression Profiles

« After identifying the candidate genes by feature
selection, do we know which ones are causal
genes, which ones are surrogates, and which are
noise?

Diagnostic ALL BM samples (n=327)
i

=271)

Genes for class
distinction (n

Hyperdiploid >50 BCR- Novel TEL-AMLL
ABL
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@NUS
Hints to extend reach of prediction="="

« Each disease subtype has underlying cause

= There is a unifying biological theme for genes
that are truly associated with a disease subtype.

« Uncertainty in reliability of selected genes can be
reduced by considering molecular functions and
biological processes associated with the genes

¢ The unifying biological theme is basis for
inferring the underlying cause of disease subtype
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Intersection Analysis

« Intersect the list of
differentially expressed
genes with alist of genes
on a pathway

Caution:

< |Initial list of differentially
expressed genes is
defined using test
statistics with arbitrary
thresholds

< Diff test statistics and diff
thresholds result in a diff
list of differentially
expressed genes

= Outcome may be unstable

< If intersection is
significant, the pathway is
postulated as basis of
disease subtype or
treatment response

Exercise: What is a good test
statistics to determine if the
intersection is significant?
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|
NUS

Beyond Classification of
Gene Expression Profiles

« After identifying the candidate genes by feature
selection, do we know which ones are causal
genes and which ones are surrogates?

Diagnostic ALL BM samples (n=327)

distinction (n=271)

Genes for class

Hyperdiploid >50 - Novel TEL-AMLL
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NUS
Key Questions @—

¢ For each gene in the network:
¢ Which genes affect it?
¢ How they affect it?

— Positively?

— Negatively?

— More complicated ways?
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Gene Interaction Prediction

@NUS
Gene Regulatory Circuits -

¢ Genes are “connected” in
“circuit” or network

* Expression of agenein a
network depends on 14
expression of some other &
genes in the network Ll

« Can we reconstruct the |
gene network from gene | |
expression data? | |
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NUS
Some Techniques @—

* Bayesian Networks
— Friedman et al., JCB 7:601--620, 2000
* Boolean Networks
— Akutsu et al., PSB 2000, pages 293--304
< Differential equations
— Chen et al., PSB 1999, pages 29--40
¢ Classification-based method

— Soinov et al., “Towards reconstruction of gene
network from expression data by supervised
learning”, Genome Biology 4:R6.1--9, 2003
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A Classification-Based Techniqu@.“.‘...--—l.!--§
Soinov et al., Genome Biology 4:R6.1-9, Jan 2003
¢ Given a gene expression matrix X
— each row is a gene
— each column is a sample
— each element x; is expression of gene i in sample |

« Find the average value a; of each genei
» Denote s; as state of gene i in sample j,

= s;=up if X; > &
- sy=down if x; <&
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Advantages of this method

« Can identify genes affecting a target gene

« Don't need discretization thresholds

« Each data sample is treated as an example

* Explicit rules can be extracted from the classifier

cmmnimaime 4L E = B

s H Yal B
assuinirny ©4.0 UI FeL)
¢ Generalizable to time series
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Bcer-Abl

» Targeted drug dev « Gleevec (imatinib)
— Know what — 1stsuccess for real drug

molecular effect you — Targets Ber-Abl fusion
want to achieve protein (ie, Philadelphia

- Eg., ingibit a chromosome, Ph)
mutated form of a .
protein - N_CII sfu.mm{?lr)_/boff CIZ]II_T_al

— Engineer a trial of imatinib for

compound that at

directly binds and
causes the desired
effect

A Classification-Based Techniqu@.“.‘...--—l.!--§

Soinov et al., Genome Biology 4:R6.1-9, Jan 2003

+ To see whether the state of * T0 See how the state of
gene g is determined by gene g is determined by
the state of other genes the state of other genes

— apply C4.5 (or PCL or
other “rule-based”
classifiers) to predict sy
from (s;| i # g)

— see whether (s; | i # )
can predict s

— if can predict with high
accuracy, then “yes”
— and extract the decision
— Any classifier can be tree or rules used
used, such as C4.5, PCL,
SVM, etc.
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Concluding Remarks

What have we learned?

¢ Technologies
— Microarray
— PCL, ERCOF

« Microarray applications
— Disease diagnosis by supervised learning
— Subtype discovery by unsupervised learning

« Important tactics
— Extreme sample selection
— Intersection analysis, Gene network reconstruction
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Any Question?
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