CS2220: Introduction to Computational Biology
Lecture 2: Essence of Knowledge Discovery

Overview of Supervised Learning

us
Data @E“"'_

» Classification application involves > 1 class of
data. E.g.,

— Normal vs disease cells for a diagnosis problem

« Training data is a set of instances (samples,
points) with known class labels

» Test data is a set of instances whose class labels
are to be predicted
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Outline

¢ Other Methods
— K-Nearest Neighbour
— Support Vector
Machines
— Bayesian Approach

— Hidden Markov
Models

¢ Overview of
Supervised Learning
— Decision Trees

* Decision Trees
Ensembles

— Bagging
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Supervised Learning

¢ Also called classification

e Learn from past experience, and use the learned
knowledge to classify new data

* Knowledge learned by intelligent algorithms
e Examples:

— Clinical diagnosis for patients
— Cell type classification
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NUS
Typical Notations @z—-

e Training data
{(X0, Y KXo Yodo ooy Ky Y}
where x; are n-dimensional vectors

and y; are from a discrete space Y.
E.g., Y ={normal, disease}

¢ Test data
{{ul, ?),(u2,?), ..., {uk, ?), }

Copyright 2011 © Limsoon Wong




7/11/2011

7 3]
Process @g_u..s. Relational Representation : Q_.l;'..%
of Gene Expression Data
f(X)
Training data: X > - n features (order of 1000)

gene; gene, gene; gene, ... gene,

A classifier, a mapping, a hypothesis

f(U)
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ENUS RS
Features (aka Attributes) — An Example -
e Categorical features Outlook Temp Humidil Windy class
- Sunny 75 70 true | Play
- = {red, , green
color = {red, blue, green} Sunny o e il
Sunny 85 85 false | Don't
e Continuous or numerical features Sunny 72 95 true | Don’t
. Sunny 69 70 false | Play
— gene expression Gror 7 9 irue |Play
—age Overcast 8 78 false | Play
— blood pressure Overcast 64 63 true | Play
Overcast 81 75 false | Play
Rain 7 80 true | Don't
» Discretization Rain 65 70 true | Don’t
Rain 75 80 false | Play
Rain 68 80 false | Play
Rain 70 96 false |Play
11
Overall Picture of @EH_S . . NUS
— Recap: Evaluation of a Classifier~'==

Supervised Learning
« Performance on independent blind test data

LabEHEd [ ) AI Ol'itth « K-fold cross validation: Given a dataset, divide it

- into k even parts, k-1 of them are used for
training, and the rest one part treated as test data

Biomedical Decision trees « LOOCV, a special case of K-fold CV

Financial Emerging patterns

Government SVM . A ;

Scientific Neural networks ccuracy, error rate

« False positive rate, false negative rate, sensitivity,
specificity, precision

Classifiers (Medical Doctors)
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Requirements of @E.U_S.
Biomedical Classification

« High accuracy/sensitivity/specificity/precision

* High comprehensibility
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@NUS
Structure of Decision Trees —

L®
Py g@

Ifx; >a; & x,>a,, thenit’'s A class
C4.5, CART, two of the most widely used
Easy interpretation, but accuracy generally unattractive

@ Root node

@ Internal nodes

@ Leaf nodes
(0

Copyright 2011 © Limsoon Wong

17

@NUS
Brief History of Decision Trees =

CLS (Hunt et al. 1966)--- cost driven
I
CART (Breiman et al. 1984) --- Gini Index

ID3 (Quinlan, 1986) --- Information-driven

C4.5 (Quinlan, 1993) --- Gain ratio + Pruning ideas
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Importance of Rule-Based Methods”=—

« Systematic selection of a small number of
features used for the decision making

= Increase comprehensibility of the knowledge
patterns

e C4.5and CART are two commonly used rule
induction algorithms---a.k.a. decision tree
induction algorithms
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ENUS
Elegance of Decision Trees -

Every path from root @
to a leaf forms a

decision rule é)
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BNUS
A Simple Dataset @:—-
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A Decision Tree

SUW- rain
overcast -

false

>75
S
: :

» Construction of a tree is equiv to determination of
root node of the tree and root nodes of its sub-trees

true

Exercise: What is the accuracy of this tree?
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Most Discriminatory Feature —

