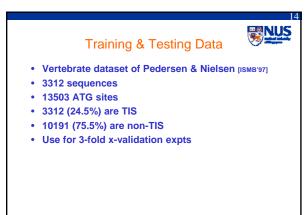
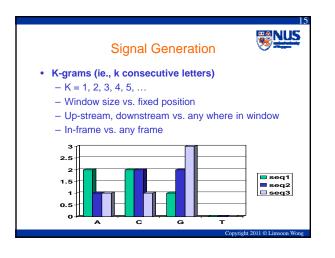
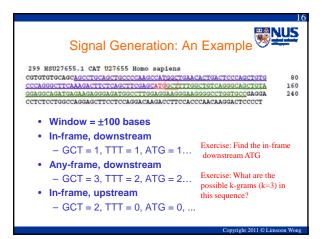
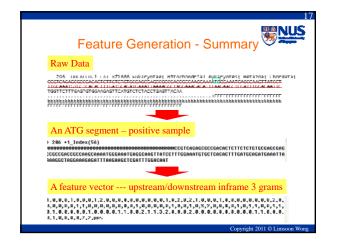
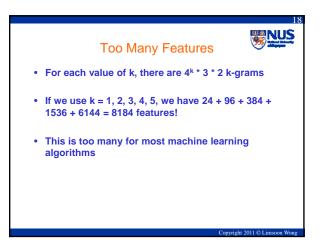

Copyright 2011 © Lims

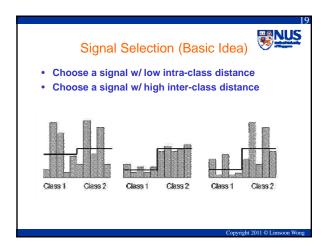


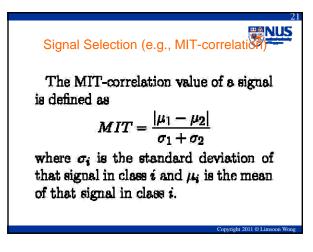


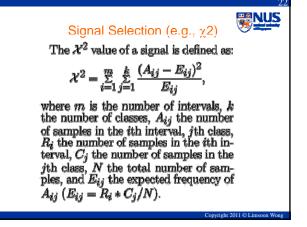


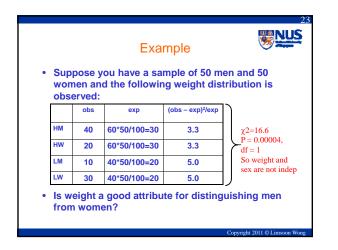


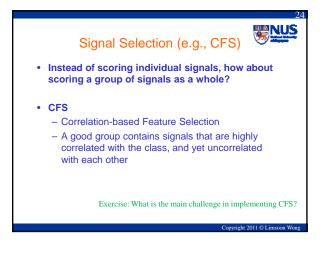


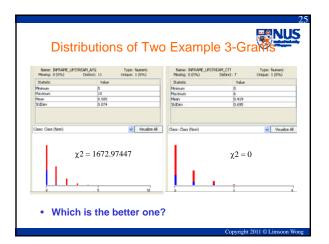


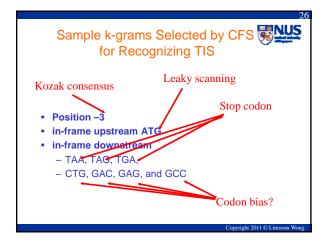


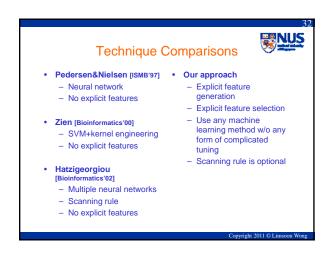

Signal Selection (e.g., t-statistics)

