

Plan

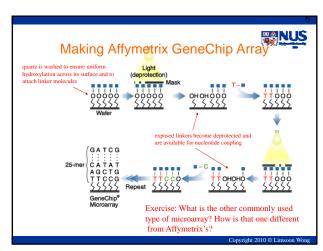
- Microarray background
- · Gene expression profile classification
- Gene expression profile clustering
- Normalization
- Extreme sample selection
- Intersection Analysis

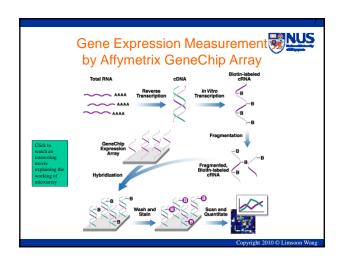
onvright 2010 @ Limsoon Wong

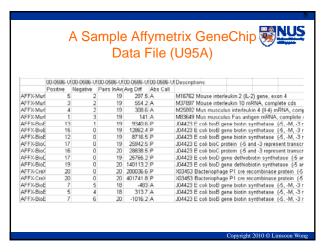
Background on Microarrays

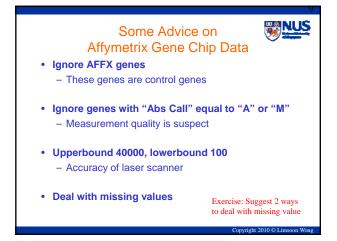
What is a Microarray?

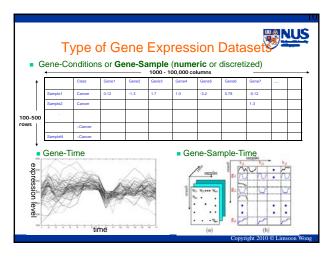
- Contain large number of DNA molecules spotted on glass slides, nylon membranes, or silicon wafers
- Detect what genes are being expressed or found in a cell of a tissue sample
- Measure expression of thousands of genes simultaneously

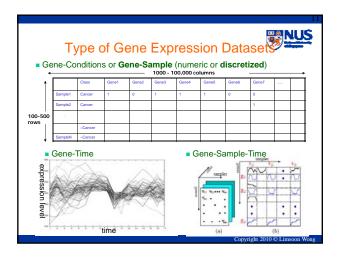


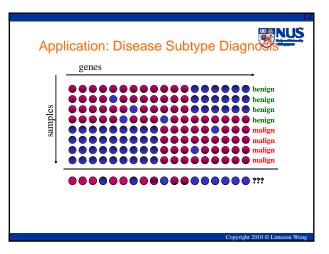


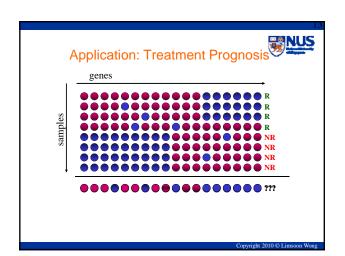


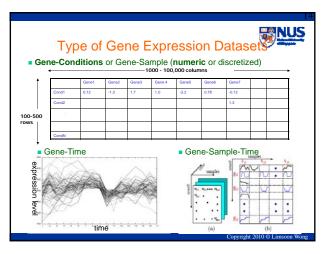


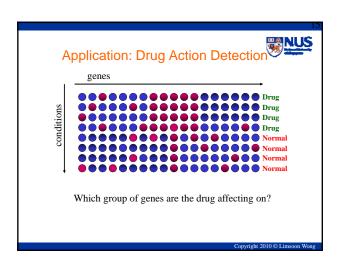


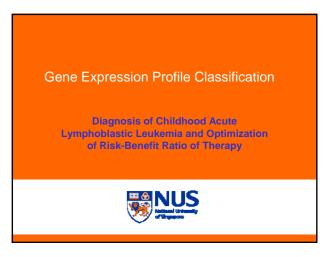






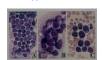






- Major subtypes: T-ALL, E2A-PBX, TEL-AML, BCR-ABL, MLL genome rearrangements, Hyperdiploid>50
- Diff subtypes respond differently to same Tx
- Over-intensive Tx
 - Development of secondary cancers
 - Reduction of IQ Under-intensiveTx
 - Relapse