« Every feature can be used to partition the training
data

« If the partitions contain a pure class of training
instances, then this feature is most
discriminatory
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NS

Outlook Temperature Humidity

Wind

Sunny Hot High
Outlook

Weak

PlaiTennis

An

|Sunny| |Overcast| |

rain| Example

Source: Anthony Tung

Wind
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Example of Partitions

Categorical feature

— Number of partitions of the training data is equal to
the number of values of this feature

Numerical feature
— Two partitions

22

Fhs
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/ Outlook =
sunny

FEFITRIFEFIFINR
UL

23
- — = TS

Instance # | Outlook Temp| Humidity — Windy, class

1 Sunny 75 70 true | Play

2 Sunny 80 90 true | Don’t

3 Sunny 85 85 false | Don’t

4 Sunny 72 95 true | Don’t

5 Sunny 69 70 false |Play

6 Overcast (s 90 true | Play

7 Overcast 83 78 false |Play

8 Overcast 64 65 true |Play

9 Overcast 81 75 false |Play

10 Rain 71 80 true | Don’t

11 Rain 65 70 true | Don’t

12 Rain 75 80 false | Play

13 Rain 68 80 false Play

14 Rain 70 96 false Play
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Total 14 training < Outlook =
instances overcast
A categorical feature is
partitioned based on its - Outlook =
number of possible values rain

10,11,12,13,14
D,D, P, PP
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= | ~ Temperature
<=70

5,8,11,13,14
PP, D, P, P

FEFHTRIFERIEIT
iir

FFE

Total 14 training <
instances

A numerical feature is
generally partitioned by
choosing a “cutting point”
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i) . . gl ek
Let’s Construct a Decision Tree Togetder—
Outlook Temp Humidit Windy class
Sunny 75 70 true | Play
Sunny 80 90 true | Don’t
Sunny 85 85 false |Don’t
Sunny 72 95 true | Don’t
Sunny 69 70 false |Play
Overcast 72 90 true | Play
Overcast 83 78 false |Play
Overcast 64 65 true | Play
Overcast 81 7 false | Play
Rain 71 80 true | Don’t
Rain 65 70 true | Don’t
Rain 75 80 false | Play
Rain 68 80 false | Play
Rain 70 96 false |Play
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BNUS
Gini Index @.—.

il of two arbitrary specimen in S
gini(§) = Ll of two arbitrary specimen in

WA speeinen 8
probigetting two specimen of dill class in 5)
1 - prob{getting two specimen of same class in )

1 - %, probigetting specimen of class i in §)2

e Giniindex is the expected value of the ratio of the
diff of two arbitrary specimens to the mean value
of all specimens

¢ Closer to 1 means similar to “background
distribution”. Closer to 0, means feature is
“unexpected”
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s
Steps of Decision Tree Constructio® =

¢ Select the “best” feature as root node of the
whole tree

¢ Partition dataset into subsets using this feature
so that the subsets are as “pure” as possible

« After partition by this feature, select the best
feature (wrt the subset of training data) as root
node of this sub-tree

* Recursively, until the partitions become pure or
almost pure
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Three Measures to Evaluate @E}-_"—%
Which Feature is Best

e Giniindex
e Information gain

¢ Information gain ratio
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BENUS

Gini Index

and I is the set of ¢
e the value of the feature f in a sample d. Lot § be o range
Then the Gini index for f in D for the range S is defined as

B [{de D|deC, df] € S}
ginif($)=1- 3" (4~—
(=1} ln

The purity of a split of the value range S of an attribute f by some split-point into subranges 5,
aud Sy i b delised s

ginil(5.5) = Y ”'“'D,';j L€ SM, ginit(s)
SE (% ) '

. nd the split point p that mirimizes
gini(81,8;) over all possible
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Gini Index of Outlook -

Awitlook Temp Humidity  Windy ol

Sumnmy T 0 e | Play .
Sumny 090 e (Dot o 5 (:!zrﬁ_ n|de s dfje§) }
Sumny B 85 false | Dan't : o 121

Sumny 72 9% e | Dan't

Sy (] 0 Talse | Play

Overcast T 90 true | Play

Overcast 83 78 false (Play s, 50 3 LAEDLATESH, pnis)
Overcast 64 65 true | Flay selnm 121