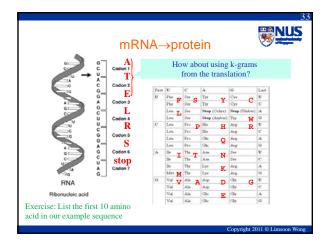

The t-stats of a signal is defined as

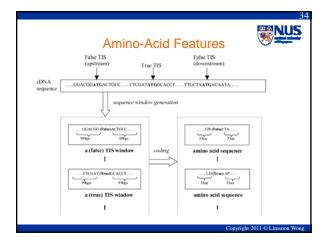

$$t = rac{|\mu_1 - \mu_2|}{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}}$$

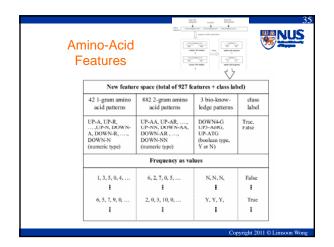

where σ_i^2 is the variance of that signal in class *i*, μ_i is the mean of that signal in class *i*, and n_i is the size of class *i*.

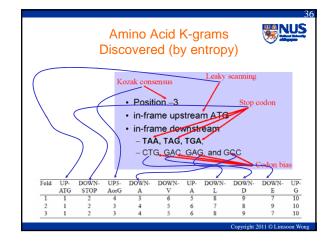



07	_
Signal Integration	
 kNN Given a test sample, find the k training samples that are most similar to it. Let the majority class win 	
 SVM Given a group of training samples from two classes, determine a separating plane that maximises the margin of error 	
Naïve Bayes, ANN, C4.5, Copyright 2011 © Limsoon Wong	

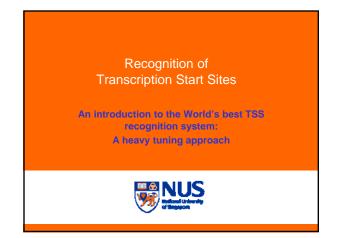

		prodicted	presi	inted	
		as positive	3 5 N	egative	
	positivo	TP	FN	Exe	rcise:
	Instanting.	Fr	TN	Wh	at is TP/(TP+
	TP/(TP + FN)	TN/(TN +	FP)	TP/(TP + FP)	Accuracy
Naïve Bayes	84.3%	86.1%		66.3%	85.7%
SVM	73.9%	93.2%		77.9%	88.5%
Neural Network	77.6%	93.2%		78.8%	89.4%
		94.4%		81.1%	89.4%

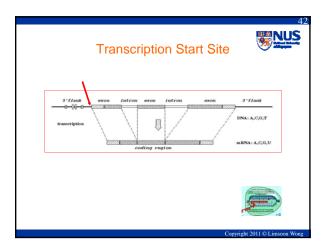

I	mprover	nent by ∖	/oting	1
Apply any Network, a		Bayes, SV Tree. Decid	1 A A A A A A A A A A A A A A A A A A A	rity
	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accurac
NB+SVM+NN	79.2%	92.1%	76.5%	88.9%
NB+SVM+Tree	78.8%	92.0%	76.2%	88.8%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+NN+Tree	75.9%	94.3%	81.2%	89.8%
Best of 4	84.3%	94.4%	81.1%	89.4%
	73.9%	86.1%	66.3%	85.7%

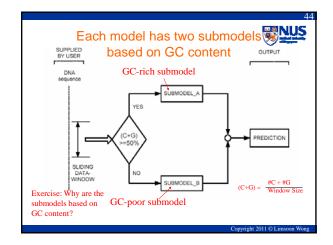

	mprovem	ent by Sc	anning	1
		or SVM left-t ositive. That		first
	yes & SVM p-stream A	models wer TG	e trained us	ing
	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
	04.20/	86.1%	66.3%	85.7%
NB	84.3%	00.170		0011 /0
NB SVM	84.3% 73.9%	93.2%	77.9%	88.5%
-			77.9% 87.9%	