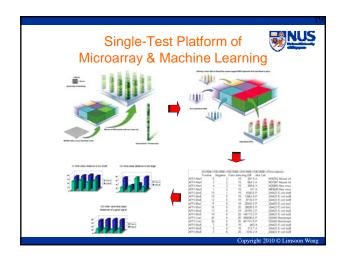
· The subtypes look similar

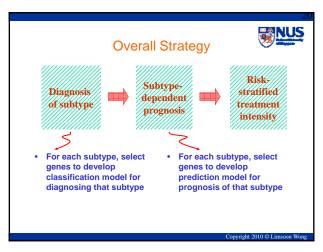


- · Conventional diagnosis
 - Immunophenotyping
 - Cytogenetics
 - Molecular diagnostics
 - Unavailable in most **ASEAN** countries

Mission

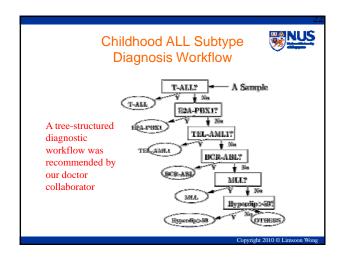
- Conventional risk assignment procedure requires difficult expensive tests and collective judgement of multiple specialists
- · Generally available only in major advanced hospitals
- ⇒ Can we have a single-test easy-to-use platform instead?

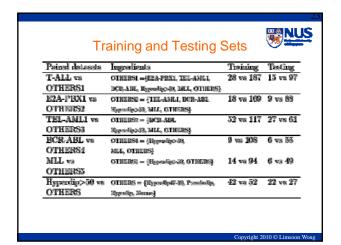


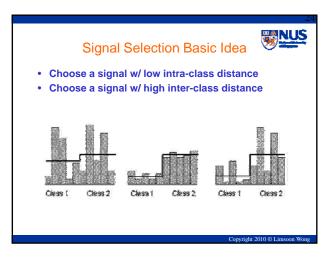


Subtype Diagnosis by PCL

- · Gene expression data collection
- Gene selection by χ2
- Classifier training by emerging pattern
- Classifier tuning (optional for some machine learning methods)
- Apply classifier for diagnosis of future cases by PCL







Signal Selection by $\chi 2$

The \mathcal{X}^2 value of a signal is defined as:

$$\mathcal{X}^2 = \sum\limits_{i=1}^m \sum\limits_{j=1}^k \frac{(A_{ij}-E_{ij})^2}{E_{ij}},$$

where m is the number of intervals, k the number of classes, A_{ij} the number of samples in the ith interval, jth class, R_i the number of samples in the ith interval, C_j the number of samples in the jth class, N the total number of samples, and E_{ij} the expected frequency of A_{ij} ($E_{ij} = R_i * C_j/N$).

Copyright 2010 © Limsoon Wons

Emerging Patterns

- An emerging pattern is a set of conditions
 - usually involving several features
 - that most members of a class satisfy
 - but none or few of the other class satisfy
- A jumping emerging pattern is an emerging pattern that
 - some members of a class satisfy
 - but no members of the other class satisfy
- · We use only jumping emerging patterns

Convright 2010 © Limsoon Wong

Examples Frequency (P) Patterns Frequency(N) 38 instances {9, 36} {9, 23} 38 0 {4, 9} 38 0 {9, 14} 38 0 Easy interpretation {6, 9} 38 0 {7, 21} 0 36 $\{7, 11\}$ 0 35 {7, 43} 0 35 {7, 39} 0 34 {24, 29} 0 34 Reference number 9: the expression of gene 37720_at > 215 Reference number 36: the expression of gene $38028_at \le 12$

PCL: Prediction by Collective Likelihood

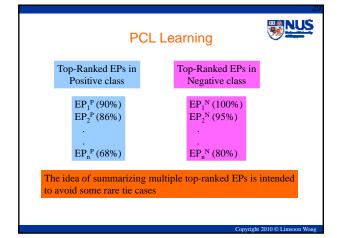
- Let EP₁^P,...,EP_i^P be the most general EPs of D^P in descending order of support.
- Suppose the test sample T contains these most general EPs of D^P (in descending order of support);