Orvercast &1 75 false | Play

Rain T 20 true | Don't

Rain 65 0 tue | Don't

Rain 75 B0 Talse | Flay

Rain 68 20 false | Play

Rain o 9 false | Play

gini(Sunny) = 1 — (2/5)? — (3/5)? = 0.48

gini(Overcast) = 1 — (4/4)2 - (0/5)?=0

gini(Rain) = 1 — (3/5)2— (2/5)> = 0.48

gini(Outlook) = 5/14 * 0.48 + 4/14 * 0 + 5/14 * 0.48 = 0.34

Copyright 2011 © Limsoon Wong

7/11/2011

32
- @E!E
Characteristics of C4.5/CART Trees’=—
« Single coverage of training data (elegance)
« Divide-and-conquer splitting strategy

* Fragmentation problem = Locally reliable but
globally insignificant rules

e Miss many globally significant rules; mislead system

Copyright 2011 © Limsoon Wong

33

@NUS
. =t
Example Use of Decision Tree Methods: Proteom|
Approaches to Biomarker Discovery

* In prostate and bladder cancers (Adam et al.
Proteomics, 2001)

* In serum samples to detect breast cancer (Zhang
et al. Clinical Chemistry, 2002)

e In serum samples to detect ovarian cancer
(Petricoin et al. Lancet; Li & Rao, PAKDD 2004)
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@NUS
Motivating Example —

* hy, h,, hyareindep classifiers w/ accuracy = 60%
e C,, C,arethe only classes
* tis atestinstancein C,
* h(t) = argmaxce(ci ey Ifh; €fhy. hy, ha} | hy(t) = C}
e Then prob(h(t) = C,)
=prob(h,(t)=C, & hy(t)=C, & h4(t)=C,) +
prob(h;(t)=C; & h,(t)=C; & h4(t)=C,) +
prob(h;(t)=C, & hy(t)=C, & h;(t)=C,) +
prob(hy(t)=C, & hy(1)=C; & hy(t)=C,)
=60% * 60% * 60% + 60% * 60% * 40% +
60% * 40% * 60% + 40% * 60% * 60% = 64.8%
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Decision Tree Ensembles

36

ENUS
Bagging -

e Proposed by Breiman (1996)
« Also called Bootstrap aggregating

« Make use of randomness injected to training data

Copyright 2011 © Limsoon Wong
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Decision Making by Bagging

Main ldeas

Original training set

. o
. 0
N o,

Given a new test sample T
*., Draw 100 samples
*+,with replacement
R bagged(T) = angase, ey € H | 4(T) = )

where f = {4, ..., €}

Exercise: What does the above formula mean?

Copyright 2011 © Limsoon Wong
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Summary of Ensemble Classifiers==—

- - Rules may Other Machine Learning Approaches

not be correct
when

applied to
AdaBoost.M1 training data
- o Rules correct

Exercise: Describe the decision tree
ensemble classifiers not explained in this ppt
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BENUS

* K-Nearest Neighbour K-Nearest Neighbours
* Support Vector Machines

* Bayesian Approach
» Hidden Markov Models

Outline

Exercise: Name and describe one other
commonly used machine learning method

Copyright 2011 © Limsoon Wong




43|
BNUS
How kNN Works ®""'

¢ A common “distance”
measure betw
samples x and y is

N OETRET

where f ranges over
features of the
« Assign new case to samples

the same class to

which most of these

neighbours belong

¢ Given a new case

e Find k “nearest”
neighbours, i.e., k
most similar points in
the training data set

Exercise: What does the formula above mean?
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Some Issues —

e Simple to implement

* But need to compare new case against all training
cases

= May be slow during prediction

* No need to train
* But need to design distance measure properly
= May need expert for this

* Can’t explain prediction outcome
= Can’t provide a model of the data

Copyright 2011 © Limsoon Wong

Support Vector Machines

7/11/2011
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BNUS

Bt Ly

Illustration of KNN (k=8) -

Neighborhood

5of class @
3 of class 4+

-0

Image credit: Zaki
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Example Use of knn: OQvarian Cancer Diagn@%l-_‘l-%
Based on SELDI Proteomic Data

