
For written notes on this lecture, please read chapter 3 of The Practical Bioinformatician, 

CS2220: Introduction to Computational Biology 

Lecture 1: Essence of Knowledge Discovery 

Limsoon Wong 



2 

Copyright 2012 © Limsoon Wong 

Jonathan’s rules : Blue or Circle 
Jessica’s rules  : All the rest 

What is Data Mining? 

Whose block  

is this? 

Jonathan’s blocks 

Jessica’s blocks 
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What is Data Mining? 

Question: Can you explain how? 
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The Steps of Data Mining  

• Training data gathering 

• Feature generation 

– k-grams, colour, texture, domain know-how, ... 

• Feature selection 

– Entropy, 2, CFS, t-test, domain know-how... 

• Feature integration 

– SVM, ANN, PCL, CART, C4.5, kNN, ... 

 

Some classifiers / machine learning methods 



What is Accuracy? 



6 

Copyright 2012 © Limsoon Wong 

What is Accuracy? 

Accuracy = 
No. of correct predictions 

No. of predictions 

= 
TP + TN 

TP + TN + FP + FN 
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Examples (Balanced Population) 

• Clearly, B, C, D are all better than A 

• Is B better than C, D? 

• Is C better than B, D? 

• Is D better than B, C? 

classifier TP TN FP FN Accuracy

A 25 25 25 25 50%

B 50 25 25 0 75%

C 25 50 0 25 75%

D 37 37 13 13 74%

Accuracy may not 

tell the whole story 



8 

Copyright 2012 © Limsoon Wong 

Examples (Unbalanced Population) 

• Clearly, D is better than A 

• Is B better than A, C, D? 

classifier TP TN FP FN Accuracy

A 25 75 75 25 50%

B 0 150 0 50 75%

C 50 0 150 0 25%

D 30 100 50 20 65%

High accuracy is meaningless if population is unbalanced 

Exercise: What is B’s  

Prediction strategy? 
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What is Sensitivity (aka Recall)? 

Sensitivity = 
No. of correct positive predictions 

No. of positives 

= 
TP 

TP + FN 

wrt positives 

Sometimes sensitivity wrt negatives is termed specificity 

Exercise: Write down the formula for specificity 
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What is Precision? 

 Precision = 
No. of correct positive predictions 

No. of positives predictions 

= 
TP 

TP + FP 

wrt positives 
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Unbalanced Population Revisited 

• What are the sensitivity and precision of B and C? 

• Is B better than A, C, D? 

classifier TP TN FP FN Accuracy Sensitivity Precision

A 25 75 75 25 50% 50% 25%

B 0 150 0 50 75%

C 50 0 150 0 25%

D 30 100 50 20 65% 60% 38%
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Abstract Model of a Classifier 

• Given a test sample S 

• Compute scores p(S), n(S) 

• Predict S as negative if p(S) / n(S) < t 

• Predict S as positive  if p(S) / n(S)   t 

t is the decision threshold of the classifier 

 

changing t affects the recall and precision, 

and hence accuracy, of the classifier 
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An Example 

Recall that … 

• Predict S as negative if p(S) / n(S) <  t 

• Predict S as positive  if p(S) / n(S)   t 

5  / 6 
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Precision-Recall Trade-off 

• A predicts better than 

B if A has better recall 

and precision than B 

• There is a trade-off 

between recall and 

precision 

• In some apps, once 

you reach satisfactory 

precision, you 

optimize for recall 

• In some apps, once 

you reach satisfactory 

recall, you optimize 

for precision 

precision 

Exercise: Why is there a trade 

 off betw recall and precision? 
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Comparing Prediction Performance 

• Accuracy is the obvious measure 

– But it conveys the right intuition only when the 

positive and negative populations are roughly 

equal in size 

 

• Recall and precision together form a better 

measure 

– But what do you do when A has better recall than 

B and B has better precision than A? 

So let us look at some alternate measures …. 



16 

Copyright 2012 © Limsoon Wong 

F-Measure (Used in Info Extraction) 

• Take the harmonic mean of recall and precision 

F = 
2 * recall * precision 

recall + precision 
(wrt positives) 

classifier TP TN FP FN Accuracy F-measure

A 25 75 75 25 50% 33%

B 0 150 0 50 75% undefined

C 50 0 150 0 25% 40%

D 30 100 50 20 65% 46%

Does not accord with intuition: 

C predicts everything as +ve, but still rated better than A 
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Adjusted Accuracy 