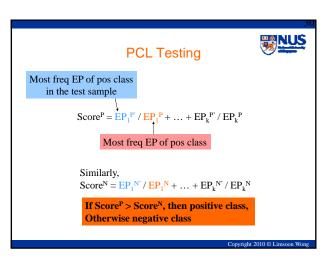
$$EP_{i_1}^P, EP_{i_2}^P, \cdots, EP_{i_n}^P$$

Use k top-ranked most general EPs of D^P and D^K.
 Define the score of T in the D^P class as

$$score(T, D^P) = \sum_{m=1}^k \frac{frequency(EP^P_{i_m})}{frequency(EP^P_m)}$$

- Ditto for $score(T, D^N)$.
- If score(T, D^P) > score(T, D^N), then T is class P.
 Otherwise it is class N.





Accuracy of PCL (vs. other classifiers Testing Data Error rate of different models C45 SVM NB T-ALL vs OTHERSI 0:0 0:0 0:0 E2A-PBX1 vs OTHERS2 0:0 0:0 0:0 0:0 TEL-AML1 vs OTHERS3 1:1 0.10:1 1:0 BCR-ABL vs OTHERS4 3:0 2:0 1:4 2:0 MLL vs OTHERS5 0:1 0:00:0 0:0 Hyperdiploid>50 vs OTHERS 2:6 0:2 0:2 0:1

The classifiers are all applied to the $20\mbox{ genes}$ selected by $\chi 2$ at each level of the tree

Total Errors

Copyright 2010 © Limsoon Wone

8

Understandability of PCL

 E.g., for T-ALL vs. OTHERS, one ideally discriminatory gene 38319_at was found, inducing these 2 EPs

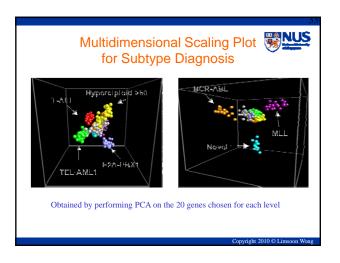
 $\{gene_{-(38\,319_at)} @ (-\infty, 15\,975.6)\}\$ and $\{gene_{-(38\,319_at)} @ [15\,975.6, +\infty)\}.$

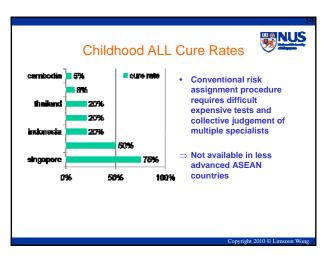
· These give us the diagnostic rule

If the expression of 38319_at is less than 15975.6, then this ALL sample must be a T-ALL.

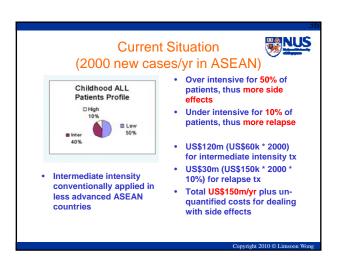
Otherwise it must be a subtype in OTHERS1.

Copyright 2010 © Limsoon Wong





Childhood ALL Treatment Cost Treatment for childhood ALL over 2 yrs Intermediate intensity: US\$60k Low intensity: US\$36k High intensity: US\$72k Treatment for relapse: US\$150k Cost for side-effects: Unquantified

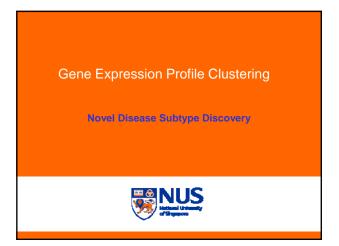


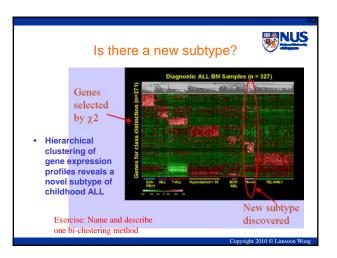
Using Our Platform

- Low intensity applied to 50% of patients
- Intermediate intensity to 40% of patients
- High intensity to 10% of patients
- \Rightarrow Reduced side effects
- \Rightarrow Reduced relapse
- ⇒ 75-80% cure rates
- US\$36m (US\$36k * 2000 * 50%) for low intensity
- US\$48m (US\$60k * 2000 * 40%) for intermediate intensity
- US\$14.4m (US\$72k * 2000 * 10%) for high intensity
- Total US\$98.4m/yr
- ⇒ Save US\$51.6m/yr