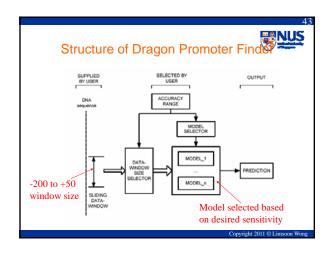

P	erforman	ce Compa	arisons	NUS
	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB	84.3%	86.1%	66.3%	85.7%
Decision Tree	74.0%	94.4%	81.1%	89.4%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+Scanning	88.5%	96.3%	88.6%	94.4%*
Pedersen&Nielsen	78%	87%	-	85%
Zien	69.9%	94.1%	-	88.1%
Hatzigeorgiou	-	-	-	94%*

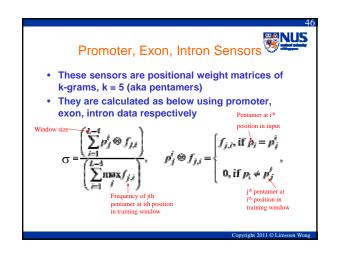
Independent Validation Sets

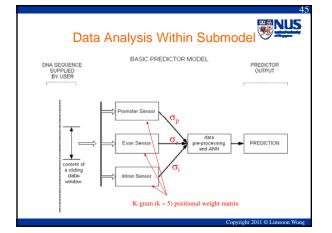

- A. Hatzigeorgiou:
 - 480 fully sequenced human cDNAs
 - 188 left after eliminating sequences similar to
 - training set (Pedersen & Nielsen's) - 3.42% of ATGs are TIS
- Our own:
 - well characterized human gene sequences from chromosome X (565 TIS) and chromosome 21 (180 TIS)

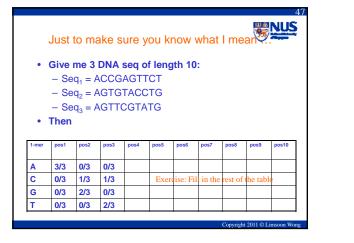

SVMs(quad) 94.14% 90.13% 26.70% 90.28%	Algorithm	Sensitivity	Specificity	Precision	Accuracy
Ensemble Trees 92.02% 92.71% 32.52% 92.68%	SVMs(linear)	96.28%	89.15%	25.31%	89.42%
	SVMs(quad)	94.14%	90.13%	26.70%	90.28%
	Ensemble Trees	92.02%	92.71%	32.52%	92.68%
 Using top 100 features selected by entropy and 		p 100 featu	res selecte	d by entro	