• Weigh by the importance of the classes 

classifier TP TN FP FN Accuracy Adj Accuracy

A 25 75 75 25 50% 50%

B 0 150 0 50 75% 50%

C 50 0 150 0 25% 50%

D 30 100 50 20 65% 63%

Adjusted accuracy =  *  Sensitivity  *  Specificity + 

where  +  = 1 
typically,  =  = 0.5 

But people can’t always agree on values for ,  
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ROC Curves 

• By changing t, we get a 

range of sensitivities and 

specificities of a classifier 

 

• A predicts better than B if 

A has better sensitivities 

than B at most specificities 

 

• Leads to ROC curve that 

plots sensitivity vs. (1 – 

specificity) 

• Then the larger the area 

under the ROC curve, the 

better 

1 – specificity 
Exercise: Draw a typical curve  

of sensitivity vs specificity 



What is Cross Validation? 
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Construction of a Classifier 

Build Classifier 
Training 

samples 
Classifier 

Apply Classifier 
Test 

instance 
Prediction 
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Estimate Accuracy: Wrong Way 

Apply  

Classifier 
Predictions 

Build  

Classifier 

Training 

samples 
Classifier 

Estimate 

Accuracy 
Accuracy 

Exercise: Why is this way of estimating accuracy wrong? 
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Recall ... 

• Given a test sample S 

• Compute scores p(S), n(S) 

• Predict S as negative if p(S) / n(S) < t 

• Predict S as positive  if p(S) / n(S)  t 

t is the decision threshold of the classifier 

…the abstract model of a classifier 
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K-Nearest Neighbour Classifier (k-NN) 

• Given a sample S, find the k observations Si in 

the known data that are “closest” to it, and 

average their responses 

• Assume S is well approximated by its neighbours 

p(S) = 
 

   1 
Si Nk(S)  DP 

n(S) = 
 

   1 
Si Nk(S)  DN 

where Nk(S) is the neighbourhood of S 

defined by the k nearest samples to it. 

Assume distance between samples is Euclidean distance for now 
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Neighborhood 

5 of class 

3 of class 

= 

Illustration of kNN (k=8) 

Image credit: Zaki 
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Estimate Accuracy: Wrong Way 

Apply  

1-NN 
Predictions 

Build  

1-NN 

Training 

samples 
1-NN 

Estimate 

Accuracy 
100% 

Accuracy 

For sure k-NN (k = 1) has 100% accuracy in the 

“accuracy estimation” procedure above. But does 

this accuracy generalize to new test instances? 

Exercise:  

Why does 1-NN 

has 100% accuracy  

under this scenario? 
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Estimate Accuracy: Right Way 

Testing samples are NOT to be used  

during “Build Classifier” 

Apply  

Classifier 
Predictions 

Build  

Classifier 

Training 

samples 
Classifier 

Estimate 

Accuracy 
Accuracy 

Testing 

samples 
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How Many Training and  

Testing Samples? 

• No fixed ratio between training and testing 

samples; but typically 2:1 ratio 

• Proportion of instances of different classes in 

testing samples should be similar to proportion in 

training samples 

 

• What if there are insufficient samples to reserve 

1/3 for testing? 

• Ans: Cross validation  
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Cross Validation 

• Divide samples 

into k roughly 

equal parts  

 

• Each part has 

similar proportion 

of samples from 

different classes 

 

• Use each part to 

test other parts 

 

• Total up accuracy 

2.Train  3.Train 4.Train  5.Train  1.Test  

2.Test  3.Train 4.Train  5.Train  1.Train  

2.Train  3.Test 4.Train  5.Train  1.Train  

2.Train  3.Train 4.Test  5.Train  1.Train  

2.Train  3.Train 4.Train  5.Test  1.Train  
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How Many Fold? 

• If samples are divided 

into k parts, we call 

this k-fold cross 

validation 

• Choose k so that  

– the k-fold cross 

validation accuracy 

does not change 

much from k-1 fold 

– each part within the k-

fold cross validation 

has similar accuracy 

 

• k = 5 or 10 are popular 

choices for k 
Size of training set 

A
cc

u
ra

cy
  



30 

Copyright 2012 © Limsoon Wong 

Bias and Variance 

Source: Freedman et al., Statistics, Norton, 1998 
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Bias-Variance Decomposition 

• Suppose classifiers Cj and 

Ck were trained on 

different sets Sj and Sk of 

1000 samples each 

 

• Then Cj and Ck might have 

different accuracy 

 

• What is the expected 

accuracy of a classifier C 

trained this way? 