Copyright 2010 © Limsoon Won

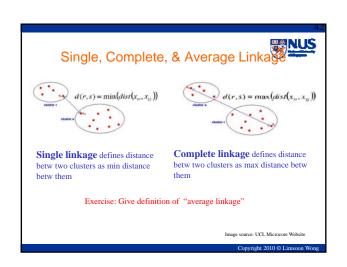
A Nice Ending... • Asian Innovation Gold Award 2003

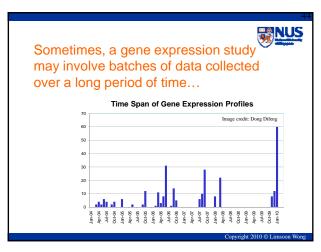


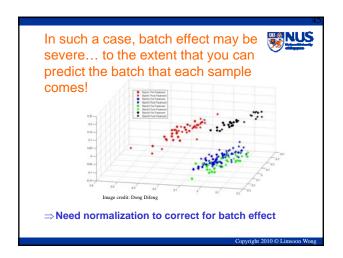


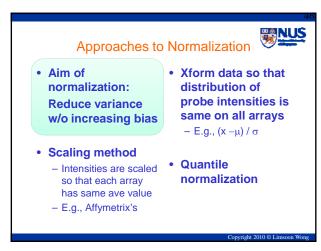
Hierarchical Clustering

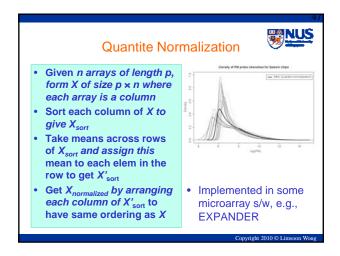
- · Assign each item to its own cluster
 - If there are N items initially, we get N clusters, each containing just one item
- Find the "most similar" pair of clusters, merge them into a single cluster, so we now have one less cluster
 - "Similarity" is often defined using
 - Single linkage
 - Complete linkage
 - Average linkage
- Repeat previous step until all items are clustered into a single cluster of size N





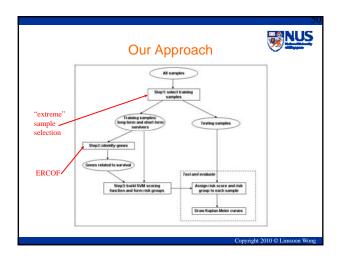


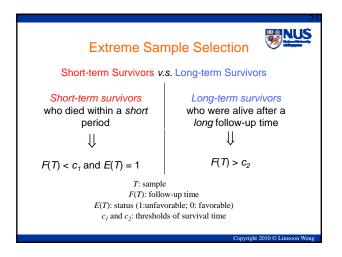


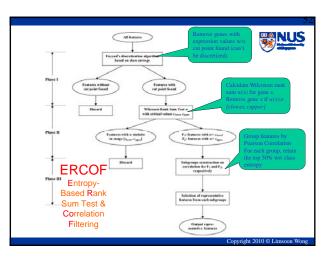


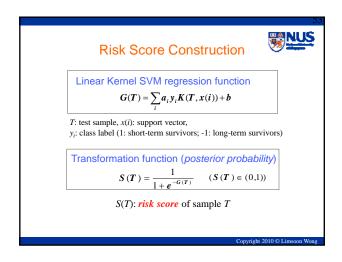
Selection of Patient Samples and Genes for Disease Prognosis

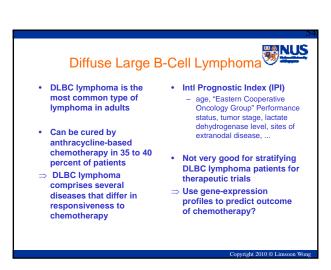
Gene Expression Profile + Clinical Data ⇒ Outcome Prediction • Univariate & multivariate Cox survival analysis (Beer et al 2002, Rosenwald et al 2002) • Fuzzy neural network (Ando et al 2002) • Partial least squares regression (Park et al 2002) • Weighted voting algorithm (Shipp et al 2002) • Gene index and "reference gene" (LeBlanc et al 2003) •