« Lietal, Bioinformatics
20:1638-1640, 2004

¢ Use kNN to diagnose
ovarian cancers using
proteomic spectra

; W =

4

peresstage of serreet aredistion
B
~Tt

» Dataset is from Petricoin
etal., Lancet 359:572-577,
2002

\ |
1] an (<] L] nn
Mumber o tep-ranked m/s raties

Fig. 1. Mimmusm. medinn and maximum of percentages of comeet

prediction as a function of the muanber of top-ranked m/z ratios in
50 independsnt parttions imo learming and validation sets
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Basic Idea @:—-

Image credit: Zien

(a) Linear separation not possible w/o errors
(b) Better separation by nonlinear surfaces in input space

(c ) Nonlinear surface corr to linear surface in feature space.
Map from input to feature space by “kernel” function @
= “Linear learning machine” + kernel function as classifier
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Linear Learning Machines -

* Hyperplane separating the x’s and 0’s points is
given by (WeX) + b = 0, with (WeX) = EjW[j]*X[j]
= Decision function is IIm(X) = sign((WeX) + b))

Copyright 2011 © Limsoon Wong

. FENLS
Kernel Function -
* 1Im(X) = sign(Zy oy *Y* (X,eX) + b)
-
oo ©
- " x
©

e svm(X) = sign(Z, o, *Y, * (@X, e ©X) + b)
= svm(X) = sign(Zyoy*Y* KX, X) + b)
where K(X,,X) = (®X,* ®X)

Copyright 2011 © Limsoon Wong

BNUS
How SVM Works @“"

e svm(X) = sign(Z, o, Y, * K(X,X) + b)

* To find e is a quadratic programming problem
max: Zya,— 0.5 * X, Zp op¥a, Yk K (X, Xp)
subject to: Z, e, *Y, =0
and for all o, C > a; 20

» To find b, estimate by averaging

Y = ZoyFYie K(Xq, )
for all o, 20

Copyright 2011 © Limsoon Wong

ENUS
Linear Learning Machines -

Solution is a linear combination of training points
X, with labels Y,

WIIT = Zyou XY X[l
with o, >0, and Y, = 1

= IIm(X) = sign(Z, o, *Y,* (XgoX) + b)

“data” appears only in dot product!

7/11/2011
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ENUS
Kernel Function ®="-

e svm(X) = sign(Z, o, *Y, * K(X,X) + b)
= K(A,B) can be computed w/o computing @

In fact replace it w/ lots of more “powerful”
kernels besides (A «B). E.g.,

— K(AB) = (A * B
— K(AB) = exp(~ || A BJ[2/ (2*0)), ...

Copyright 2011 © Limsoon Wong
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Example Use of SVM ReCOgnition of gu_l'lé
Protein Translation Initiation Sites

3 fiank

DNA: ACGT

RNALAGOLY

* Zien et al., Bioinformatics 16:799-807, 2000

Use SVM to recognize protein translation initiation sites from
genomic sequences

Raw data set is same as Liu & Wong, JBCB 1:139-168, 2003




Bayesian Approach

Bayesian Approach

« Let Hbe all possible classes. Given a test
instance w/ feature vector {f; =v,, ..., f, = v}, the
most probable classification is given by

argeiasy, e PG = #1000 f =)

* Using Bayes Theorem, rewrites to

ﬂé - B -'Ilfi! ‘H!ll

T T P m e o )
+ Since denominator is independent of h;, this
simplifies to

agemany P =y oo fo = wully) = Plig)
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Abatracty, the probabiny mogel o & ciassse s 8 condtinsl modsl

MCIF,.... Fa)

rheanitle W el o res tractuble
LX)
PlC) piF... . FlC)

BOIF, ..., Fy) = BELE e

, wnw (pown, 30 that the denamesaton s wlectiely contant. Tha rumerator i sgusaest 16 fhw jcant poobaiiety medsl

pC,F,... Fl)
=hich Cn b mrwTiSan w1 follows, UG ropeate spls Hans of he defndion of constonsl prsbabry
MO, Fy,... Fy)

=€) plF..... FalC)
= plC) pIFIC) plFa,..... FalC, Fi)
= pC) MFIC) pLEIC, F) WFs,..., G, i, Fa)
W) pLFIC) pLFAIC, Fy) plF; 30 plFy 1€, £, Fy, Fa)

e “nase’ condtenal inde

1 53 the joe masdel can Be 3
pICFi.... Fa)

- KOV TTR(EIE).