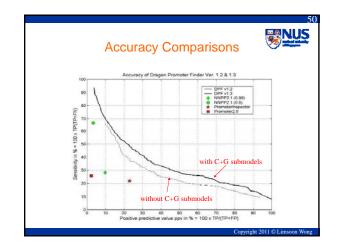

Copyright 2011 © Limso

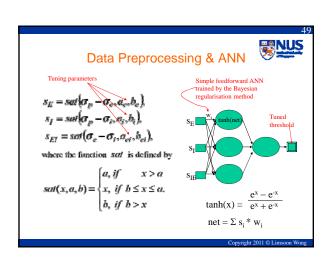


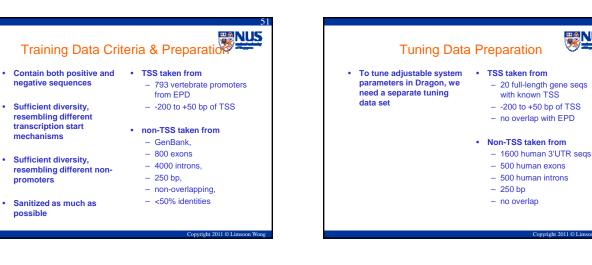


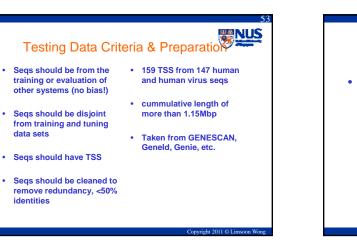




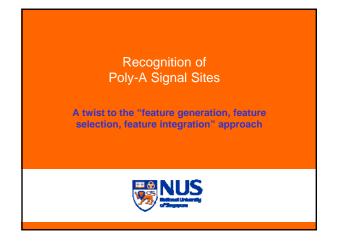


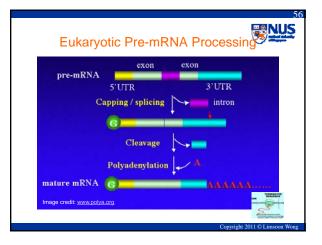


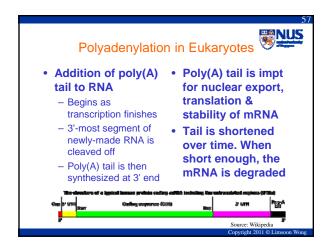




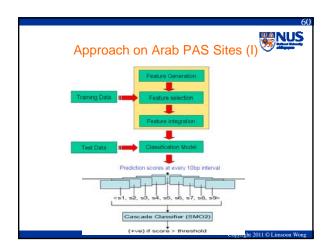
									NU
Jus	t to n	nake	sure	you	know	wha	t l me	ean	
Give	e me :	3 DNA	A seq	of ler	ngth 1	0:			
– S	eq ₁ =	ACC	GAG1	тст					
– S	eq ₂ =	AGT	GTAC	CTG					
– S	eq ₃ =	AGT	TCGT	ATG	Exerci	se: Hov	v many	rows sh	ould
– S The	.0	AGT	TCGT	ATG	this 2-i	ner tab	v many le have ne penta	? How 1	nany
	.0	AGT	POS3	pos4	this 2-i	ner tab	le have	? How 1	nany
The	n				this 2-1 rows sl	ner tab hould th	le have' ne penta	? How 1 timer tab	nany ole have
The 2-mer	pos1	pos2	pos3		this 2-1 rows sl	ner tab nould tl pos6	le have' ne penta	PHOW 1 1 How 1 How 1	nany ole have pos9
The ^{2-mer}	n pos1 0/3	pos2 0/3	pos3 0/3		this 2-1 rows sl	ner tab nould tl pos6	le have'ne penta	PHOW 1 1 How 1 How 1	nany ole have pos9