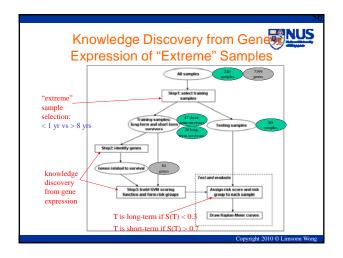






Rosenwald et al., NEJM 2002

- · 240 data samples
 - 160 in preliminary group
 - 80 in validation group
 - each sample described by 7399 microarray features
- · Rosenwald et al.'s approach
 - identify gene: Cox proportional-hazards model
 - cluster identified genes into four gene signatures
 - calculate for each sample an outcome-predictor
 - divide patients into quartiles according to score



Discussions: Sample Selection

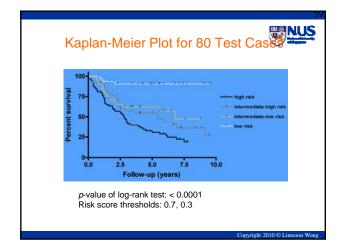
Application	Data set	Status		Total
		Dead	Alive	
DLBCL	Original	88	72	160
	Informative	47+1(*)	25	73

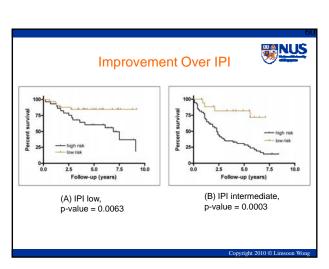
Number of samples in original data and selected informative training set. (*): Number of samples whose corresponding patient was dead at the end of follow-up time, but selected as a long-term survivor.

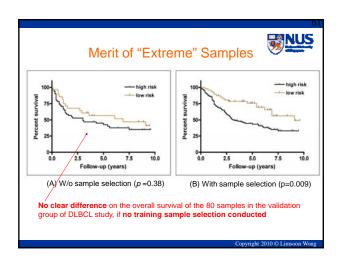
Discussions: Gene Identification

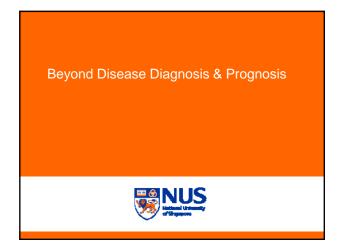
Gene selection	DLBCL	
Original	4937(*)	
Phase I	132(2.7%)	
Phase II	84(1.7%)	

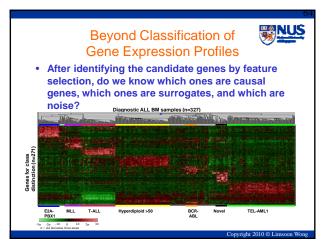
Number of genes left after feature filtering for each phase. (*): number of genes after removing those genes who were absent in more than 10% of the experiments.