) BURIC) PRI pUFIC) -
Source: Wikipedia
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s thal wach asturs . 3 condtcnaly mdepe

Z

iI

arale £ Wi & amall rumbes of pufcomes of classes, cardbisnat on vevrl leature variables B, theosgh B, The
rumiber of aburns s Large @1 whan & featare can sk on & Lirge ramber of values, Than Basng such 3 modal on

I practicn wa st only mbsswstd i She ramestor of fhat Baction, wnce fhe densmenscor dors nat depend on © s Tae vakies o the features

-

7/11/2011

Bayes Theorem

P(d|k) = P(h)

P(hd) = = Es

e P(h) = prior prob that hypothesis h holds
e P(d|h) = prob of observing data d given h holds

e P(h|d) = posterior prob that h holds given
observed data d

Copyright 2011 © Limsoon Wong

Naive Bayes
+ Butestimating P(f;=v,, ..., f;=v,|h)) accurately may

not be feasible unless training data set is large

e “Solved” by assuming f,, ..., f, are conditionally
independent of each other

° Then sy, . aFilh =Fu.. .o fe =5l = Pl
= e oo L FU = odby) + Py

+ where P(h)) and P(fi=v;|h;) can often be estimated
reliably from typical training data set

Exercise: How do you estimate P(h;) and P(f=v;|h;)?
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Independence vs @EJLE
Conditional Independence
* Independence: P(A,B) = P(A) * P(B)
* Conditional Independence: P(A,B|C) = P(A|C) * P(B|C)
* Indep does not imply conditional indep
— Consider tossing a fair coin twice
« Ais event of getting head in 1st toss
* B is event of getting head in 2nd toss
« Cis event of getting exactly one head

— Then A={HT, HH}, B={HH, TH} and C={HT, TH}

— P(A,B|C) =P({HH}|C)=0

— P(A|C) = P(A,C)/P(C) =P({HT})/P(C)=(1/4)/(1/2) =1/2
— Similarly, P(B|C) =1/2

Copyright 2011 © Limsoon Wong
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An Example

Training samples

Frioe probabibiy for GREEN = 22

FPrior prebabibicy for R

Atesting instance X

Libebhond of X oven GREEN = 2mber of OREBH in he vicwmty of X — 1 A ()

o f OREEN caves
Likekhood of X gives RED = 2 . : =3/20
Foaterae probabiliyaf X beteg GREEN = we c|assify X as RED
FPrior probabibity of GREEN ¥ Likebhood of X grven GREEN . . .
a1 “ since its class membership
[T achieves the largest posterior

FPrioe probabibty af RED % Likabhood of X gven RED

probability

Source:

Copyright 2011 © Limsoon Wong

Hidden Markov Models

65
BENUS

e In nth order HMM, T & E depend on all n previous
states

Order of a HMM

* E.g., for 1st order HMM, given emissions X = Xy, X,
..., & states S=s,, s,, ..., the prob of this seq is

Prob(X, 8) = [] Probim|s:) = [] Bt} = Flzis )

Copyright 2011 © Limsoon Wong
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Example Use of Bayesian: DeSign Of SCI’eenS E_:_l!-%
Macromolecular Crystallization

+ Hennessy et al., Acta Cryst

D56:817-827, 2000 e I

» Xtallization of proteins (o )
requires search of expt \“J

settings to find right o T\

conditions for diffraction- \—)H =) \) . ‘) ‘;)

quality xtals b o )
*« BMCDis adb of known Flgure 1

7 > o Crytalbeation paramsict dpesbenes praph The graph fepeesents the
xtallization conditions patamatcrs mchabed in the cakoulstion of the ctimated probabsbey of
sucrew and iheit dcpendscics A onscdting s P o bulier
* Use Bayes to determine b ot . The |k of g eovtce s Pt
oiiects condinonal ndopendo he ohability dstnboson i
prob of success of aset of = St Srimt iy e frly e v
expt conditions based on