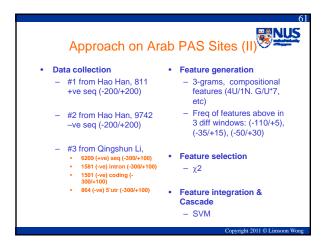

•

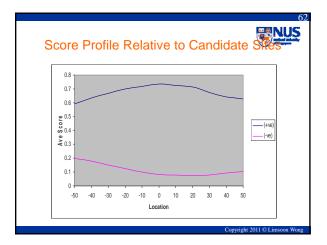

•


data sets

identities

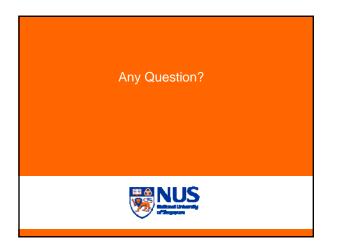


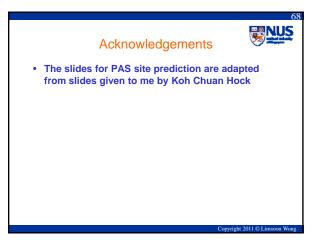


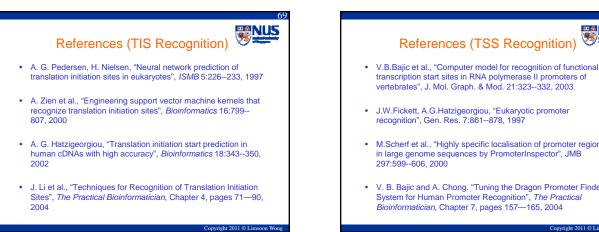


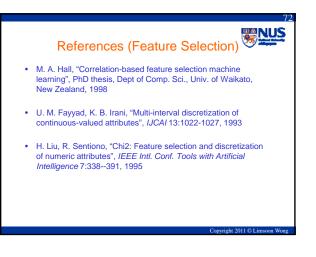
-OIV-A	Signal	s in	Human	Gauthere	tet al., 200
	- 3			(
Table 2. Most Si	gnificant Hexamer	s in 3' Fragn	ents: Clustered He	zamers	
Hexamer	Observed (expected)*	% sites	рь	Position average ± SD	Location
					_45 ⁻³⁵ _25 ⁻¹⁵ _5
AAUAAA	3286 (317)	58.2	0	$=16 \pm 4.7$	500
AUUAAA	843 (112)	14.9	0	= 17 ± 53	150
AGUAAA	156 (32)	2.7	6 × 10 ⁻⁴⁷	-16 ± 5.9	30
IIAUAAA	156 (32)	32	6 × 10	-16 ± 5.9 -18 ± 7.8	30 E
		32	4 × 10-10		10
CAUAAA GAUAAA	76 (23)			-17 ± 5.9	10
	72 (21)	13	2×10^{-10}	-18 ± 6.9	10
AAUAUA	96 (33)	12	2 × 10-19	-18 ± 6.9	0
AAUACA	70 (16)	1.2	5 × 10-25	-18 ± 8.7	10 F
AAUAGA	43 (14)	07	1×10^{-9}	-18 ± 6.3	10 E
AAAAAG	49 (11)	0.8	5×10^{-17}	-18 ± 8.9	ō
ACUAAA	36 (11)	ð.0	1×10^{-98}	-17 ± 8.1	10
AAGAAA	62 (10)	1.1	9×10^{-26}	-19 ± 11	10 Alun
AAUGAA	49 (10)	0.8	4×10^{-16}	-20 ± 10	10
UUUAAA	69 (20)	1.2	3×10^{-16}	-17 ± 12	10
AAAACA	29 (5)	0.5	8×10^{-12}	- 20 ± 10	10
GGGGCU	22 (3)	0.3	9×10^{-13}	- 24 ± 13	10

Ρ	oly-A S	Signa	uls in A	rabidop	sis 👼 NUS
Table 2. Most Si	gnificant Hexamer		ents: Clustered He		
Hexamer	Observed (expected)*	% sites	ph	Position average ± SD	Location*
					-45 -35 -25 -15 -5
AAUAAA	3286 (317)	58.2	0	-16 ± 4.7	500
AUUAAA	843 (112)	14.9	0	-17 ± 5.3	0
AGUAAA	156 (32)	2.7	$6 imes 10^{-87}$	-16 ± 5.9	30
UAUAAA	180 (53)	3.2	4×10^{-43}	-18 ± 7.8	00
CAUAAA	76 (23)	1.3	$1 imes 10^{-10}$	-17 ± 5.9	10
GAUAAA	72				10
AAUAUA	» In	contra	ist to hun	1an, PAS in	Arab is
AAUACA	⁷⁰ hie	rhly da	egenerate	. E.g., only	10% of
AAUAGA	43		0		1 44
AAAAAG	49	A	rab PAS i	s AAUAAA	
ACUAAA	36 (11)	0.6	$1 imes 10^{-66}$	-17 ± 8.1	10
AAGAAA	62 (10)	1.1	9×10^{-26}	-19 ± 11	10 Al
AAUGAA	49 (10)	0.8	4×10^{-18}	-20 ± 10	10
UUUAAA	69 (20)	1.2	$3 imes 10^{-10}$	-17 ± 12	10
AAAACA	29 (5)	0.5	$8 imes 10^{-12}$	-20 ± 10	10
GGGGCU	22 (3)	0.3	$9 imes 10^{-12}$	-24 ± 13	10
					Copyright 2011 © Limsoon We