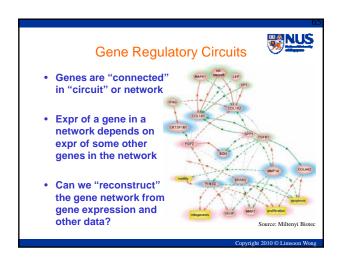


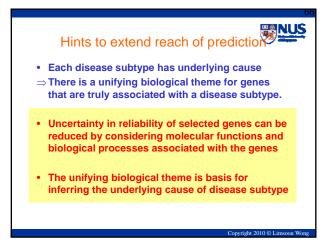


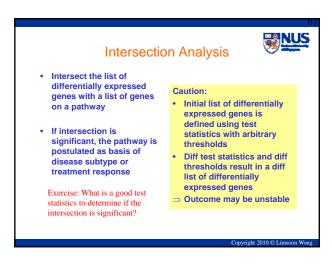


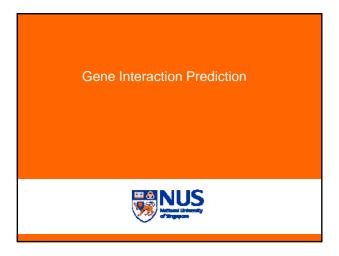


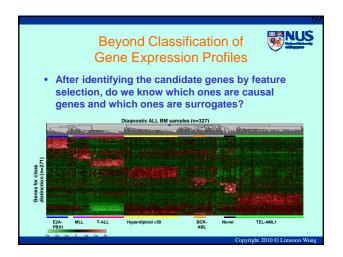


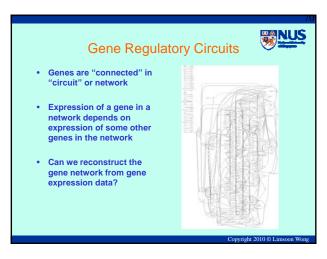


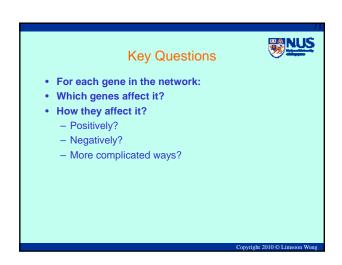


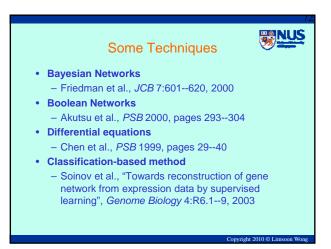












A Classification-Based Technique NUS Soinov et al., Genome Biology 4:R6.1-9, Jan 2003

- Given a gene expression matrix X
 - each row is a gene
 - each column is a sample
 - each element x_{ii} is expression of gene i in sample j
- Find the average value a_i of each gene i
- Denote \mathbf{s}_{ij} as state of gene i in sample j,
 - $-s_{ij} = up if x_{ij} > a_i$
 - $s_{ii} = down if x_{ii} \le a_i$

A Classification-Based Technique Soinov et al., Genome Biology 4:R6.1-9, Jan 2003

- the state of other genes
 - $\begin{array}{ll} \text{ see whether } \langle s_{ij} \mid i \neq g \rangle \\ \text{ can predict } s_{gj} \end{array}$
 - if can predict with high accuracy, then "yes'
 - Any classifier can be used, such as C4.5, PCL, SVM, etc.
- To see whether the state of gene g is determined by
 To see how the state of gene g is determined by gene g is determined by the state of other genes
 - apply C4.5 (or PCL or other "rule-based" classifiers) to predict s_{gi} from $\langle s_{ij} | i \neq g \rangle$
 - and extract the decision tree or rules used

Advantages of this method

- · Can identify genes affecting a target gene
- · Don't need discretization thresholds
- · Each data sample is treated as an example
- · Explicit rules can be extracted from the classifier (assuming C4.5 or PCL)
- · Generalizable to time series

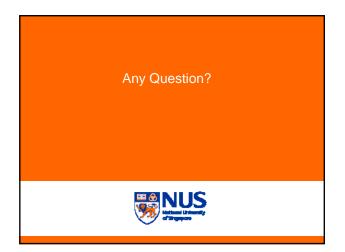
Concluding Remarks

Bcr-Abl

- - Know what molecular effect you want to achieve
 - E.g., inhibit a mutated form of a protein
 - Engineer a compound that directly binds and causes the desired effect
- Targeted drug dev
 Gleevec (imatinib)
 - 1st success for real drug
 - Targets Bcr-Abl fusion protein (ie, Philadelphia chromosome, Ph)
 - NCI summary of clinical trial of imatinib for ALL

What have we learned?

- Technologies
 - Microarray
 - PCL, ERCOF
- · Microarray applications
 - Disease diagnosis by supervised learning
 - Subtype discovery by unsupervised learning
- Important tactics
 - Extreme sample selection
 - Intersection analysis, Gene network reconstruction



References

- E.-J. Yeoh et al., "Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling", Cancer Cell, 1:133--143, 2002
- H. Liu, J. Li, L. Wong. Use of Extreme Patient Samples for Outcome Prediction from Gene Expression Data. *Bioinformatics*, 21(16):3377--3384, 2005.
- L.D. Miller et al., "Optimal gene expression analysis by microarrays", Cancer Cell 2:353--361, 2002
 J. Li, L. Wong, "Techniques for Analysis of Gene Expression", The Practical Bioinformatician, Chapter 14, pages 319—346, WSPC, 2004
- B. Bolstad et al. "A comparison of normalization methods for high density oligonucleotide array data based on variance and bias". *Bioinformatics*, 19:185–193. 2003