BMCD

/
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What is a HMM

« HMM is a stochastic generative
model for seqs

al
)
» Defined by model parameters ‘

— finite set of states S

— finite alphabet A

— transition prob matrix T
— emission prob matrix E

* Move from state to state as per T
while emitting symbols as per E

Copyright 2011 © Limsoon Wong
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Using HMM

ENUS
ke
¢ Given the model parameters, compute the

probability of a particular output sequence. Solved

by the forward algorithm

« Given the model parameters, find the most likely
sequence of (hidden) states which could have
generated a given output sequence. Solved by the
Viterbi algorithm

¢ Given an output sequence, find the most likely set
of state transition and output probabilities. Solved
by the Baum-Welch algorithm

Exercise: Describe these algorithms

Copyright 2011 © Limsoon Wong
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Example: Dishonest Casino

« Casino has two dices: ¢« Game:
— Fair dice — You bet $1
. P()=1/6,i=1..6 — Youroll
— Loaded dice — Casino rolls

« P(i)=1/10,i=1.5
< P()=1/2,i=6

— Highest number wins $2

¢ Question: Suppose we
played 2 games, and the
sequence of rolls was 1, 6,
2, 6. Were we likely to have
been cheated?

« Casino switches betw fair
& loaded die with prob 1/2.
Initially, dice is always fair

Copyright 2011 © Limsoon Wong

1,6,2,6? =_U_S_
We were probably cheated...

Prab{ X, § — Faniv, Fair, Fair, Fais) = E(1|Fair) «T(?, Pair) =
E(f| Fair) + T Fair, Fair) «
E(3|Fair) T{Fair, Fair} «
(] Fatr) < T Fair, Fair)
= ;ﬂ-aa;mim;-iti
= 965107

ProdX. § = Fuir, Loaded, Fair, Londed) = E(1|Fair) «T(?. Frir]=
E(6 Loaded) + 7 Fair, Loaded) =
(Y Fair ) »T{Londed, Fair) =
E(f| Lowdod) » T\ Fair, Loaded)
= a#lt;#;té*;t;t;
= B69§«10
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Concluding Remarks...

7/11/2011

NUS

I

“Visualization” of Dishonest Casin®

172 172

w2

Lmission Malrix Transition hMawix
Fi|Falr) - </f Fi|l vaded)— 1/ 10 Tl naded loadad) - 147
MF|rair = <6 F7|loadea)= 1010 T{loaded Mair)= 1i7
Ed|leudud} - 1110 I{kan k= 172
Ed|Loadec)= 1710 T{Fair Losded)= 1/2
= )= Ffjinaded)= 1110 T{ZFa= 10
EE|FaIri= 1/ EE|Loadec)= 12 T7Lozgded) = 0.0
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Example Use of ivmv: Protein Families Mode

« Baldi et al., PNAS 91:1059-
1063, 1994

¢ HMMis used to model
families of biological
sequences, such as
kinases, globins, &
immunoglobulins

* Bateman et al., NAR 32:D138-
D141, 2004

* HMMis used to model

Fio. 1. HMM asschiteciure. 5 and £ e the stast and cnd states.
main states m, is the backbone. Side states o, (resp i)

6190 families of protein coespond 0 dlfions (1sp. erioms)
domains in Pfam
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NUS
What have we learned? _—

* Decision Trees

* Decision Trees Ensembles
— Bagging

e Other Methods
— K-Nearest Neighbour
— Support Vector Machines
— Bayesian Approach
— Hidden Markov Models

Copyright 2011 © Limsoon Wong

12



/b

* Most of the slides used in this ppt came from a
tutorial that | gave with Jinyan Li at the 8th
European Conference on Principles and Practice
of Knowledge Discovery in Databases, Pisa, Italy,
20-24 September 2004

Acknowledgements

e The dishonest casino example came from slides |
inherited from Ken Sung

* The “indep vs conditional indep” example came
from Kwok Pui Choi
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* Weka is a collection of machine learning
algorithms for data mining tasks. The algorithms
can either be applied directly to a dataset or
called from your own Java code. Weka contains
tools for data pre-processing, classification,
regression, clustering, association rules, and
visualization.

Exercise: Download a copy of WEKA. What are the names
of classifiers in WEKA that correspond to C4.5 and SVM?
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