• Let Y = f(X) be what C is 

trying to predict 

 

• The expected squared 

error at a test instance x, 

averaging over all such 

training samples, is  

E[C(x) – f(x)]2 

= E[C(x) – E[C(x)]]2 

+ [E[C(x)] – f(x)]2  

Variance:  
how much our  

estimate C(x) will 

 vary across the  

different training 

sets 

Bias: 
how far is our ave  

prediction E[C(x)]  

from the truth 
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Proof of Bias-Variance Decomposition 

• E [C(x) – f(x)]2 

 E [C(x) – E[C(x)] + E [C(x)] – f(x)]2 

 E [(C(x) – E[C(x)])2 + (E[C(x)] – f(x))2 – 2 (C(x) – E[C(x)]) (E[C(x)] – f(x))] 

 E [C(x) – E[C(x)]]2 + E [E[C(x)] – f(x)]2 – 2 E (C(x) – E[C(x)]) (E[C(x)] – f(x)) 

 E [C(x) – E[C(x)]]2 + (E[C(x)] – f(x))2 – 2 (E[C(x)] – E[C(x)]) (E[C(x)] – f(x)) 

 E [C(x) – E[C(x)]]2 + (E[C(x)] – f(x))2 

 

Variance:  
how much our  

estimate C(x) will 

 vary across the  

different training 

sets 

Bias: 
how far is our ave  

prediction E[C(x)]  

from the truth 
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Size of training set 

A
cc

u
ra

cy
  

Bias-Variance Trade-Off 

• In k-fold cross 

validation,  

– small k tends to 

under estimate 

accuracy (i.e., large 

bias downwards) 

– Large k has smaller 

bias, but can have 

high variance 



Curse of Dimensionality 
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Neighborhood 

5 of class 

3 of class 

= 

Recall kNN … 

Image credit: Zaki 

1
st
 d

im
en

si
o
n

 

2nd dimension 
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Curse of Dimensionality 

• How much of each 

dimension is needed to 

cover a proportion r of 

total sample space? 

• Calculate by ep(r) = r1/p 

• So, to cover 10% of a 15-D 

space, need 85% of each 

dimension!  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p=3 p=6 p=9 p=12 p=15

r=0.01

r=0.1

Exercise: Why ep(r) = r1/p?  
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Consequence of the Curse 

• Suppose the number of samples given to us in 

the total sample space is fixed 

 

• Let the dimension increase 

 

• Then the distance of the k nearest neighbours of 

any point increases 

 

• Then the k nearest neighbours are less and less 

useful for prediction, and can confuse the k-NN 

classifier 



What is Feature Selection? 
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Tackling the Curse 

• Given a sample space of p dimensions 

 

• It is possible that some dimensions are irrelevant 

 

• Need to find ways to separate those dimensions 

(aka features) that are relevant (aka signals) from 

those that are irrelevant (aka noise) 
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Signal Selection (Basic Idea) 

• Choose a feature w/ low intra-class distance 

• Choose a feature w/ high inter-class distance 

Exercise: Name 2 well-known signal selection statistics 
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Signal Selection (e.g., t-statistics) 
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Self-fulfilling Oracle 

• Construct artificial 

dataset with 100 

samples, each with 

100,000 randomly 

generated features 

and randomly 

assigned class labels 

 

• Select 20 features 

with the best t-

statistics (or other 

methods) 

• Evaluate accuracy by 

cross validation using 

the 20 selected 

features 

 

• The resulting 

accuracy can be ~90% 

 

• But the true accuracy 

should be 50%, as the 

data were derived 

randomly 
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What Went Wrong? 

• The 20 features were selected from whole dataset 

• Information in the held-out testing samples has 

thus been “leaked” to the training process 

 

• The correct way is to re-select the 20 features at 

each fold; better still, use a totally new set of 

samples for testing 



While dimensionality reduction is an important tool in machine 

learning/data mining, we must always be aware that it can distort the 

data in misleading ways. 

 

Above is a two dimensional projection of an intrinsically three 

dimensional world…. 

© Eamonn Keogh 



Original photographer unknown/ 

See also www.cs.gmu.edu/~jessica/DimReducDanger.htm                      

© Eamonn Keogh        



 
Screen dumps of a short video from 

www.cs.gmu.edu/~jessica/DimReducDanger.htm 

A cloud of points in 3D 

Can be projected into 2D 

XY or XZ or YZ 
 

In 2D XZ we see 

a triangle 

 

In 2D YZ we see 

a square 

 

In 2D XY we see 

a circle 

 

© Eamonn Keogh 



Concluding Remarks 



48 

Copyright 2012 © Limsoon Wong 

What have we learned? 

• Methodology of data mining 

– Feature generation, feature selection, feature 

integration 

 

• Evaluation of classifiers 

– Accuracy, sensitivity, precision 

– Cross validation 

 

• Curse of dimensionality 

– Feature selection concept 

– Self-fulfilling oracle 



Any Questions? 
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