	Vali	datior	n Re	sults		3
SN 0	SN	10 1	SN	10 2	PAS	SS 1.0
Control Sequences	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold
CDS	90%	0.26	94%	0.24	95%	3.7
5'UTR	79%	0.42	85%	0.49	78%	5.5
Intron	64%	0.59	71%	0.67	63%	6.3
SN_10		101		10 2		SS 1.0
Control Sequences	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold
Control Sequences CDS	SN & SP 94%	Threshold 0.36	SN & SP 96%	Threshold 0.31	SN & SP 96%	Threshold 4
Control Sequences	SN & SP	Threshold	SN & SP	Threshold	SN & SP	Threshold
Control Sequences CDS 5'UTR Intron Table	SN & SP 94% 86% 73% 3, Equal-error-re	Threshold 0.36 0.53 0.68	SN & SP 96% 89% 77% MO1, SMO	Threshold 0.31 0.6 0.77	SN & SP 96% 81% 67% 1.0 for SN_3	Threshold 4 5.7 6.6 20.
Control Sequences CDS 5'UTR Intron Table. SN_30	SN & SP 94% 86% 73% 3, Equal error-re SMO 1	Threshold 0.36 0.53 0.68 ate points of S	SN & SP 96% 89% 77% MO1, SMO SMO 2	Threshold 0.31 0.6 0.77 2, and PASS	SN & SP 96% 81% 67% 1.0 for SN_3 PASS 1.0	Threshold 4 5.7 6.6
Control Sequences CDS 5'UTR Intron Table	SN & SP 94% 86% 73% 3, Equal-error-re	Threshold 0.36 0.53 0.68	SN & SP 96% 89% 77% MO1, SMO	Threshold 0.31 0.6 0.77	SN & SP 96% 81% 67% 1.0 for SN_3	Threshold 4 5.7 6.6 20. Threshold
Control Sequences CDS 5'UTR Infron Table. SN 30 Control Sequences CDS	SN & SP 94% 86% 73% 3, Equal error-re SMO 1 SN & SP 97%	Threshold 0.36 0.53 0.68 ate points of S Threshold 0.44	SN & SP 96% 89% 77% MO1, 3MO SMO 2 SN & SP 97%	Threshold 0.31 0.6 0.77 2, and PASS Threshold 0.37	SN & SP 96% 81% 67% 10 for SN_3 PASS 10 SN & SP 97%	Threshold 4 5.7 6.6 10. Threshold 4.3
Control Sequences CDS 5'UTR Intron Table. SN 30 Control Sequences	SN & SP 94% 26% 73% 3, Equal-error-re SMO 1 SN & SP	Threshold 0.36 0.53 0.68 ate points of S Threshold	SN & SP 96% 89% 77% MO1, SMO SMO 2 SN & SP	Threshold 0.31 0.6 0.77 2, and PASS Threshold	SN & SP 96% 81% 67% 1.0 for SN_3 PASS 1.0 SN & SP	Threshold 4 5.7 6.6 20. Threshold





vertebrates", J. Mol. Graph. & Mod. 21:323--332, 2003 J.W.Fickett, A.G.Hatzigeorgiou, "Eukaryotic promoter recognition", Gen. Res. 7:861--878, 1997 M.Scherf et al., "Highly specific localisation of promoter regions in large genome sequences by PromoterInspector", JMB V. B. Bajic and A. Chong. "Tuning the Dragon Promoter Finder System for Human Promoter Recognition", *The Practical* Bioinformatician, Chapter 7, pages 157-165, 2004

References (PAS Recognition)

- Q. Li et al., "Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures". *Plant Physiology*, 138:1457-1468, 2005
- J. E. Tabaska, M. Q. Zhang, "Detection of polyadenylation signals in human DNA sequences". *Gene*, 231:77-86, 1999
- M. Legendre, D. Gautheret, "Sequence determinants in human polyadenylation site selection". *BMC Genomics*, 4:7, 2003
- B. Tian et al., "Prediction of mRNA polyadenylation sites by support vector machine". *Bioinformatics*, 22:2320-2325, 2006 •
- C. H. Koh, L. Wong. "Recognition of Polyadenylation Sites from Arabidopsis Genomic Sequences". *Proc. GIW* 2007, pages 73--82 •

