

		n featu	ures (or	der of	1000)	
	gene ₁	gene ₂	gene ₃	gene ₄		gene _n	class
	x ₁₁	x ₁₂	x ₁₃	x ₁₄		\mathbf{x}_{1n}	→P
m samples	x ₂₁	x ₂₂ x ₂₂	x ₂₃ x ₂₂	x ₂₄		x _{2n}	→N →P
	····	^A 32	·····			A3n	
	x _{m1}	x _{m2}	x _{m3}	x _{m4}		x _{mn}	→N
	1						1

	An E	Example			
Outlook	Temp	Humidity	Windy	class	
Sunny	75	70	true	Play	
Sunny	80	90	true	Don't	
Sunny	85	85	false	Don't	
Sunny	72	95	true	Don't	
Sunny	69	70	false	Play	
Overcast	72	90	true	Play	
Overcast	83	78	false	Play	
Overcast	64	65	true	Play	
Overcast	81	75	false	Play	
Rain	71	80	true	Don't	
Rain	65	70	true	Don't	
Rain	75	80	false	Play	
Rain	68	80	false	Play	
Rain	70	96	false	Play	

	ŀ	A Simple	e Data	aset	
Outlook	Temp	Humidity	Windy	class	
Sunny	75	70	true	Play	
Sunny	80	90	true	Don't	
Sunny	85	85	false	Don't	
Sunny	72	95	true	Don't	9 Play samples
Sunny	69	70	false	Play	> r lug sumpres
Overcast	72	90	true	Play	CD V
Overcast	83	78	false	Play	5 Don't
Overcast	64	65	true	Play	
Overcast	81	75	false	Play	A total of 14.
Rain	71	80	true	Don't	
Rain	65	70	true	Don't	
Rain	75	80	false	Play	
Rain	68	80	false	Play	
Rain	70	96	false	Play	

A Decision Tree

sunny

> 75

Don't

3

humidity

<- 75

Play

2

outlook

overcast

Play

false

Play

3

rain

windy

true

Don't

	Example of Partitions
•	Categorical feature - Number of partitions of the training data is equal t the number of values of this feature
•	Numerical feature – Two partitions
	Copyright 2011 © Lims

						23
Categ	orical feature	Numerical feature	re		B an I	2
					1	÷ .
Instance #	Outlook	Temp	Humidity	Windy	class	
1	Sunny	75	70	true	Play	
2	Sunny	80	90	true	Don't	
3	Sunny	85	85	false	Don't	
4	Sunny	72	95	true	Don't	
5	Sunny	69	70	false	Play	
6	Overcast	72	90	true	Play	
7	Overcast	83	78	false	Play	
8	Overcast	64	65	true	Play	
9	Overcast	81	75	false	Play	
10	Rain	71	80	true	Don't	
11	Rain	65	70	true	Don't	
12	Rain	75	80	false	Play	
13	Rain	68	80	false	Play	
14	Rain	70	96	false	Play	
				Copyright 2	2011 © Limsoon W	ong

Let's C	onstru	uct a De	ecisior	n Tre	e Together
Outlook	Temp	Humidity	Windy	class	
Sunny	75	70	true	Play	
Sunny	80	90	true	Don't	
Sunny	85	85	false	Don't	
Sunny	72	95	true	Don't	Ask the class to
Sunny	69	70	false	Play	nick root node
Overcast	72	90	true	Play	pick root node
Overcast	83	78	false	Play	and construct
Overcast	64	65	true	Play	the tree
Overcast	81	75	false	Play	recursively
Rain	71	80	true	Don't	with them
Rain	65	70	true	Don't	How good is
Rain	75	80	false	Play	that tree?
Rain	68	80	false	Play	that tree:
Rain	70	96	false	Play	

Example Use of Decision Tree Methods: Proteomio Approaches to Biomarker Discovery
In prostate and bladder cancers (Adam et al. *Proteomics*, 2001)
In serum samples to detect breast cancer (Zhang et al. *Clinical Chemistry*, 2002)

• In serum samples to detect ovarian cancer (Petricoin et al. *Lancet*; Li & Rao, *PAKDD* 2004)

References Y. Freund, et al. Experiments with a new boosting algorithm, ICML 1996, pages 148-156 T. G. Dietterich, An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization, Machine Learning, 40:139-157, 2000 Naïve Bayesian Classification, *Wikipedia*, http://en.wikipedia.org/wiki/Naive_Bayesian_classification

 Hidden Markov Model, Wikipedia, <u>http://en.wikipedia.org/wiki/Hidden_Markov_model</u>

•